⑴ NTP網路校時服務詳解
地球分為東西十二個區域,共計 24 個時區,以格林威治作為全球標准時間(即GMT 時間,0時區),東部時區以格林威治時區進行加法,而西時區則以格林威治時間作減法。但地球的軌道並非正圓,在加上自轉速度逐年遞減,時間會有誤差。在計算時間的時,最准確是使用「原子震盪周期」所計算的物理時鍾。這種時鍾被稱為標准時間,即UTC時間(Coordinated Universal Time)。UTC 的准確性毋庸置疑,美國的 NIST F-1 原子鍾 2000 年才將產生 1 秒誤差。
實際生產生活中,使用原子時鍾這種准確的計時似乎缺少必要性,我們更多關注的是參與活動的各個個體在相同的時間環境下對話。例如,當我們說明天早上8:00開會的時候,我們並不在乎原子時鍾真實的計時情況,只要參會的所有個體對「明天早上8:00」這個時間具有相同的認知即可。這里時間同步是個非常重要的概念,如果某位同仁手錶慢了半小時,那它對「早上8:00」的理解就比其他人要慢半小時,最終會導致ta開會遲到。同樣的道理,我們在影視劇中經常能看到特種作戰小組在執行特別任務前一般都要先完成組員之間的時間同步,避免組員之間在時間上的認知差異給任務帶來不必要的麻煩,甚至危及生命。
NTP(Network Time Protocol,網路時間協議)是由RFC 1305定義的時間同步協議,用於分布式設備(比如電腦、手機、智能手錶等)進行時間同步,避免人工校時的繁瑣和由此引入的誤差,方便快捷地實現多設備時間同步。 NTP校時服務基於UDP傳輸協議進行報文傳輸,工作埠默認為123/udp 。
NTP的實現過程如圖所示,假如設備A和設備B本地時間存在差異(設備A早上10點,設備B早上11點),現在設備A欲通過NTP和設備B在時間上保持同步:
這樣可以輕松計算出來:
現假設設備A和設備B之間的時間差位 ,易得:
通過上式計算出 .
設備A就能根據 調整本地時間,實現和設備B的時間同步。
NTP的目的是在一個同步子網中,通過NTP協議將主時間伺服器的時鍾信息傳送到其他二級時間伺服器,實現二級時間伺服器和主時間伺服器的時鍾同步。這些伺服器按層級關系連接,每一級稱為一個層數(stratum),如主時間伺服器層數為 stratum 1,二級時間伺服器層數為 stratum 2,以此類推。時鍾層數越大,准確性越低。
注意:准確性指相對於主時間伺服器而言。
在NTP網路結構中,有以下幾個概念:
在正常情況下,同步子網中的主時間伺服器和二級時間伺服器呈現出一種分層主從結構。在這種分層結構中,主時間伺服器位於根部,二級時間伺服器向葉子節點靠近,層數遞增,准確性遞減,降低的程度取決於網路路徑和本地時鍾的穩定性。
NTP有兩種不同類型的報文,一種是時鍾同步報文,另一種是控制報文。控制報文僅用於需要網路管理的場合,它對於時鍾同步功能來說並不是必需的,這里不做介紹。
時鍾同步報文封裝在UDP報文中,其格式如圖所示:
各主要欄位解釋如下:
其中,NTP發送和接收的報文數據包類似,通常只需要前48個位元組就能進行授時和校時服務。下面分別是抓包獲取的NTP請求數據包和回復數據包示例(僅前48個位元組):
收到數據包後,接收端本地再產生一個時間戳( )。
這里,每個返回數據前4位元組為秒的整數部分,後4位元組為秒的小數部分。
設備可以採用多種NTP工作模式進行時間同步:
單播C/S模式運行在同步子網層數較高的層級上,客戶端需要預先知道時間伺服器IP或域名並定期向伺服器發送時間同步請求報文,報文中的 Mode欄位設置為 3(客戶模式)。伺服器端收到報文後會自動工作在伺服器模式,並發送應答報文,報文中的Mode欄位設置為4(伺服器模式)。客戶端收到應答報文後,進行時鍾過濾和選擇,並同步到優選的伺服器。客戶端不管伺服器端是否可達,也不管伺服器端所在的層數。在這種模式下,客戶端會同步到伺服器,但不會修改伺服器的時鍾。伺服器則在客戶端發送請求之間無需保留任何狀態信息。客戶端根據本地情況自由管理發送報文的時間間隔。
對等體模式運行在同步子網較低層級上,主動對等體和被動對等體實現時鍾相互同步。這里有兩個概念:主動對等體和被動對等體。
如上圖所示,對等體模式工作步驟如下:
1.主動對等體和被動對等體首先交互Mode欄位為3(客戶端模式)和4(伺服器模式)的NTP報文,這一步主要是獲得通信時延。
主動對等體和被動對等體可以互相同步。如果雙方的時鍾都已經同步,則以層數小的時鍾為准。
注意:對等體模式不需要用戶手動設置,設備依據收到的NTP報文自動建立連接並設置狀態變數。
廣播模式應用在多台工作站和不需要很高精度的高速網路中。主要工作流程如圖所示:
注意:在廣播模式下,服務端只負責向外廣播時鍾信息,自身時鍾不受客戶端影響。
組播模式適用於有大量客戶端分布在網路中的情況。通過在網路中使用 NTP 組播模式, NTP 伺服器發送的組播消息包可以到達網路中所有的客戶端,從而降低由於 NTP 報文過多而給網路造成的壓力。主要工作流程如下:
注意:組播模式和廣播模式類似,只是它是向特定的組播地址發送時鍾同步廣播報文。在組播模式下,服務端只負責向外廣播時鍾信息,自身時鍾不受客戶端影響。
多播模式適用於伺服器分布分散的網路中。客戶端可以發現與之最近的多播伺服器,並進行同步。多播模式適用於伺服器不穩定的組網環境中,伺服器的變動不會導致整網中的客戶端重新進行配置。其工作流程如下:
注意:為了防止多播模式下,客戶端不斷的向多播伺服器發送 NTP 請求報文增加設備的負擔,協議規定了最小連接數的概念。多播模式下,客戶端每次和伺服器時鍾同步後,都會記錄下此次同步過中建立的連接數,將調用最少連接的數量被稱為最小連接數。以後當客戶端調動的連接數達到了最小連接數且完成了同步,客戶端就認為同步完成;同步完成後每過一個超時周期,客戶端都會傳送一個報文,用於保持連接。同時,為了防止客戶端無法同步到伺服器,協議規定客戶端每發送一個 NTP 報文,都會將報文的生存時間 TTL(Time To Live)進行累加(初始為 1),直到達到最小連接數,或者 TTL 值達到上限(上限值為 255)。若 TTL 達到上限,或者達到最小連接數,而客戶端調動的連接數仍不能完成同步過程,則客戶端將停止一個超時周期的數據傳輸以清除所有連接,然後重復上述過程。
下面補充一些常用的NTP時鍾伺服器:
更多NTP授時伺服器請查看:
假設你比較喜歡清華的服務並打算將 ntp.tuna.tsinghua.e.cn 作為你的授時伺服器。下面將簡單介紹不同的操作系統該如何操作使得設備能夠使用此伺服器同步時間。
本部分以主流Windows 10 系統為例演示如何使用NTP服務同步系統時間。
來將此伺服器設置為個人選擇的時間伺服器。
Linux發行版有兩個主流程序支持ntp協議:ntpd和chrony。
具體使用和配置參考各自文檔: ntpd doc 和 chrony doc
在「系統配置 > 日期與時間 > 自動設置日期與時間」一欄,填入 ntp.tuna.tsinghua.e.cn 。
⑵ NTP時間伺服器的介紹
網路時間協議NTP(Network Time Protocol)是用於互聯網中時間同步的標准互聯網協議。NTP的用途是把計算機的時間同步到某些時間標准。目前採用的時間標準是世界協調時UTC(Universal Time Coordinated)。
⑶ ntp時間同步伺服器
NTP時間同步伺服器是針對計算機、自動化裝置等進行校時而研發的高科技產品。NTP時間同步伺服器從GPS衛星上獲取標準的時間信號,將這些信號通過各種介面傳輸給自動化系統中需要時間信息的設備。
NTP服務工作模式為三種,即客戶/伺服器模式、廣播模式和對稱模塊。在客戶端/伺服器模式下,客戶端以周期性地發送NTP數據包,根據標記直觀查看工作狀態、事件結果等並及時反饋。
NTP時鍾同步伺服器利用衛星通信功能,可以構建中心主站系統對各廠站時間同步系統的集中監測和遠程維護,提高設備的運行可靠性。NTP時鍾同步伺服器採用SMT表面貼裝技術生產,以高速晶元進行控制,無硬碟和風扇設計,精度高、穩定性好、功能強、無積累誤差、不受地域氣候等環境條件限制、性價比高、操作簡單、全自動智能化運行,免操作維護,適合無人值守。
⑷ NTP伺服器功能有哪些
隨著計算機網路的迅猛發展,網路應用已經非常普遍,如電力、金融、通信、交通、廣電、安防、石化、冶金、水利、國防、醫療、教育、政府機關、IT等領域的網路系統需要在大范圍保持計算機的時間同步和時間准確,但計算機的時間是根據電腦晶振以固定頻率震盪而產生的,由於晶振的不同,會導致電腦時間積累誤差的產生。從業務影響角度講,因為時間的不統一,就無法推斷出業務具體發生時間。從安全影響角度講,所有設備(如視頻監控中的DVR)的日誌必須反映准確的時間,因為時間的不統一,安全相關工具就會毫無用處。因此有一個好的標准時間校時器(NTP伺服器)是非常必要的。NTP伺服器以美國全球衛星定位系統(GPS)為時間基準,內嵌國際流行的NTP-SERVER服務,以NTP/SNTP協議同步網路中的所有計算機、DVR、控制器等設備,實現網路授時。
⑸ NTP伺服器是什麼設備
網路時間協議(Net Time Protocol)伺服器.
可以用來更准確地同步網路上多個感測器上的時間;將來自不同感測器的事件相關聯。
⑹ NTP伺服器的特徵介紹
NTP提供准確時間,首先要有準確的時間來源,這一時間應該是國際標准時間UTC。 NTP獲得UTC的時間來源可以是原子鍾、天文台、衛星,也可以從Internet上獲取。這樣就有了准確而可靠的時間源。時間按NTP伺服器的等級傳播。按照離外部UTC 源的遠近將所有伺服器歸入不同的Stratum(層)中。Stratum-1在頂層,有外部UTC接入,而Stratum-2則從Stratum-1獲取時間,Stratum-3從Stratum-2獲取時間,以此類推,但Stratum層的總數限制在15以內。所有這些伺服器在邏輯上形成階梯式的架構相互連接,而Stratum-1的時間伺服器是整個系統的基礎。
計算機主機一般同多個時間伺服器連接, 利用統計學的演算法過濾來自不同伺服器的時間,以選擇最佳的路徑和來源來校正主機時間。即使主機在長時間無法與某一時間伺服器相聯系的情況下,NTP服務依然有效運轉。
為防止對時間伺服器的惡意破壞,NTP使用了識別(Authentication)機制,檢查來對時的信息是否是真正來自所宣稱的伺服器並檢查資料的返迴路徑,以提供對抗干擾的保護機制。