導航:首頁 > 編程語言 > Javarsa填充

Javarsa填充

發布時間:2025-04-25 11:05:18

㈠ RSA PKCS#1在java中怎麼實現

樓主看看下面的代碼是不是你所需要的,這是我原來用的時候收集的
import javax.crypto.Cipher;
import java.security.*;
import java.security.spec.RSAPublicKeySpec;
import java.security.spec.RSAPrivateKeySpec;
import java.security.spec.InvalidKeySpecException;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;
import java.io.*;
import java.math.BigInteger;

/**
* RSA 工具類。提供加密,解密,生成密鑰對等方法。
* 需要到http://www.bouncycastle.org下載bcprov-jdk14-123.jar。
* RSA加密原理概述
* RSA的安全性依賴於大數的分解,公鑰和私鑰都是兩個大素數(大於100的十進制位)的函數。
* 據猜測,從一個密鑰和密文推斷出明文的難度等同於分解兩個大素數的積
* ===================================================================
* (該演算法的安全性未得到理論的證明)
* ===================================================================
* 密鑰的產生:
* 1.選擇兩個大素數 p,q ,計算 n=p*q;
* 2.隨機選擇加密密鑰 e ,要求 e 和 (p-1)*(q-1)互質
* 3.利用 Euclid 演算法計算解密密鑰 d , 使其滿足 e*d = 1(mod(p-1)*(q-1)) (其中 n,d 也要互質)
* 4:至此得出公鑰為 (n,e) 私鑰為 (n,d)
* ===================================================================
* 加解密方法:
* 1.首先將要加密的信息 m(二進製表示) 分成等長的數據塊 m1,m2,...,mi 塊長 s(盡可能大) ,其中 2^s<n
* 2:對應的密文是: ci = mi^e(mod n)
* 3:解密時作如下計算: mi = ci^d(mod n)
* ===================================================================
* RSA速度
* 由於進行的都是大數計算,使得RSA最快的情況也比DES慢上100倍,無論是軟體還是硬體實現。
* 速度一直是RSA的缺陷。一般來說只用於少量數據加密。
* 文件名:RSAUtil.java<br>
* @author 趙峰<br>
* 版本:1.0.1<br>
* 描述:本演算法摘自網路,是對RSA演算法的實現<br>
* 創建時間:2009-7-10 下午09:58:16<br>
* 文件描述:首先生成兩個大素數,然後根據Euclid演算法生成解密密鑰<br>
*/
public class RSAUtil {

//密鑰對
private KeyPair keyPair = null;

/**
* 初始化密鑰對
*/
public RSAUtil(){
try {
this.keyPair = this.generateKeyPair();
} catch (Exception e) {
e.printStackTrace();
}
}

/**
* 生成密鑰對
* @return KeyPair
* @throws Exception
*/
private KeyPair generateKeyPair() throws Exception {
try {
KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance("RSA",new org.bouncycastle.jce.provider.BouncyCastleProvider());
//這個值關繫到塊加密的大小,可以更改,但是不要太大,否則效率會低
final int KEY_SIZE = 1024;
keyPairGen.initialize(KEY_SIZE, new SecureRandom());
KeyPair keyPair = keyPairGen.genKeyPair();
return keyPair;
} catch (Exception e) {
throw new Exception(e.getMessage());
}

}

/**
* 生成公鑰
* @param molus
* @param publicExponent
* @return RSAPublicKey
* @throws Exception
*/
private RSAPublicKey generateRSAPublicKey(byte[] molus, byte[] publicExponent) throws Exception {

KeyFactory keyFac = null;
try {
keyFac = KeyFactory.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
} catch (NoSuchAlgorithmException ex) {
throw new Exception(ex.getMessage());
}
RSAPublicKeySpec pubKeySpec = new RSAPublicKeySpec(new BigInteger(molus), new BigInteger(publicExponent));
try {
return (RSAPublicKey) keyFac.generatePublic(pubKeySpec);
} catch (InvalidKeySpecException ex) {
throw new Exception(ex.getMessage());
}

}

/**
* 生成私鑰
* @param molus
* @param privateExponent
* @return RSAPrivateKey
* @throws Exception
*/
private RSAPrivateKey generateRSAPrivateKey(byte[] molus, byte[] privateExponent) throws Exception {
KeyFactory keyFac = null;
try {
keyFac = KeyFactory.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
} catch (NoSuchAlgorithmException ex) {
throw new Exception(ex.getMessage());
}
RSAPrivateKeySpec priKeySpec = new RSAPrivateKeySpec(new BigInteger(molus), new BigInteger(privateExponent));
try {
return (RSAPrivateKey) keyFac.generatePrivate(priKeySpec);
} catch (InvalidKeySpecException ex) {
throw new Exception(ex.getMessage());
}
}

/**
* 加密
* @param key 加密的密鑰
* @param data 待加密的明文數據
* @return 加密後的數據
* @throws Exception
*/
public byte[] encrypt(Key key, byte[] data) throws Exception {
try {
Cipher cipher = Cipher.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
cipher.init(Cipher.ENCRYPT_MODE, key);
// 獲得加密塊大小,如:加密前數據為128個byte,而key_size=1024 加密塊大小為127 byte,加密後為128個byte;
// 因此共有2個加密塊,第一個127 byte第二個為1個byte
int blockSize = cipher.getBlockSize();
// System.out.println("blockSize:"+blockSize);
int outputSize = cipher.getOutputSize(data.length);// 獲得加密塊加密後塊大小
// System.out.println("加密塊大小:"+outputSize);
int leavedSize = data.length % blockSize;
// System.out.println("leavedSize:"+leavedSize);
int blocksSize = leavedSize != 0 ? data.length / blockSize + 1 : data.length / blockSize;
byte[] raw = new byte[outputSize * blocksSize];
int i = 0;
while (data.length - i * blockSize > 0) {
if (data.length - i * blockSize > blockSize)
cipher.doFinal(data, i * blockSize, blockSize, raw, i * outputSize);
else
cipher.doFinal(data, i * blockSize, data.length - i * blockSize, raw, i * outputSize);
// 這裡面doUpdate方法不可用,查看源代碼後發現每次doUpdate後並沒有什麼實際動作除了把byte[]放到ByteArrayOutputStream中
// 而最後doFinal的時候才將所有的byte[]進行加密,可是到了此時加密塊大小很可能已經超出了OutputSize所以只好用dofinal方法。
i++;
}
return raw;
} catch (Exception e) {
throw new Exception(e.getMessage());
}
}

/**
* 解密
* @param key 解密的密鑰
* @param raw 已經加密的數據
* @return 解密後的明文
* @throws Exception
*/
@SuppressWarnings("static-access")
public byte[] decrypt(Key key, byte[] raw) throws Exception {
try {
Cipher cipher = Cipher.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
cipher.init(cipher.DECRYPT_MODE, key);
int blockSize = cipher.getBlockSize();
ByteArrayOutputStream bout = new ByteArrayOutputStream(64);
int j = 0;
while (raw.length - j * blockSize > 0) {
bout.write(cipher.doFinal(raw, j * blockSize, blockSize));
j++;
}
return bout.toByteArray();
} catch (Exception e) {
throw new Exception(e.getMessage());
}
}

/**
* 返回公鑰
* @return
* @throws Exception
*/
public RSAPublicKey getRSAPublicKey() throws Exception{
//獲取公鑰
RSAPublicKey pubKey = (RSAPublicKey) keyPair.getPublic();
//獲取公鑰系數(位元組數組形式)
byte[] pubModBytes = pubKey.getMolus().toByteArray();
//返回公鑰公用指數(位元組數組形式)
byte[] pubPubExpBytes = pubKey.getPublicExponent().toByteArray();
//生成公鑰
RSAPublicKey recoveryPubKey = this.generateRSAPublicKey(pubModBytes,pubPubExpBytes);
return recoveryPubKey;
}

/**
* 獲取私鑰
* @return
* @throws Exception
*/
public RSAPrivateKey getRSAPrivateKey() throws Exception{
// 獲取私鑰
RSAPrivateKey priKey = (RSAPrivateKey) keyPair.getPrivate();
// 返回私鑰系數(位元組數組形式)
byte[] priModBytes = priKey.getMolus().toByteArray();
// 返回私鑰專用指數(位元組數組形式)
byte[] priPriExpBytes = priKey.getPrivateExponent().toByteArray();
// 生成私鑰
RSAPrivateKey recoveryPriKey = this.generateRSAPrivateKey(priModBytes,priPriExpBytes);
return recoveryPriKey;
}

/**
* 測試
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
RSAUtil rsa = new RSAUtil();
String str = "天龍八部、神鵰俠侶、射鵰英雄傳白馬嘯西風";
RSAPublicKey pubKey = rsa.getRSAPublicKey();
RSAPrivateKey priKey = rsa.getRSAPrivateKey();
// System.out.println("加密後==" + new String(rsa.encrypt(pubKey,str.getBytes())));
String mw = new String(rsa.encrypt(pubKey, str.getBytes()));
System.out.println("加密後:"+mw);
// System.out.println("解密後:");
System.out.println("解密後==" + new String(rsa.decrypt(priKey,rsa.encrypt(pubKey,str.getBytes()))));
}
}

㈡ java RSA演算法實現256位密鑰怎麼做

【下載實例】本文介紹RSA2加密與解密,RSA2是RSA的加強版本,在密鑰長度上採用2048, RSA2比RSA更安全,更可靠, 本人的另一篇文章RSA已經發表,有想了解的可以點開下面的RSA文章

android和java webservice RSA處理的不同

android和java webservice RSA處理的不同

1.andorid機器上生成的(密鑰對由伺服器在windows xp下生成並將公鑰發給客戶端保存)密碼無法在伺服器通過私鑰解密。

2.為了測試,在伺服器本地加解密正常,另外,在android上加解密也正常,但是在伺服器中加密(使用相同公鑰)後的密碼同樣無法在android系統解密(使用相同私鑰)。
3.由於對RSA加密演算法不了解,而且對Java RSA的加密過程也不清楚、谷歌一番,才了解到可能是加密過程中的填充字元長度不同,這跟加解密時指定的RSA演算法有關系。
4. 比如,在A機中使用標准RSA通過公鑰加密,然後在B系統中使用「RSA/ECB/NoPadding」使用私鑰解密,結果可以解密,但是會發現解密後的原文前面帶有很多特殊字元,這就是在加密前填充的空字元;如果在B系統中仍然使用標準的RSA演算法解密,這在相同類型的JDK虛擬機環境下當然是完全一樣的,關鍵是android系統使用的虛擬機(dalvik)跟SUN標准JDK是有所區別的,其中他們默認的RSA實現就不同。
5.更形象一點,在加密的時候加密的原文「abc」,直接使用「abc」.getBytes()方法獲得的bytes長度可能只有3,但是系統卻先把它放到一個512位的byte數組里,new byte[512],再進行加密。但是解密的時候使用的是「加密後的密碼」.getBytes()來解密,解密後的原文自然就是512長度的數據,即是在「abc」之外另外填充了500多位元組的其他空字元。

㈣ 高分求java的RSA 和IDEA 加密解密演算法

RSA演算法非常簡單,概述如下:
找兩素數p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一個數e,要求滿足e<t並且e與t互素(就是最大公因數為1)
取d*e%t==1

這樣最終得到三個數: n d e

設消息為數M (M <n)
設c=(M**d)%n就得到了加密後的消息c
設m=(c**e)%n則 m == M,從而完成對c的解密。
註:**表示次方,上面兩式中的d和e可以互換。

在對稱加密中:
n d兩個數構成公鑰,可以告訴別人;
n e兩個數構成私鑰,e自己保留,不讓任何人知道。
給別人發送的信息使用e加密,只要別人能用d解開就證明信息是由你發送的,構成了簽名機制。
別人給你發送信息時使用d加密,這樣只有擁有e的你能夠對其解密。

rsa的安全性在於對於一個大數n,沒有有效的方法能夠將其分解
從而在已知n d的情況下無法獲得e;同樣在已知n e的情況下無法
求得d。

<二>實踐

接下來我們來一個實踐,看看實際的操作:
找兩個素數:
p=47
q=59
這樣
n=p*q=2773
t=(p-1)*(q-1)=2668
取e=63,滿足e<t並且e和t互素
用perl簡單窮舉可以獲得滿主 e*d%t ==1的數d:
C:\Temp>perl -e "foreach $i (1..9999){ print($i),last if $i*63%2668==1 }"
847
即d=847

最終我們獲得關鍵的
n=2773
d=847
e=63

取消息M=244我們看看

加密:

c=M**d%n = 244**847%2773
用perl的大數計算來算一下:
C:\Temp>perl -Mbigint -e "print 244**847%2773"
465
即用d對M加密後獲得加密信息c=465

解密:

我們可以用e來對加密後的c進行解密,還原M:
m=c**e%n=465**63%2773 :
C:\Temp>perl -Mbigint -e "print 465**63%2773"
244
即用e對c解密後獲得m=244 , 該值和原始信息M相等。

<三>字元串加密

把上面的過程集成一下我們就能實現一個對字元串加密解密的示例了。
每次取字元串中的一個字元的ascii值作為M進行計算,其輸出為加密後16進制
的數的字元串形式,按3位元組表示,如01F

代碼如下:

#!/usr/bin/perl -w
#RSA 計算過程學習程序編寫的測試程序
#watercloud 2003-8-12
#
use strict;
use Math::BigInt;

my %RSA_CORE = (n=>2773,e=>63,d=>847); #p=47,q=59

my $N=new Math::BigInt($RSA_CORE{n});
my $E=new Math::BigInt($RSA_CORE{e});
my $D=new Math::BigInt($RSA_CORE{d});

print "N=$N D=$D E=$E\n";

sub RSA_ENCRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$cmess);

for($i=0;$i < length($$r_mess);$i++)
{
$c=ord(substr($$r_mess,$i,1));
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($D,$N);
$c=sprintf "%03X",$C;
$cmess.=$c;
}
return \$cmess;
}

sub RSA_DECRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$dmess);

for($i=0;$i < length($$r_mess);$i+=3)
{
$c=substr($$r_mess,$i,3);
$c=hex($c);
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($E,$N);
$c=chr($C);
$dmess.=$c;
}
return \$dmess;
}

my $mess="RSA 娃哈哈哈~~~";
$mess=$ARGV[0] if @ARGV >= 1;
print "原始串:",$mess,"\n";

my $r_cmess = RSA_ENCRYPT(\$mess);
print "加密串:",$$r_cmess,"\n";

my $r_dmess = RSA_DECRYPT($r_cmess);
print "解密串:",$$r_dmess,"\n";

#EOF

測試一下:
C:\Temp>perl rsa-test.pl
N=2773 D=847 E=63
原始串:RSA 娃哈哈哈~~~
加密串:
解密串:RSA 娃哈哈哈~~~

C:\Temp>perl rsa-test.pl 安全焦點(xfocus)
N=2773 D=847 E=63
原始串:安全焦點(xfocus)
加密串:
解密串:安全焦點(xfocus)

<四>提高

前面已經提到,rsa的安全來源於n足夠大,我們測試中使用的n是非常小的,根本不能保障安全性,
我們可以通過RSAKit、RSATool之類的工具獲得足夠大的N 及D E。
通過工具,我們獲得1024位的N及D E來測試一下:

n=EC3A85F5005D
4C2013433B383B
A50E114705D7E2
BC511951

d=0x10001

e=DD28C523C2995
47B77324E66AFF2
789BD782A592D2B
1965

設原始信息
M=

完成這么大數字的計算依賴於大數運算庫,用perl來運算非常簡單:

A) 用d對M進行加密如下:
c=M**d%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x11111111111122222222222233
333333333, 0x10001,
D55EDBC4F0
6E37108DD6
);print $x->as_hex"
b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898

即用d對M加密後信息為:
c=b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898

B) 用e對c進行解密如下:

m=c**e%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x17b287be418c69ecd7c39227ab
5aa1d99ef3
0cb4764414
, 0xE760A
3C29954C5D
7324E66AFF
2789BD782A
592D2B1965, CD15F90
4F017F9CCF
DD60438941
);print $x->as_hex"

(我的P4 1.6G的機器上計算了約5秒鍾)

得到用e解密後的m= == M

C) RSA通常的實現
RSA簡潔幽雅,但計算速度比較慢,通常加密中並不是直接使用RSA 來對所有的信息進行加密,
最常見的情況是隨機產生一個對稱加密的密鑰,然後使用對稱加密演算法對信息加密,之後用
RSA對剛才的加密密鑰進行加密。

最後需要說明的是,當前小於1024位的N已經被證明是不安全的
自己使用中不要使用小於1024位的RSA,最好使用2048位的。

----------------------------------------------------------

一個簡單的RSA演算法實現JAVA源代碼:

filename:RSA.java

/*
* Created on Mar 3, 2005
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/

import java.math.BigInteger;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.FileWriter;
import java.io.FileReader;
import java.io.BufferedReader;
import java.util.StringTokenizer;

/**
* @author Steve
*
* TODO To change the template for this generated type comment go to
* Window - Preferences - Java - Code Style - Code Templates
*/
public class RSA {

/**
* BigInteger.ZERO
*/
private static final BigInteger ZERO = BigInteger.ZERO;

/**
* BigInteger.ONE
*/
private static final BigInteger ONE = BigInteger.ONE;

/**
* Pseudo BigInteger.TWO
*/
private static final BigInteger TWO = new BigInteger("2");

private BigInteger myKey;

private BigInteger myMod;

private int blockSize;

public RSA (BigInteger key, BigInteger n, int b) {
myKey = key;
myMod = n;
blockSize = b;
}

public void encodeFile (String filename) {
byte[] bytes = new byte[blockSize / 8 + 1];
byte[] temp;
int tempLen;
InputStream is = null;
FileWriter writer = null;
try {
is = new FileInputStream(filename);
writer = new FileWriter(filename + ".enc");
}
catch (FileNotFoundException e1){
System.out.println("File not found: " + filename);
}
catch (IOException e1){
System.out.println("File not found: " + filename + ".enc");
}

/**
* Write encoded message to 'filename'.enc
*/
try {
while ((tempLen = is.read(bytes, 1, blockSize / 8)) > 0) {
for (int i = tempLen + 1; i < bytes.length; ++i) {
bytes[i] = 0;
}
writer.write(encodeDecode(new BigInteger(bytes)) + " ");
}
}
catch (IOException e1) {
System.out.println("error writing to file");
}

/**
* Close input stream and file writer
*/
try {
is.close();
writer.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}

public void decodeFile (String filename) {

FileReader reader = null;
OutputStream os = null;
try {
reader = new FileReader(filename);
os = new FileOutputStream(filename.replaceAll(".enc", ".dec"));
}
catch (FileNotFoundException e1) {
if (reader == null)
System.out.println("File not found: " + filename);
else
System.out.println("File not found: " + filename.replaceAll(".enc", "dec"));
}

BufferedReader br = new BufferedReader(reader);
int offset;
byte[] temp, toFile;
StringTokenizer st = null;
try {
while (br.ready()) {
st = new StringTokenizer(br.readLine());
while (st.hasMoreTokens()){
toFile = encodeDecode(new BigInteger(st.nextToken())).toByteArray();
System.out.println(toFile.length + " x " + (blockSize / 8));

if (toFile[0] == 0 && toFile.length != (blockSize / 8)) {
temp = new byte[blockSize / 8];
offset = temp.length - toFile.length;
for (int i = toFile.length - 1; (i <= 0) && ((i + offset) <= 0); --i) {
temp[i + offset] = toFile[i];
}
toFile = temp;
}

/*if (toFile.length != ((blockSize / 8) + 1)){
temp = new byte[(blockSize / 8) + 1];
System.out.println(toFile.length + " x " + temp.length);
for (int i = 1; i < temp.length; i++) {
temp[i] = toFile[i - 1];
}
toFile = temp;
}
else
System.out.println(toFile.length + " " + ((blockSize / 8) + 1));*/
os.write(toFile);
}
}
}
catch (IOException e1) {
System.out.println("Something went wrong");
}

/**
* close data streams
*/
try {
os.close();
reader.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}

/**
* Performs <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*
* @param base the base to be raised
* @param pow the power to which the base will be raisded
* @param mod the molar domain over which to perform this operation
* @return <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*/
public BigInteger encodeDecode(BigInteger base) {
BigInteger a = ONE;
BigInteger s = base;
BigInteger n = myKey;

while (!n.equals(ZERO)) {
if(!n.mod(TWO).equals(ZERO))
a = a.multiply(s).mod(myMod);

s = s.pow(2).mod(myMod);
n = n.divide(TWO);
}

return a;
}

}

在這里提供兩個版本的RSA演算法JAVA實現的代碼下載:

1. 來自於 http://www.javafr.com/code.aspx?ID=27020 的RSA演算法實現源代碼包:
http://zeal.newmenbase.net/attachment/JavaFR_RSA_Source.rar

2. 來自於 http://www.ferrara.linux.it/Members/lucabariani/RSA/implementazioneRsa/ 的實現:
http://zeal.newmenbase.net/attachment/sorgentiJava.tar.gz - 源代碼包
http://zeal.newmenbase.net/attachment/algoritmoRSA.jar - 編譯好的jar包

另外關於RSA演算法的php實現請參見文章:
php下的RSA演算法實現

關於使用VB實現RSA演算法的源代碼下載(此程序採用了psc1演算法來實現快速的RSA加密):
http://zeal.newmenbase.net/attachment/vb_PSC1_RSA.rar

RSA加密的JavaScript實現: http://www.ohdave.com/rsa/

㈤ Java生成RSA非對稱型加密的公鑰和私鑰

非對稱型加密非常適合多個客戶端和伺服器之間的秘密通訊 客戶端使用同一個公鑰將明文加密 而這個公鑰不能逆向的解密 密文發送到伺服器後有伺服器端用私鑰解密 這樣就做到了明文的加密傳送

非對稱型加密也有它先天的缺點 加密 解密速度慢制約了它的發揮 如果你有大量的文字需要加密傳送 建議你通過非對稱型加密來把對稱型 密鑰 分發到客戶端 及時更新對稱型 密鑰

import java io *;

import java security *;

import javax crypto *;

import javax crypto spec *;

/**

* <p>Title: RSA非對稱型加密的公鑰和私鑰</p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) </p>

* <p>Company: </p>

* @author not attributable

* @version

*/

public class KeyRSA {

private KeyPairGenerator kpg = null;

private KeyPair kp = null;

private PublicKey public_key = null;

private PrivateKey private_key = null;

private FileOutputStream public_file_out = null;

private ObjectOutputStream public_object_out = null;

private FileOutputStream private_file_out = null;

private ObjectOutputStream private_object_out = null;

/**

* 構造函數

* @param in 指定密匙長度(取值范圍 ~ )

* @throws NoSuchAlgorithmException 異常

*/

public KeyRSA(int in String address) throws NoSuchAlgorithmException FileNotFoundException IOException

{

kpg = KeyPairGenerator getInstance( RSA ); //創建 密匙對 生成器

kpg initialize(in); //指定密匙長度(取值范圍 ~ )

kp = kpg genKeyPair(); //生成 密匙對 其中包含著一個公匙和一個私匙的信息

public_key = kp getPublic(); //獲得公匙

private_key = kp getPrivate(); //獲得私匙

//保存公匙

public_file_out = new FileOutputStream(address + /public_key dat );

public_object_out = new ObjectOutputStream(public_file_out);

public_object_out writeObject(public_key);

//保存私匙

private_file_out = new FileOutputStream(address + /private_key dat );

private_object_out = new ObjectOutputStream(private_file_out);

private_object_out writeObject(private_key);

}

public static void main(String[] args) {

try {

System out println( 私匙和公匙保存到C盤下的文件中 );

new KeyRSA( c:/ );

}

catch (IOException ex) {

}

catch (NoSuchAlgorithmException ex) {

}

}

lishixin/Article/program/Java/hx/201311/26592

㈥ java和js實現 RSA+AES介面驗簽和參數加密 對稱加密非對稱加密

在Java和JavaScript中實現RSA+AES的介面驗簽和參數加密,可以按照以下步驟進行

一、總體流程

  1. 生成AES密鑰:調用方生成一個AES密鑰,用於對請求參數進行加密。
  2. RSA加密AES密鑰:調用方使用接收方的RSA公鑰對AES密鑰進行加密,確保密鑰在傳輸過程中的安全性。
  3. AES加密請求參數:調用方使用AES密鑰對請求參數進行加密。
  4. 傳輸加密數據:調用方將加密後的請求參數和RSA加密後的AES密鑰一起發送給接收方。
  5. RSA解密AES密鑰:接收方使用自己的RSA私鑰解密AES密鑰。
  6. AES解密請求參數:接收方使用解密後的AES密鑰對請求參數進行解密。
  7. 驗簽:接收方對解密後的請求參數進行驗簽,確保數據的完整性和真實性。

二、Java實現

  1. AES加密解密

    • 使用Java的javax.crypto包中的類來實現AES加密和解密。
    • 需要指定加密模式、填充方式等。
  2. RSA加密解密

    • 使用Java的java.security和javax.crypto包中的類來實現RSA加密和解密。
    • 需要載入RSA公鑰和私鑰。
  3. 工具類設計

    • 設計AES工具類和RSA工具類,分別負責AES和RSA的加密解密操作。
    • 可以使用單例模式或依賴注入等方式管理這些工具類。
  4. 實體對象和過濾器

    • 設計請求和響應的實體對象,包含與業務相關的成員變數。
    • 設計過濾器,用於在請求到達controller層之前對請求參數進行解密和驗簽處理。

三、JavaScript實現

  1. AES加密解密

    • 使用Node.js的crypto模塊來實現AES加密和解密。
    • 同樣需要指定加密模式和填充方式。
  2. RSA加密解密

    • 使用Node.js的nodersa庫或類似的庫來實現RSA加密和解密。
    • 需要載入RSA公鑰和私鑰。
  3. 工具函數設計

    • 設計AES和RSA的加密解密工具函數。
    • 這些函數可以在請求發送前和響應接收後被調用。
  4. 請求處理

    • 在發送請求前,使用AES加密請求參數,並使用RSA加密AES密鑰。
    • 在接收響應後,使用RSA解密AES密鑰,並使用AES解密響應參數。

四、注意事項

㈦ 關於java中rsa的問題

【實例下載】本文介紹RSA2加密與解密,RSA2是RSA的加強版本,在密鑰長度上採用2048, RSA2比RSA更安全,更可靠, 本人的另一篇文章RSA已經發表,有想了解的可以點開下面的RSA文章

閱讀全文

與Javarsa填充相關的資料

熱點內容
海南省分布式伺服器雲主機 瀏覽:31
世紀江湖聊天室源碼 瀏覽:247
阿里網盤的文件如何解壓 瀏覽:781
簡單淘寶客源碼 瀏覽:680
煎餅解壓視頻教程全集 瀏覽:339
平行線pdf 瀏覽:631
android鎖屏不退出程序運行 瀏覽:635
sap連接的伺服器地址是 瀏覽:426
linuxshell腳本從入門到精通 瀏覽:725
python進制均值 瀏覽:629
pdfformac 瀏覽:318
用虛擬伺服器是什麼目的 瀏覽:192
壓縮機阿里巴巴 瀏覽:637
主圖指標源碼回踩 瀏覽:161
怎麼驗證伺服器埠 瀏覽:612
如何添加密碼卡 瀏覽:671
2021好聲音在哪個app觀看 瀏覽:126
壓縮層計算深度 瀏覽:391
愛奇藝怎麼不能源碼輸出 瀏覽:834
小孩視力訓練app哪個好 瀏覽:831