A. 如何在後台部署深度學習模型
搭建深度學習後台伺服器
我們的Keras深度學習REST API將能夠批量處理圖像,擴展到多台機器(包括多台web伺服器和Redis實例),並在負載均衡器之後進行循環調度。
為此,我們將使用:
KerasRedis(內存數據結構存儲)
Flask (python的微web框架)
消息隊列和消息代理編程範例
本篇文章的整體思路如下:
我們將首先簡要討論Redis數據存儲,以及如何使用它促進消息隊列和消息代理。然後,我們將通過安裝所需的Python包來配置Python開發環境,以構建我們的Keras深度學習REST API。一旦配置了開發環境,就可以使用Flask web框架實現實際的Keras深度學習REST API。在實現之後,我們將啟動Redis和Flask伺服器,然後使用cURL和Python向我們的深度學習API端點提交推理請求。最後,我們將以對構建自己的深度學習REST API時應該牢記的注意事項的簡短討論結束。
第一部分:簡要介紹Redis如何作為REST API消息代理/消息隊列
測試和原文的命令一致。
第三部分:配置Python開發環境以構建Keras REST API
文章中說需要創建新的虛擬環境來防止影響系統級別的python項目(但是我沒有創建),但是還是需要安裝rest api所需要依賴的包。以下為所需要的包。
第四部分:實現可擴展的Keras REST API
首先是Keras Redis Flask REST API數據流程圖
讓我們開始構建我們的伺服器腳本。為了方便起見,我在一個文件中實現了伺服器,但是它可以按照您認為合適的方式模塊化。為了獲得最好的結果和避免復制/粘貼錯誤,我建議您使用本文的「下載」部分來獲取相關的腳本和圖像。
為了簡單起見,我們將在ImageNet數據集上使用ResNet預訓練。我將指出在哪裡可以用你自己的模型交換ResNet。flask模塊包含flask庫(用於構建web API)。redis模塊將使我們能夠與redis數據存儲介面。從這里開始,讓我們初始化將在run_keras_server.py中使用的常量.
我們將向伺服器傳遞float32圖像,尺寸為224 x 224,包含3個通道。我們的伺服器可以處理一個BATCH_SIZE = 32。如果您的生產系統上有GPU(s),那麼您需要調優BATCH_SIZE以獲得最佳性能。我發現將SERVER_SLEEP和CLIENT_SLEEP設置為0.25秒(伺服器和客戶端在再次輪詢Redis之前分別暫停的時間)在大多數系統上都可以很好地工作。如果您正在構建一個生產系統,那麼一定要調整這些常量。
讓我們啟動我們的Flask app和Redis伺服器:
在這里你可以看到啟動Flask是多麼容易。在運行這個伺服器腳本之前,我假設Redis伺服器正在運行(之前的redis-server)。我們的Python腳本連接到本地主機6379埠(Redis的默認主機和埠值)上的Redis存儲。不要忘記將全局Keras模型初始化為None。接下來我們來處理圖像的序列化:
Redis將充當伺服器上的臨時數據存儲。圖像將通過諸如cURL、Python腳本甚至是移動應用程序等各種方法進入伺服器,而且,圖像只能每隔一段時間(幾個小時或幾天)或者以很高的速率(每秒幾次)進入伺服器。我們需要把圖像放在某個地方,因為它們在被處理前排隊。我們的Redis存儲將作為臨時存儲。
為了將圖像存儲在Redis中,需要對它們進行序列化。由於圖像只是數字數組,我們可以使用base64編碼來序列化圖像。使用base64編碼還有一個額外的好處,即允許我們使用JSON存儲圖像的附加屬性。
base64_encode_image函數處理序列化。類似地,在通過模型傳遞圖像之前,我們需要反序列化圖像。這由base64_decode_image函數處理。
預處理圖片
我已經定義了一個prepare_image函數,它使用Keras中的ResNet50實現對輸入圖像進行預處理,以便進行分類。在使用您自己的模型時,我建議修改此函數,以執行所需的預處理、縮放或規范化。
從那裡我們將定義我們的分類方法
classify_process函數將在它自己的線程中啟動,我們將在下面的__main__中看到這一點。該函數將從Redis伺服器輪詢圖像批次,對圖像進行分類,並將結果返回給客戶端。
在model = ResNet50(weights="imagenet")這一行中,我將這個操作與終端列印消息連接起來——根據Keras模型的大小,載入是即時的,或者需要幾秒鍾。
載入模型只在啟動這個線程時發生一次——如果每次我們想要處理一個映像時都必須載入模型,那麼速度會非常慢,而且由於內存耗盡可能導致伺服器崩潰。
載入模型後,這個線程將不斷輪詢新的圖像,然後將它們分類(注意這部分代碼應該時尚一部分的繼續)
在這里,我們首先使用Redis資料庫的lrange函數從隊列(第79行)中獲取最多的BATCH_SIZE圖像。
從那裡我們初始化imageIDs和批處理(第80和81行),並開始在第84行開始循環隊列。
在循環中,我們首先解碼對象並將其反序列化為一個NumPy數組image(第86-88行)。
接下來,在第90-96行中,我們將向批處理添加圖像(或者如果批處理當前為None,我們將該批處理設置為當前圖像)。
我們還將圖像的id附加到imageIDs(第99行)。
讓我們完成循環和函數
在這個代碼塊中,我們檢查批處理中是否有圖像(第102行)。如果我們有一批圖像,我們通過模型(第105行)對整個批進行預測。從那裡,我們循環一個圖像和相應的預測結果(110-122行)。這些行向輸出列表追加標簽和概率,然後使用imageID將輸出存儲在Redis資料庫中(第116-122行)。
我們使用第125行上的ltrim從隊列中刪除了剛剛分類的圖像集。最後,我們將睡眠設置為SERVER_SLEEP時間並等待下一批圖像進行分類。下面我們來處理/predict我們的REST API端點
稍後您將看到,當我們發布到REST API時,我們將使用/predict端點。當然,我們的伺服器可能有多個端點。我們使用@app。路由修飾符以第130行所示的格式在函數上方定義端點,以便Flask知道調用什麼函數。我們可以很容易地得到另一個使用AlexNet而不是ResNet的端點,我們可以用類似的方式定義具有關聯函數的端點。你懂的,但就我們今天的目的而言,我們只有一個端點叫做/predict。
我們在第131行定義的predict方法將處理對伺服器的POST請求。這個函數的目標是構建JSON數據,並將其發送回客戶機。如果POST數據包含圖像(第137和138行),我們將圖像轉換為PIL/Pillow格式,並對其進行預處理(第141-143行)。
在開發這個腳本時,我花了大量時間調試我的序列化和反序列化函數,結果發現我需要第147行將數組轉換為C-contiguous排序(您可以在這里了解更多)。老實說,這是一個相當大的麻煩事,但我希望它能幫助你站起來,快速跑。
如果您想知道在第99行中提到的id,那麼實際上是使用uuid(通用唯一標識符)在第151行生成的。我們使用UUID來防止hash/key沖突。
接下來,我們將圖像的id和base64編碼附加到d字典中。使用rpush(第153行)將這個JSON數據推送到Redis db非常簡單。
讓我們輪詢伺服器以返回預測
我們將持續循環,直到模型伺服器返回輸出預測。我們開始一個無限循環,試圖得到157-159條預測線。從這里,如果輸出包含預測,我們將對結果進行反序列化,並將結果添加到將返回給客戶機的數據中。我們還從db中刪除了結果(因為我們已經從資料庫中提取了結果,不再需要將它們存儲在資料庫中),並跳出了循環(第163-172行)。
否則,我們沒有任何預測,我們需要睡覺,繼續投票(第176行)。如果我們到達第179行,我們已經成功地得到了我們的預測。在本例中,我們向客戶機數據添加True的成功值(第179行)。注意:對於這個示例腳本,我沒有在上面的循環中添加超時邏輯,這在理想情況下會為數據添加一個False的成功值。我將由您來處理和實現。最後我們稱燒瓶。jsonify對數據,並將其返回給客戶端(第182行)。這就完成了我們的預測函數。
為了演示我們的Keras REST API,我們需要一個__main__函數來實際啟動伺服器
第186-196行定義了__main__函數,它將啟動classify_process線程(第190-192行)並運行Flask應用程序(第196行)。
第五部分:啟動可伸縮的Keras REST API
要測試我們的Keras深度學習REST API,請確保使用本文的「下載」部分下載源代碼示例圖像。從這里,讓我們啟動Redis伺服器,如果它還沒有運行:
然後,在另一個終端中,讓我們啟動REST API Flask伺服器:
另外,我建議在向伺服器提交請求之前,等待您的模型完全載入到內存中。現在我們可以繼續使用cURL和Python測試伺服器。
第七部分:使用cURL訪問Keras REST API
使用cURL來測試我們的Keras REST API伺服器。這是我的家庭小獵犬Jemma。根據我們的ResNet模型,她被歸類為一隻擁有94.6%自信的小獵犬。
你會在你的終端收到JSON格式的預測:
第六部分:使用Python向Keras REST API提交請求
如您所見,使用cURL驗證非常簡單。現在,讓我們構建一個Python腳本,該腳本將發布圖像並以編程方式解析返回的JSON。
讓我們回顧一下simple_request.py
我們在這個腳本中使用Python請求來處理向伺服器提交數據。我們的伺服器運行在本地主機上,可以通過埠5000訪問端點/predict,這是KERAS_REST_API_URL變數(第6行)指定的。
我們還定義了IMAGE_PATH(第7行)。png與我們的腳本在同一個目錄中。如果您想測試其他圖像,請確保指定到您的輸入圖像的完整路徑。
讓我們載入圖像並發送到伺服器:
我們在第10行以二進制模式讀取圖像並將其放入有效負載字典。負載通過請求發送到伺服器。在第14行發布。如果我們得到一個成功消息,我們可以循環預測並將它們列印到終端。我使這個腳本很簡單,但是如果你想變得更有趣,你也可以使用OpenCV在圖像上繪制最高的預測文本。
第七部分:運行簡單的請求腳本
編寫腳本很容易。打開終端並執行以下命令(當然,前提是我們的Flask伺服器和Redis伺服器都在運行)。
使用Python以編程方式使用我們的Keras深度學習REST API的結果
第八部分:擴展深度學習REST API時的注意事項
如果您預期在深度學習REST API上有較長一段時間的高負載,那麼您可能需要考慮一種負載平衡演算法,例如循環調度,以幫助在多個GPU機器和Redis伺服器之間平均分配請求。
記住,Redis是內存中的數據存儲,所以我們只能在隊列中存儲可用內存中的盡可能多的圖像。
使用float32數據類型的單個224 x 224 x 3圖像將消耗602112位元組的內存。
B. 做深度學習的伺服器需要哪些配置
做一個深度學習伺服器,需要的配置,有散熱器,因為我們在使用這些東西的時候,他就一定會產生一些熱量,這個時候就需要一些散熱器,可以讓這個深度學習的服務去持續工作,而且散熱器最好選擇,容易非常實用,無噪音的那種。
C. 做深度學習,需要配置專門的GPU伺服器嗎
深度學習是需要配置專門的GPU伺服器的:
深度學習的電腦配置要求:
1、數據存儲要求
在一些深度學習案例中,數據存儲會成為明顯的瓶頸。做深度學習首先需要一個好的存儲系統,將歷史資料保存起來。
主要任務:歷史數據存儲,如:文字、圖像、聲音、視頻、資料庫等。
數據容量:提供足夠高的存儲能力。
讀寫帶寬:多硬碟並行讀寫架構提高數據讀寫帶寬。
介面:高帶寬,同時延遲低。
傳統解決方式:專門的存儲伺服器,藉助萬兆埠訪問。
缺點:帶寬不高,對深度學習的數據讀取過程時間長(延遲大,兩台機器之間數據交換),成本還巨高。
2、CPU要求
當你在GPU上跑深度網路時,CPU進行的計算很少,但是CPU仍然需要處理以下事情:
(1)數據從存儲系統調入到內存的解壓計算。
(2)GPU計算前的數據預處理。
(3)在代碼中寫入並讀取變數,執行指令如函數調用,創建小批量數據,啟動到GPU的數據傳輸。
(4)GPU多卡並行計算前,每個核負責一塊卡的所需要的數據並行切分處理和控制。
(5)增值幾個變數、評估幾個布爾表達式、在GPU或在編程裡面調用幾個函數——所有這些會取決於CPU核的頻率,此時唯有提升CPU頻率。
傳統解決方式:CPU規格很隨意,核數和頻率沒有任何要求。
3、GPU要求
如果你正在構建或升級你的深度學習系統,你最關心的應該也是GPU。GPU正是深度學習應用的核心要素——計算性能提升上,收獲巨大。
主要任務:承擔深度學習的數據建模計算、運行復雜演算法。
傳統架構:提供1~8塊GPU。
4、內存要求
至少要和你的GPU顯存存大小相同的內存。當然你也能用更小的內存工作,但是,你或許需要一步步轉移數據。總而言之,如果錢夠而且需要做很多預處理,就不必在內存瓶頸上兜轉,浪費時間。
主要任務:存放預處理的數據,待GPU讀取處理,中間結果存放。
深度學習需要強大的電腦算力,因此對電腦的硬體配置自然是超高的,那麼現在普通的高算力電腦需要高配置硬體。