RSA演算法非常簡單,概述如下:
找兩素數p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一個數e,要求滿足e<t並且e與t互素(就是最大公因數為1)
取d*e%t==1
這樣最終得到三個數: n d e
設消息為數M (M <n)
設c=(M**d)%n就得到了加密後的消息c
設m=(c**e)%n則 m == M,從而完成對c的解密。
註:**表示次方,上面兩式中的d和e可以互換。
在對稱加密中:
n d兩個數構成公鑰,可以告訴別人;
n e兩個數構成私鑰,e自己保留,不讓任何人知道。
給別人發送的信息使用e加密,只要別人能用d解開就證明信息是由你發送的,構成了簽名機制。
別人給你發送信息時使用d加密,這樣只有擁有e的你能夠對其解密。
rsa的安全性在於對於一個大數n,沒有有效的方法能夠將其分解
從而在已知n d的情況下無法獲得e;同樣在已知n e的情況下無法
求得d。
<二>實踐
接下來我們來一個實踐,看看實際的操作:
找兩個素數:
p=47
q=59
這樣
n=p*q=2773
t=(p-1)*(q-1)=2668
取e=63,滿足e<t並且e和t互素
用perl簡單窮舉可以獲得滿主 e*d%t ==1的數d:
C:\Temp>perl -e "foreach $i (1..9999){ print($i),last if $i*63%2668==1 }"
847
即d=847
最終我們獲得關鍵的
n=2773
d=847
e=63
取消息M=244我們看看
加密:
c=M**d%n = 244**847%2773
用perl的大數計算來算一下:
C:\Temp>perl -Mbigint -e "print 244**847%2773"
465
即用d對M加密後獲得加密信息c=465
解密:
我們可以用e來對加密後的c進行解密,還原M:
m=c**e%n=465**63%2773 :
C:\Temp>perl -Mbigint -e "print 465**63%2773"
244
即用e對c解密後獲得m=244 , 該值和原始信息M相等。
<三>字元串加密
把上面的過程集成一下我們就能實現一個對字元串加密解密的示例了。
每次取字元串中的一個字元的ascii值作為M進行計算,其輸出為加密後16進制
的數的字元串形式,按3位元組表示,如01F
代碼如下:
#!/usr/bin/perl -w
#RSA 計算過程學習程序編寫的測試程序
#watercloud 2003-8-12
#
use strict;
use Math::BigInt;
my %RSA_CORE = (n=>2773,e=>63,d=>847); #p=47,q=59
my $N=new Math::BigInt($RSA_CORE{n});
my $E=new Math::BigInt($RSA_CORE{e});
my $D=new Math::BigInt($RSA_CORE{d});
print "N=$N D=$D E=$E\n";
sub RSA_ENCRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$cmess);
for($i=0;$i < length($$r_mess);$i++)
{
$c=ord(substr($$r_mess,$i,1));
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($D,$N);
$c=sprintf "%03X",$C;
$cmess.=$c;
}
return \$cmess;
}
sub RSA_DECRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$dmess);
for($i=0;$i < length($$r_mess);$i+=3)
{
$c=substr($$r_mess,$i,3);
$c=hex($c);
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($E,$N);
$c=chr($C);
$dmess.=$c;
}
return \$dmess;
}
my $mess="RSA 娃哈哈哈~~~";
$mess=$ARGV[0] if @ARGV >= 1;
print "原始串:",$mess,"\n";
my $r_cmess = RSA_ENCRYPT(\$mess);
print "加密串:",$$r_cmess,"\n";
my $r_dmess = RSA_DECRYPT($r_cmess);
print "解密串:",$$r_dmess,"\n";
#EOF
測試一下:
C:\Temp>perl rsa-test.pl
N=2773 D=847 E=63
原始串:RSA 娃哈哈哈~~~
加密串:
解密串:RSA 娃哈哈哈~~~
C:\Temp>perl rsa-test.pl 安全焦點(xfocus)
N=2773 D=847 E=63
原始串:安全焦點(xfocus)
加密串:
解密串:安全焦點(xfocus)
<四>提高
前面已經提到,rsa的安全來源於n足夠大,我們測試中使用的n是非常小的,根本不能保障安全性,
我們可以通過RSAKit、RSATool之類的工具獲得足夠大的N 及D E。
通過工具,我們獲得1024位的N及D E來測試一下:
n=EC3A85F5005D
4C2013433B383B
A50E114705D7E2
BC511951
d=0x10001
e=DD28C523C2995
47B77324E66AFF2
789BD782A592D2B
1965
設原始信息
M=
完成這么大數字的計算依賴於大數運算庫,用perl來運算非常簡單:
A) 用d對M進行加密如下:
c=M**d%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x11111111111122222222222233
333333333, 0x10001,
D55EDBC4F0
6E37108DD6
);print $x->as_hex"
b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898
即用d對M加密後信息為:
c=b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898
B) 用e對c進行解密如下:
m=c**e%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x17b287be418c69ecd7c39227ab
5aa1d99ef3
0cb4764414
, 0xE760A
3C29954C5D
7324E66AFF
2789BD782A
592D2B1965, CD15F90
4F017F9CCF
DD60438941
);print $x->as_hex"
(我的P4 1.6G的機器上計算了約5秒鍾)
得到用e解密後的m= == M
C) RSA通常的實現
RSA簡潔幽雅,但計算速度比較慢,通常加密中並不是直接使用RSA 來對所有的信息進行加密,
最常見的情況是隨機產生一個對稱加密的密鑰,然後使用對稱加密演算法對信息加密,之後用
RSA對剛才的加密密鑰進行加密。
最後需要說明的是,當前小於1024位的N已經被證明是不安全的
自己使用中不要使用小於1024位的RSA,最好使用2048位的。
----------------------------------------------------------
一個簡單的RSA演算法實現JAVA源代碼:
filename:RSA.java
/*
* Created on Mar 3, 2005
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/
import java.math.BigInteger;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.FileWriter;
import java.io.FileReader;
import java.io.BufferedReader;
import java.util.StringTokenizer;
/**
* @author Steve
*
* TODO To change the template for this generated type comment go to
* Window - Preferences - Java - Code Style - Code Templates
*/
public class RSA {
/**
* BigInteger.ZERO
*/
private static final BigInteger ZERO = BigInteger.ZERO;
/**
* BigInteger.ONE
*/
private static final BigInteger ONE = BigInteger.ONE;
/**
* Pseudo BigInteger.TWO
*/
private static final BigInteger TWO = new BigInteger("2");
private BigInteger myKey;
private BigInteger myMod;
private int blockSize;
public RSA (BigInteger key, BigInteger n, int b) {
myKey = key;
myMod = n;
blockSize = b;
}
public void encodeFile (String filename) {
byte[] bytes = new byte[blockSize / 8 + 1];
byte[] temp;
int tempLen;
InputStream is = null;
FileWriter writer = null;
try {
is = new FileInputStream(filename);
writer = new FileWriter(filename + ".enc");
}
catch (FileNotFoundException e1){
System.out.println("File not found: " + filename);
}
catch (IOException e1){
System.out.println("File not found: " + filename + ".enc");
}
/**
* Write encoded message to 'filename'.enc
*/
try {
while ((tempLen = is.read(bytes, 1, blockSize / 8)) > 0) {
for (int i = tempLen + 1; i < bytes.length; ++i) {
bytes[i] = 0;
}
writer.write(encodeDecode(new BigInteger(bytes)) + " ");
}
}
catch (IOException e1) {
System.out.println("error writing to file");
}
/**
* Close input stream and file writer
*/
try {
is.close();
writer.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}
public void decodeFile (String filename) {
FileReader reader = null;
OutputStream os = null;
try {
reader = new FileReader(filename);
os = new FileOutputStream(filename.replaceAll(".enc", ".dec"));
}
catch (FileNotFoundException e1) {
if (reader == null)
System.out.println("File not found: " + filename);
else
System.out.println("File not found: " + filename.replaceAll(".enc", "dec"));
}
BufferedReader br = new BufferedReader(reader);
int offset;
byte[] temp, toFile;
StringTokenizer st = null;
try {
while (br.ready()) {
st = new StringTokenizer(br.readLine());
while (st.hasMoreTokens()){
toFile = encodeDecode(new BigInteger(st.nextToken())).toByteArray();
System.out.println(toFile.length + " x " + (blockSize / 8));
if (toFile[0] == 0 && toFile.length != (blockSize / 8)) {
temp = new byte[blockSize / 8];
offset = temp.length - toFile.length;
for (int i = toFile.length - 1; (i <= 0) && ((i + offset) <= 0); --i) {
temp[i + offset] = toFile[i];
}
toFile = temp;
}
/*if (toFile.length != ((blockSize / 8) + 1)){
temp = new byte[(blockSize / 8) + 1];
System.out.println(toFile.length + " x " + temp.length);
for (int i = 1; i < temp.length; i++) {
temp[i] = toFile[i - 1];
}
toFile = temp;
}
else
System.out.println(toFile.length + " " + ((blockSize / 8) + 1));*/
os.write(toFile);
}
}
}
catch (IOException e1) {
System.out.println("Something went wrong");
}
/**
* close data streams
*/
try {
os.close();
reader.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}
/**
* Performs <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*
* @param base the base to be raised
* @param pow the power to which the base will be raisded
* @param mod the molar domain over which to perform this operation
* @return <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*/
public BigInteger encodeDecode(BigInteger base) {
BigInteger a = ONE;
BigInteger s = base;
BigInteger n = myKey;
while (!n.equals(ZERO)) {
if(!n.mod(TWO).equals(ZERO))
a = a.multiply(s).mod(myMod);
s = s.pow(2).mod(myMod);
n = n.divide(TWO);
}
return a;
}
}
在這里提供兩個版本的RSA演算法JAVA實現的代碼下載:
1. 來自於 http://www.javafr.com/code.aspx?ID=27020 的RSA演算法實現源代碼包:
http://zeal.newmenbase.net/attachment/JavaFR_RSA_Source.rar
2. 來自於 http://www.ferrara.linux.it/Members/lucabariani/RSA/implementazioneRsa/ 的實現:
http://zeal.newmenbase.net/attachment/sorgentiJava.tar.gz - 源代碼包
http://zeal.newmenbase.net/attachment/algoritmoRSA.jar - 編譯好的jar包
另外關於RSA演算法的php實現請參見文章:
php下的RSA演算法實現
關於使用VB實現RSA演算法的源代碼下載(此程序採用了psc1演算法來實現快速的RSA加密):
http://zeal.newmenbase.net/attachment/vb_PSC1_RSA.rar
RSA加密的JavaScript實現: http://www.ohdave.com/rsa/
B. java 中的Cipher類RSA方式能不能用私鑰加密公鑰解密,完整解釋下
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");
keyGen.initialize(1024);
KeyPair key = keyGen.generateKeyPair();
Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");
//把第二個參數改為 key.getPrivate()
cipher.init(Cipher.ENCRYPT_MODE, key.getPublic());
byte[] cipherText = cipher.doFinal("Message".getBytes("UTF8"));
System.out.println(new String(cipherText, "UTF8"));
//把第二個參數改為key.getPublic()
cipher.init(Cipher.DECRYPT_MODE, key.getPrivate());
byte[] newPlainText = cipher.doFinal(cipherText);
System.out.println(new String(newPlainText, "UTF8"));
正常的用公鑰加密私鑰解密就是這個過程,如果按私鑰加密公鑰解密,只要按備注改2個參數就可以。
但是我要提醒樓主,你要公鑰解密,公鑰是公開的,相當於任何人都查到公鑰可以解密。
你是想做簽名是吧。
C. 公鑰與私鑰用於加解密和簽名
公鑰:公開持有,每個人都可以獲得。
私鑰:個人持有,需要保密不能泄露。
公鑰加密,私鑰解密
信息從公鑰持有者中的某一個向私鑰持有者發送。
加解密是為了讓通信的第三方無法獲取消息內容。
私鑰簽名,公鑰驗簽
信息從私鑰持有者向公鑰持有者中的某一個發送。
簽名是為了證明消息發送者的身份合法,即是「我」本人而不是其他人冒充我發送的消息。(但這個消息可能是公開的,如果希望加密發送,則需要另外一對兒公鑰和私鑰反方向持有,完成加解密過程)
私鑰和公鑰是一對,誰都可以加解密,只是誰加密誰解密是看情景來用的:
第一種情景是簽名,使用私鑰加密,公鑰解密,用於讓所有公鑰所有者驗證私鑰所有者的身份並且用來防止私鑰所有者發布的內容被篡改.但是不用來保證內容不被他人獲得。
第二種情景是加密,用公鑰加密,私鑰解密,用於向公鑰所有者發布信息,這個信息可能被他人篡改,但是無法被他人獲得。
比如加密情景:
如果甲想給乙發一個安全的保密的數據,那麼應該甲乙各自有一個私鑰,甲先用乙的公鑰加密這段數據,再用自己的私鑰加密這段加密後的數據.最後再發給乙,這樣確保了內容即不會被讀取,也不會被篡改。
英文版: http://www.youdzone.com/signature.html
中文版: http://www.blogjava.net/yxhxj2006/archive/2012/10/15/389547.html
https://www.hu.com/question/25912483
D. java 加密方式有哪些
Java加密方式有多種,包括對稱加密、非對稱加密、散列加密等。
1. 對稱加密:
對稱加密是指加密和解密使用相同密鑰的加密方式。在Java中,常見的對稱加密演算法有AES、DES、3DES等。其中,AES演算法是DES的替代品,具有更高的安全性。這些演算法提供了不同級別的加密強度,適用於保護敏感信息。
2. 非對稱加密:
非對稱加密使用一對密鑰,一個用於加密,另一個用於解密。在Java中,常見的非對稱加密演算法有RSA、DSA、ECC等。RSA演算法是最常用的非對稱加密演算法之一,它利用公鑰進行加密,私鑰進行解密,適用於安全通信和數字簽名。
3. 散列加密(哈希加密):
散列加密是一種將任意長度的輸入轉換為固定長度輸出的加密方式。在Java中,常見的散列加密演算法有MD5、SHA-1、SHA-256等。這些演算法主要用於生成數據的唯一標識符(哈希值),適用於密碼存儲、文件校驗等場景。需要注意的是,雖然MD5在某些情況下存在安全隱患,但SHA系列演算法提供了更高的安全性。
以上三種加密方式在Java中都有廣泛的應用,根據具體需求選擇合適的加密方式至關重要。同時,為了確保加密的安全性,還需要注意密鑰的管理和保護,避免密鑰泄露帶來的安全風險。