❶ 求助,急,高懸賞,區域影像歸檔與通訊系統(PACS)的定義
PACS系統基礎知識
1.1什麼是PACS系統?
PACS(Picture Achiving and Commmunication System),通常稱為醫學影像計算機存檔與傳輸系統或醫學影像系統,是醫院信息系統中的一個重要組成部分,是使用計算機和網路技術對醫學影像進行數字化處理的系統,其目標是用來代替現行的模擬醫學影像體系。它主要解決醫學影像的採集和數字化,圖像的存儲和管理,數字化醫學圖像的高速傳輸,圖像的數字化處理和重現,圖像信息與其它信息的集成五個方面的問題。PACS遵從的標準是國際醫學影像標准DICOM 3.0。
1.2 PACS系統的由來及歷史
PACS的概念提出於80年代初。建立PACS的想法主要是由兩個主要因素引起的:一是數字化影象設備,如CT設備等的產生使得醫學影象能夠直接從檢查設備中獲取;另一個是計算機技術的發展,使得大容量數字信息的存儲、通訊和顯示都能夠實現。在80年代初期,歐洲、美國等發達國家基於大型計算機的醫院管理信息系統已經基本完成了研究階段而轉向實施,研究工作在80年掘升代中就逐步轉向為醫療服務的系統,如臨床信息系統,PACS等方面。在歐洲、日本和美國等相繼建立起研究PACS的實驗室和實驗系統。隨著技術的發展,到90年代初期已經陸續建立起一些實用的PACS。
在80年代中後期所研究的醫學影象系統主要採用的是專用設備,整個系統的價格非常昂貴。到90年代中期,計算機圖形工作站的產生和網路通訊技術的發展,使得PACS的整體價格有所下降。進入90年代後期,微機性能的迅速提高,網路的高速發展,使得PACS可以建立在一個能被較多醫院接受的水平上。
早期的數字化醫學影象設備所產生的數字圖象格式都是由各個設備生產廠商自己確定的專有格式,別人無法利用。這個問題極大地影響了PACS的發展,這引起廣大致力於醫學影象研究的學者、廠商和學術及行業團體的重視。1982年美國放射學會(ACR)和電器製造協會(NEMA)聯合組織了一個研究組,1985年制定出了一套數字化醫學影象的格式標准,即ACR-NEMA 1.0標准,隨後在1988年完成了ACR-NEMA 2.0。隨著網路技術的發展,人們認識到僅有圖象格式標准還不夠,通訊標准在PACS中也起著非常重要的作用。隨即在1993年判沖老由ACR和NEMA在ACR-NEMA 2.0標準的基礎上,增加了通訊方面的規范,同時按照影象學檢查信息流特點的E-R模型重新修改了圖象格式中部分信息的定義,制定了DICOM 3.0標准。這個標准已經被世界上主要的醫學影象設備生產廠商接受,因此已經成為事實上的工業標准。
近年來,在每年的北美放射學大會上還專門提供DICOM環境,組織各個廠商進行影象設備的互聯。 隨著應用的不斷發展,DICOM標准也在不斷的更新,它所支持的醫學影象種類也不斷地增加,已經從原來ACR-NEMA標准只支持放射影象擴展到支持內窺鏡、病理等其他影象。也有學者在研究處理醫學圖形、聲音等信息,同時也有人研究DICOM與其他醫學信息傳輸標準的溝通,如HL7等。人們已經認識到醫學影象系統應該是醫院信息系統中的一個重要組成部分,PACS應該與其他系統相互溝通信息,形成一個醫院信息的整體。
1.3 PACS系統的發展趨勢
HIS(Hospital Information System)—醫院信息系統
RIS(Radiology Information System)—放射信息系統
PACS與HIS /RIS的融合
多年來,雖然PACS與HIS /RIS一直是以不同標准獨立發展的,但縱觀其發展歷程,他們的趨勢是最終彼此相互融合,原因分析如下:
(1) 從HIS /RIS的角度來看,技術判賀的發展要求HIS /RIS中的醫療信息不只包括數字、字元記錄,還需要圖形、圖像及聲音等記錄形式。PACS是診斷圖像的來源,因此HIS /RIS需要集成PACS。
(2) 從PACS的發展需要來看,若能直接從HIS /RIS中獲取病人統計信息,將避免此類信息的重復錄入,提高醫院效率,減少數據丟失。
1.4 PACS系統的效益
——提高醫院品質
——節省人力
——節省膠片成本
——節省技師操作時間
——節省病人等候時間
——充分共享院內信息
——提高影像儀器的效率
——實現真正的遠程會診醫療
1.5DICOM標准
DICOM(Digital Imaging Communications in Medicine)是醫學影像儀器和軟體間共通的通訊標准。此標準是目前國際通用的醫療影像通訊及儲存標准,只要是符合此標準的儀器或軟體,就可以連入共同的PACS網路系統。
❷ PACS系統的架構數據
PACS有別於HIS、LIS等其它醫學信息系統的最重要一點就是:海量數據存儲。合理設計PACS的數據存儲結構,是成功建設PACS的關鍵。一個大型的醫院擁有大批現代化的大型醫療影像設備,每天影像檢查產生的數據量多達4個GB左右(未壓縮的原始數據),一年數據總量大約1200GB。而隨著醫院的業務飛速發展和新的影像設備的引進,這一數據量還可能進一步增長。此外,如何提高在線數據隨機存取的效率也是一個非常關鍵的問題。
基於這一原因,現有的PACS醫療影像信息系統提供商多採用分級存儲(HSM)的策略,將PACS存儲分成在線存儲和離線存儲兩級結構。用兩種不同性能的存儲介質來分別完成高容量和高效率的要求,低速超大容量存儲設備(離線存儲伺服器)用作永久存儲;高速存儲設備(SAN)用作在線數據存儲,確保在線數據的極高效存取。對於2年以上的歷史數據保存在離線存儲設備里,在線存儲設備僅保存最近三年的數據。 DICOM文件是指按照DICOM標准而存儲的醫學文件。
DICOM文件由多個數據集組成。數據集表現了現實世界信息對象的相關屬性,如病人姓名、性別、身高和體重等。數據集由數據元素組成,數據元素包含進行編 碼的信息對象屬性的值,並由數據元素標簽(Tag)唯一標識。數據元素具有三種結構,其中兩種具有類型表示VR(是否出現由傳輸語法決定),差別在於其長 度的表達方式,另外一種不包括類型表示。類型表示指明了該數據元素中的數據是哪種類型,它是一個長度為2的字元串,例如一個數據元素的VR為FL,表示該數據元素中存儲的數據類型為浮點型。所有數據元素都包含標簽、值長度和數據值體。
標簽是一個16位無符號整數對,按順序排列包括組號和元素號。數據集中的數據元素應按數據元素標簽號的遞增順序組織,且在一個數據集中最多出現一次。
值長度是一個16或32位(取決於顯式VR或隱式VR)無符號整數,表明了准確的數據值的長度,按位元組數目(為偶數)記錄。此長度不包含數據元素標簽、VR、值長度欄位。
數據值體表明了數據元素的值,其長度為偶數位元組,該欄位的數據類型是由數據元素的VR所明確定義。數據元素欄位由三個公共欄位和一個可選欄位組成。 以現廣東市場上的主流SUPER PACS系統為例。
目前SUPER PACS系統資料庫共有36個表,按用途分為:公用表、數字膠片室專用表、放射專用表、超聲專用表、遠程專用表。其中起到關鍵性作用的是Patient、Study、Series、Image四個主表。
Patient表用於存放病人的基本信息,應用范圍涉及到SUPER PACS的所有子系統;Study表用於存放病人的檢查信息,應用范圍涉及到SUPER PACS的所有子系統;Series表用於圖象序列表的生成,應用范圍涉及到SUPERPACSR DICOM放射系統;Image表用於保存系統圖象記錄。
資料庫表間關系如右:
❸ PACS系統 的結構組成、原理、預期用途的說明及產品標准怎麼來寫有經辦的人士請指教一下~非常感謝
PACS系統是通過計算機網路來實現醫學圖像的獲取、存儲、傳送和管理的綜合系統。它基本上替代了傳統上對影像膠片的各種繁復操作。該系統在國外於80年代開始起步,在90年代初趨於成熟,目前已在臨床中廣泛應用。
一、簡 介
PACS系統分為八個部分:影像實時採集,影像分析,影像查詢、管理、存儲,圖文編輯及列印、會診中心、遠程會診和系統管理。其中以影像實時採集最為關鍵,目前國外產品在影像採集方面基本上都是採用基於國際標準的DICOM3介面的醫療設備或者CR設備,而我國大部分醫院的現狀是僅有相當少的一部分設備具有DICOM3介面,其餘絕大部分都是模擬信號設備或者照相設備。基於這種情況,力爭能使現有的設備盡可能多地上網。我們的PACS系統制定如下的方案:對於具有DICOM3介面的採用數字方式無損採集:對於非DICOM3介面的模擬設備,採用模擬視頻的方式採集:對於X光照相設備以及外來膠片、歷史膠片,採用掃描的方式採集,將這三種方式綜合在整個系統中。這樣在有效地支持DICOM3的同時覆蓋所有醫學影像設備。
二、系統方案
本系統包括七個子系統,分別如下:
1.影像實時採集子系統
該系統把各種醫療設備中的圖像信息採集到計算機中。根據系統設計,我院採用數字(DICOM3、Ethernet)、模擬視頻和掃描三種採集方式。在數字方式下,本系統實現了不用人工操作的情況下實時自動採集的功能,採集到的基於DICOM3圖像沒有任何損失,圖像的顯方式、操作方式也與醫療設備中的一致。在模擬視頻採集方式下,電腦實時捕獲的影像視頻信號,經過轉換將醫療設備的模擬圖像轉換成統一格式的電腦數字圖像。
在掃描方式下,我們發現掃描儀本身的應用程序並不能很好地適合醫療影像的操作,為此我院與北京化元技術有限公司合作設計專門針對醫療影像的掃描應用,使得掃描操作完全嵌入整個系統,不用人工分別操作;對一張膠片多張圖像的情況能夠通過計算機自動切圖;對於尺寸超過掃描儀幅面的膠片,能夠在計算機中自動拼接,不會產生縫隙。這樣有效地減少了掃描操作的工作量。
2.影像分析處理子系統
這個子系統是對計算機採集到的圖像(包括三種方式),根據需要進行分析和處理,幫助醫生診斷,功能包括灰度/對比度調節、窗寬/窗位調節、單幅/多幅顯示、放大/縮小、局部放大、定量測量(CT值、長度、角度和任意曲線面積等)、圖像比例尺測量、圖像旋轉、圖像列印和各種圖像標注等,其中窗寬/窗位調節、CT值的測量與CT機的操作完全一樣。
3.影像的查詢、管理和存儲子系統
這一子系統是對計算機採集到的醫療圖像建立資料庫存儲管理,這樣無論是放射科還是臨床大夫都可以通過網路隨時對病人的診斷信息和圖像進行調用,為各級醫務人員提供較好的診斷、科研工作學習條件。系統提供多種關鍵字對病人影像信息進行綜合檢索,關鍵字包括姓名、年齡、性別、檢查號、門診號、診斷醫生和就診時間等,檢索過程和方式設計得非常靈活,便於醫生操作。在存儲方面則採用先進的無損壓縮演算法,實時壓縮存儲。
4.圖文編輯及列印子系統
本系統可以通過字典幫助醫生輸入病人資料,如姓名、年齡、性別、檢查號、門診號、住院號、診斷工醫師、就診時間和診斷結果等,若病人做過放射科檢查(不分類型),則可直接調出不必重新錄入;資料錄入後提供標準的診斷報告,進行圖文編輯,並通過激光或彩噴列印機輸出。除診斷報告外,本系統還可以幫助臨床醫生編輯科研教學文章。
5.數字圖像回寫子系統
本系統不僅能夠從醫療設備中採集圖像,而且在需要時還能夠將計算機中的圖像數據寫回CT和MRI這樣的數字影像設備,供照相或做進一步圖像後處理使用。回寫功能分兩部分操作,效果與原設備直接出片時一樣,對於模擬視頻和掃描的圖像在本系統中經過程序的特殊處理,也可以回寫,效果也比較理想。
6.會診中心子系統
本系統由高亮、高清晰度集合顯示設備、投影儀和特種掃描設備組成。其主要的功能在將各種檢查的數據和圖像根據診斷的需求進行有機的組合以幫助醫生進行對比分析。有效的突破了以往PACS系統由於顯示能力不足,不能充分顯示診斷圖像和數據的瓶頸。從而有效的提高了PACS系統在診斷方面的使用效果。
7.遠程會診子系統
本系統以醫院區域網和外部的Internet網、電話線為通信介質,實現醫院之間的原始圖像數據和病人其他信息的傳遞,能夠為病人方便地提供遠程會診服務,使遠在異地的病人可享受到高水平專家的診斷。
8.系統管理子系統
三、總 結
由這8個子系統構成的PACS系統主體,能夠有效地提高各級醫生使用醫療影像的效率,對手術病人的術前准備、臨床診斷以及醫生的科研教學非常有幫助;通過加強系統管理力度以及在符合醫療法規的前提下,可以逐步做到減少出膠片的數量,從而降低出膠片所耗費的大量人工和財力,實現較好的經濟效益;通過使用電子存檔不存在膠片老化和原始信息損失問題,提高了醫療影像的持續運行它將為醫院帶來更多的效益。
</DIV>
PACS的影像存儲及傳遞形式·
1、 醫學影像的類型可以分成8bit黑白12bit黑白24bit彩色等。 8bit黑白和 24bit彩色可以使用WINDOWS標準的存儲格式,12bit黑白無法用任何現有的文件格式表達,也無法使用標準的圖像瀏覽軟體觀看。即使打開也丟失很多的信息,例如,現在有的數字影像板能產生12位的TIFF文件格式的圖像,盡管有的軟體能打開,但是打開的圖像仍然是8位的圖像,在圖像的信息量上丟失了很多的信息。
2、 說起醫學影像的傳遞,不能不提到DICOM。DICOM規定了影像傳遞的標准,包括標準的存儲介質和標準的網路通訊。標準的存儲介質叫做DICOM STORAGE,是一種文件系統的結構標准。主要是用於在UNIX/MAC/WINDOWS等不同平台的PACS系統之間直接兼容存儲介質。這種介質可以是CD、MO,也可以是DVD或者TAPE。DICOM網路通訊標准主要用於區域網內的通訊。在網路上,DICOM十分類似於TCP/IP,不管兩端的機器和操作系統如何,都可以透明地進行影像傳遞,就如同兩個國家之間用美元做生意一樣。DICOM網路通訊有缺乏安全認證的缺點,所以只適用於區域網中。DICOM存儲和通訊中的影像可以按約定的方式進行壓縮,但不是所有的PACS系統都支持這些壓縮,所以大部分DICOM存儲和通訊中的影像數據都是完全展開的,占據很大的空間。
3、為了解決存儲和節省空間,PACS系統內部通常使用自己獨特的文件格式。這並不影響系統的兼容性,因為到了網上,大家都用DICOM協議通訊。就如同各個國家有自己的貨幣,但是作國際貿易時都使用美元一樣。
4、支持PACS的資料庫系統比較簡單。只有病人—檢查—序列和診斷、登記信息放在資料庫中,大小不一的影像存儲成文件交給文件系統去管理。為了保證圖像的可瀏覽性,各PACS通常提供了獨特的小程序,用於在自己的文件結構上進行影像檢索、瀏覽和處理。
5、理想中的PACS影像信息全部存在SERVER上,進行集中備份和管理。但是海量存儲設備和管理軟體的費用太高,所以目前還不能進入普及階段。替代方案是分布存儲,即在每個採集工作站上進行光碟刻錄,獨立進行檢索。當然,為了檢索同一個病人的全部信息的代價要高於集中存儲。
6、影像數據可能分布在不同的機器的不同的資料庫中,不同的目錄中,不同結構的文件中。PACS的用途就是屏蔽掉系統的復雜性,使得不同地方存儲的影像在安全機制認可的前提下自由地流動。
❹ 什麼是pacs系統
PACS是HIS(Hospital Information System)醫院信息系統的基本組成部分,PACS所管理的醫學圖像也是醫院產生的信息,醫院在使用PACS管理的圖像的同時,也需要HIS系統管理的其他信息,所以PACS應當具有與HIS的互操作性或集成。遠程醫療(Telemedicine)是起源於50年代的新型醫療服務,在為農村地區提供高質量醫療服務方面有獨特的優勢,90年代以來在國內興起的遠程醫療會診也是遠程醫療的一種典型應用。當前國內的遠程醫療一般是使用視頻會議系統進行雙方的通信,而病人的信息和診斷圖像通過視頻方式傳遞。如果有PACS和HIS的支持,實時傳遞數字化的CT等醫學圖像和診療信息,並支持多點信息交換,則遠程醫療的水平可以大大提高,這也是國內外遠程醫療的發展方向和熱點。
在醫院放射科部門內實施的PACS
目標是提高部門內醫療設備的使用效率肆虧乎;
企業范圍內圖像分發的第一階段已經在許多部門得到了應用。在放射醫療以外最需要圖像顯示的部門中已經採用了足夠的顯示技術,但還不能在任何地點顯示圖像。現在的歸檔使用的是DLT或MOD,某些情況下也使用CDR。PACS總是需要高速通信網路支持,尤其是在放射醫療部門內部。裂悉在臨床顯示時可以用低速網路。ATM的功能還沒有完全利用起來,特別是ATM傳空老輸活動影像以及影像與靜止圖像同傳的能力。RIS與PACS的集成允許在工作站顯示診斷報告,PACS和RIS掌握病人在醫院中的流動也很重要,這有利於圖像和檢查的自動預取,路由和分發。RIS與PACS的進一步集成仍在發展中。
❺ pacs是什麼意思
PACS介紹
PACS(Picture Archiving and Communications System)即圖像歸檔與傳輸系統,是應用於醫院的數字醫療設備如CT(計算機斷層成像)、MR(磁共振成像)、US(超聲成像)、DSA(數字減影)、CR(計算放射成像)、DR(數字平板放射成像)、NM(核醫學成像)等設備所產生的數字醫學圖像的採集、規定、管理、診斷、數據處理的綜合應用系統。
1、PACS的發展歷史
「數字放射診斷學」是DR. Paul Capp於20世紀70年代提出的,它是PACS最早的理論原型,而數字圖像通信與顯示的概念則是德國柏林技術大學Heins U Lemke教授提出的。
乎頃衫1982年1月,SPIE(國際光學工程學會)在美國加州舉行了第一次關於PACS的國際會議,之後這一會議與醫學成像會議合並,定於每年2月在美國南加州舉行。隨後日本、歐洲都建立了類似的會議組織。這些組織成為PACS理論研究的開端。
最早的PACS相關研究計劃是1983年美國軍方贊助的一個遠程放射學研究計劃,1985年美國軍方又資助了另一項DIN/PACS計劃,由MITRE公司管理,華盛頓大學、喬治敦與喬治華盛頓聯合大學具體實施,Philips醫療系統公司和AT&T公司參與。同年美國國家癌症中心資助UCLA開始其第一個PACS相關的研究計劃。
美國放射學會(ACR)和美國國家電氣製造商協會(NEMA)於1982年下半年成立數字圖像和通信標准委員會。該委員會由分別代表醫學成像設備用戶和製造商的放射學家和廠方專家組成,致力於制定數字成像設備介面的有關標乎雹准。在Agfa 、Kodak、Ge、Philips、Siemens、Sony等公司的積極參與下,該委員會分別於1985年、1988年發布了ACR-NEMA1.0、ACR-NEMA2.0的ACR-NEMA標準的兩個版本。該歲腔標準是醫學圖像領域的第一個綜合性標准。1992年,ACR-NEMA在北美放射學會(RSNA)上展示了上述標準的第三個版本,該版本在1993年發布時被正式命名為DICOM3.0,也就是我們常說的醫學數字成像及通信標准。DICOM3.0的制定是醫學圖像處理領域標准化的一個重大里程碑。同時,DICOM3.0的制定也參考了其它國際標准化組織制定的標准以及放射領域之外的醫療衛生標准(如HL7等)。DICOM3.0標准總結現有的醫學圖像領域的其它標准,兼顧並吸收它們的長處,同時改正了前兩個版本ACR-NEMA1.0、ACR-NEMA2.0的不足之處。
DICOM3.0的發布以及之後的不斷更新,為PACS的發展提供了良好的行業環境,1993年之後,北美、歐洲、日本等發達國家紛紛建立的達到實用階段的符合標準的PACS產品。但是由於當時相關的計算機以及網路硬體設備、存儲系統軟硬體相當昂貴,PACS核心技術都壟斷在國際大醫療設備廠商手中,所以PACS實施的案例均集中在發達國家的大型醫院,同時由於DICOM是一個語義級的標准,對於現實世界五花八門的應用需求,各種PACS系統存在的各種不同形式。
隨著計算機技術、網路的不斷發展,各種硬體設備、存儲系統價格不斷下降,同時DICOM的核心技術逐漸為更多的中小型公司掌握,使PACS的推廣普及成為可能。在20世紀九十年代中後期,PACS開始為中國越來越多的公司、研究機構作為研發產品和工程項目來實施。
國際上,對PACS研究越來越走向規范、走向成熟,北美放射學會(RSNA)和醫療信息和管理系統協會(HIMSS)發起成立IHE組織,以解決醫療信息系統工作流的定義和規劃、對異質系統間信息共享,達到更佳的集成應用效果。目前越來越多的廠商對IHE進行研究和遵循,以提高產品的規范性和通用性。IHE的制定也為PACS應用部門提供了理論指導和通用需求。
2、PACS帶來的效益
(1)數據完整性與數據共享
數字醫學圖像相對傳統膠片最大的優勢在於保留了所有圖像信息,通過窗寬窗位的動態調節可以最大限度的利用高位數字圖像。
傳統影像膠片的異地訪問,需要人力或者物力將媒介送到目的地才能完成,但是在PACS中,院內的異地訪問,即放射科(影像科)以外的調用可以通過網路方便、准確、快速的完成,保證了臨床醫療的需求。同樣院外或者市外、省外、國外的調用也可以通過相應的為了完成。
數字化影像的特點,保證了任意次復制也不會改變圖像的精度,最大限度的滿足了臨床、研究、教學的需求。
(2)設備共享
PACS使原先對成像設備資源的獨占更新為共享,從而可以節省醫院對DICOM相關設備的投資,充分利用現有資源,提高利用率。
(3)人員共享
PACS使整個系統中的包括人員(技師、醫生等)在內的資源可以得到有效的整合,充分提高人力資源的應用效率。
(4)診療水平的提高
通過對PACS形成的圖像庫的有效利用,可以大大提高醫生的診斷水平,同時PACS為院內會診、院間會診提供有力的資源應用平台,使檢查科室與臨床科室更好的協作,共同提高醫院對疾病的診療水平。
(5)快速傳輸
理論上數字影像在網路中可以達到光速的傳輸速度,即使考慮網路因素的話,在具有良好性能價格比的網路中,病人的一次CT圖像的在網路中的傳輸僅需要數秒時間。
(6)實現工作流革新
遵循IHE的PACS可以很好的規范現有檢查科室工作流程,提高各種資源的綜合利用效率,提高對病人的有效服務。
(7)降低成本,提高醫療收入
一方面,PACS的軟硬體價格大大下降,取代傳統的膠片和紙質報告,實現院內無紙無膠片醫療,從而降低醫院的醫療成本,另一方面,通過效率提高和流程變革,可以大大增加病人的流通量,從而增加了檢查科室乃至整個醫院的病人通量,增加醫療收入。
(8)提高管理水平
通過PACS的管理程序可以簡潔的掌握放射科(影像科)的工作狀態、人員水平等管理信息。通過授權控制,簡便的管理圖像資料庫,保證臨床使用的前提下,又滿足了放射科(影像科)資料保存的需要。
(9)提高醫院聲譽
通過PACS對醫院整體的改造,可以大大提高醫院核心競爭力,提高社會知名度,帶來更好的經濟效益和社會效益。
綜上所述,PACS給放射科管理帶來革命性的變化,改變放射科(影像科)醫師的診斷模式,並給臨床意識帶來了極大方便。為患者提供全新的醫療服務,同時為放射科(影像科)和臨床科的科研和教學工作帶來極大方便,也為遠程影像學的建立與發展提供了基礎條件。
❻ 為什麼現在的醫院都採用PACS系統,而很少使用HIS系統
不是這樣的,HIS系統已經基本普及了。
HIS系統是Hospital information system的縮寫,是指的醫院信息系統的總稱,包括臨床診療畢跡子系統、葯品管理子系統、財務管理子系統、綜合管理和統計分析系統等。臨床診療子系統(CIS)中包括門診醫生工作站、住院醫生工作站、護士工作站、臨床檢驗系統(LIS)、醫學影像系統(PACS)手友並、手術室麻醉系統、電子病歷系統(EMR)等。
PACS系統是Picture Archiving and Communication Systems的縮寫,是指的圖像傳輸和存儲系統,主要用於影像學和病理圖片的存儲和傳輸。是臨床診療系統的一部分。根據各個醫院HIS系統構建的水平,有些是整合到了HIS系統中(主要是做了HIS與PACS的介面),有些則是完全獨立的系統,其原因是因為PACS系統常常是由影像檢查設告信備廠家開發附帶設備一起安裝的,而HIS系統則是由單獨的公司結合具體醫院的實際運轉情況個性化定製的。
可見PACS系統只是HIS系統中的一部分,不能相互替代。只是PACS系統可以單獨運行。
❼ 醫院PACS 誰能給詳細解說一下呢
一、PACS的發展歷史
PACS的概念提出於80年代初。建立PACS的想法主要是由兩個主要因素引起的:一是數字化影像設備,如CT設備等的產生使得醫學影像能夠直接從檢查設備中獲取;另一個是計算機技術的發展,使得大容量數字信息的存儲、通訊和顯示都能夠實現。在80年代初期,歐洲、美國兆碰等發達國家基於大型計算機的醫院管理信息系統已經基本完成了研究階段而轉向實施,研究工作在80年代中就逐步轉向為醫療服務的系統,如臨床信息系統,PACS等方面。在歐洲、日本和美國等相繼建立起研究PACS的實驗室和實驗系統。隨著技術的發展,到90年代初期已經陸續建立起一些實用的PACS。
在80年代中後期所研究的醫學影像系統主要採用的是專用設備,整個系統的價格非常昂貴。到90年代中期,計算機圖形工作站的產生和網路通訊技術的發展,使得PACS的整體價格有所下降。進入90年代後期,微機性能的迅速提高,網路的高速發展,使得PACS可以建立在一個能被較多醫院接受的水平上。
二、PACS的功能配置
PACS(醫院影像存儲與通訊系統)在醫院影像科室中迅速普及開來,如同計算機與互聯網日益深入地影響我們的日常生活。PACS也在改變著影像科室的運作方式,一種高效率、無膠片化影像系統正在悄然興起。在這些變化中,PACS的主要作用有:
1) PACS聯接功能
為了能將影像設備聯網,其先決條件是將影像本身數字化。目前,新生產的CT、MR、數字X光機、核醫學設備上都有DICOM圖像輸出介面,可以直接與PACS聯接。對於那些沒有DICOM介面的設備,接入PACS的方式則較為復雜,要用專門的設備將起影像轉換為DICOM標准後再接入PACS。 對於舊型號的CT、MR,一般需緩歲要增加專用升級模塊來實現,使用這種方法圖像的質量有保證,數據的完整性也較好,但價格通常較高。對於非數字化的X光機,通常採用的方式有用數字化感光屏(CR)或通過將膠片直接通過掃描儀轉換成數字化圖像。另外常用的轉換方式還有視頻捕捉(Screen Capture),既對有視頻信號的設備(如超聲、核醫學設備),可將其視頻信號轉換為DICOM圖像。
2) PACS的影像存儲與管理功能
醫學影像的數據量通常很大,常規一次CT掃描為10MB量級,而X光機的胸片可以到20MB,心血管造影的圖像可達80MB以上,128排三維重建CT圖像可達1GB。存儲與管理影像為PACS系統的一個重要功能,實現這一功能的成本占系統總成本的20%-60%.小型的PACS工作站可以用100GB的伺服器來存儲圖像,並用光碟刻錄機來將圖像永久保存。大中型的PACS則用不同類型的存儲設備來實現不同的要求,通常以TB為存儲單位,三甲級別醫院,存儲容量可高達幾十TB。
3) 圖像的調用與後處理功能
所有PACS圖像資料最終目的都是為了對其進行調用和處理。數字化圖像可直接在計算機的監擾猜睜示器上顯示出來。監視器的解析度、對比度、亮度、雜訊及失真等性能直接影響數字化圖像的質量,從而影響著最終診斷結果。由於醫學圖像信息量大,為了便於存貯和傳輸,提高PACS的效率,有必要對圖像進行壓縮處理,特別是對高解析度的彩色圖像更有必要壓縮。
❽ 什麼是pacs系統
醫學影像報告(PACS)管理系統
從各種醫學影像檢查設備中獲取、存儲、處理影像數據,傳輸到體檢信息系統中,生成圖文並茂的體檢報告,滿足體檢中心高水準、高效率影像處理的需要。
原始圖像經普通邊緣增強後的效果
通過多尺度對比度增強技術可成功應用在PACS系統針對X-ray圖像的處理過程中。圖像中不同尺寸的低對比度細節的視覺質量顯著改善,這種處理方式不會產生嚴重的邊界效應(振鈴效應),這一優點使得此技術能夠廣泛應用於CT、MR、DR、CR、數字乳腺診斷等成像。
❾ pacs名詞解釋
PACS系統是Picture Archiving and Communication Systems的縮寫,意為影像歸檔和通信系統。它是應用在醫院影像科室的系統,主要的任務就是把日常產生的各種醫學影像(包括核磁,CT,超聲,各種X光機,各種紅外儀、顯微儀等設備產生的圖像)通過各種介面(模擬,DICOM,網路)以數字化的方式海量保存起來,當需要的時候在一定的授權下能夠很快的調回使用,同時增加一些輔助診斷管理功能。它在各種影像設備間傳輸數據和組織存儲數據具有重要作用。
中文名
PACS系統
外文名
Picture Archiving and Communication Systems
概 述
意為影像歸檔和通信系統
軟體趨勢
起源 現狀 趨勢
結構流程
結構層次 工作流程
快速
導航
主要優點
發展趨勢
結構流程
架構數據
簡要介紹
隨著數字化信息時代的來臨,診斷成像設備中各種先進計算機技術和數字化圖像技術的應用為醫學影像信息系統的發展奠定了基礎。歷經逾百年發展,醫學影像成像技術也從最初的X射線成像發展到現在的各種數字成像技術。
什麼是醫學影像信息系統
醫學影像信息系統簡稱PACS(Picture Archiving and Communication Systems),與臨床信息系統(Clinical Information System, CIS)、放射學信息系統(Radiology Information System, RIS)、醫院信息系統(Hospital Information System, HIS)、實驗室信息系統(Laboratory Information System, LIS)同屬醫院信息系統。
醫學影像信息系統狹義上是指基於醫學影像存儲與通信系統,從技術上解決圖像處理技術的管理系統;臨床信息系統是指支持醫院醫護人員的臨床活動,收集和處理病人的臨床醫療信息的信息管理系統;放射學信息系統是指以放拿哪射科的登記、分診、影像診斷報告以及放射科的各項信息查詢、統計等基於流程管理的信息系統;醫院信息系統是指覆蓋醫院所有業務和業務全過程的信息管理系統;實驗室信息系統是一類用來處理實驗室過程信息的信息系統。
在現代醫療行業,醫學影像信息系統是指包含了包括了RIS,以DICOM3.0國際標准設計,以高性能伺服器、網路及存儲設備構成硬體支持平台,以大型關系型資料庫作為數據和圖像的存儲管理工具,以醫療影像的採集、傳輸、存儲和診斷為核心,是集影像採集傳輸與存儲管理、影像診斷查詢與報告管理、綜合信息管理等綜合應用於一體的綜合應用系統,主要的任務就是把醫院影像科日常產生的各種醫學影像(包括核磁、CT、DR、超聲、各種X光機等設備產生的圖像)通過DICOM3.0國際標准介面(中國市場大多為模擬,DICOM,網路等介面)以數字化的方式海量保存起來,當需要的時候在一定的授權下能夠很快的調回使用,同時增加一些輔助診斷管理功能。
對醫學影像信息系統應用的需求
隨著現代醫學的發展,醫療機構的診療工作越來越多依賴醫學影像的檢查(X線、CT、局悔MR、超聲、窺鏡、血管造影等)。傳統的醫學影像管理方法(膠片、圖片、資料)諸此大量日積月累、年復一年存儲保管,堆積如山,給查找和調閱帶來諸多困難,丟失影片和資料時有消臘碼發生。已無法適應現代醫院中對如此大量和大范圍醫學影像的管理要求。採用數字化影像管理方法來解決這些問題已經得到公認。隨著計算機和通訊技術發展,為數字化影像和傳輸奠定基礎。目前國內眾多醫院已完成醫院信息化管理,其影像設備逐漸更新為數字化,已具備了聯網和實施影像信息系統的基本條件,實現徹底無膠片放射科和數字化醫院,已經成為現代化醫療不可阻擋的潮流。
❿ pacs是什麼意思
PACS是英文PictureArchiving&CommunicationSystem的縮寫,譯為「醫學影像存檔與通信系統」,其組成主要有計算機、網路設備、存儲器及軟體。它是一個涉及放射醫學、影像醫學、數字圖像技術(採集和處理)、計算機與通訊、C/S體系結構的多媒體DBMS系統,涉及軟體工程、圖形圖像的綜合及後處理等多種技術,是一個技術含量高、實踐性強的高技術復雜系
pacs - 簡要介紹
網路1PACS用於醫院的影像科室,最初主要用於放射科,經過近幾年的發展,PACS已經從簡單的幾台放射影像設備之間的圖像存儲與通信,擴展至醫院所有影像設備乃至不同醫院影像之間的相互操作,因此出現諸多分類叫法,如幾台放射設備的聯網稱為Mini PACS(微型PACS);放射科內所有影像設備的聯網Radiology PACS(放射科PACS);全院整體化PACS,實現全院影像資源的共享,稱為Hospital PACS。PACS與RIS和HIS的融合程度已成為衡量功能強大與否的重要標准。PACS的未來將是區域PACS的形成,組建本地區、跨地區廣域網的PACS網路,實現全社會醫學影像的網路化。
由於PACS需要與醫院所有的影像設備連接,所以必須有統一的通訊標准來保證不同廠家的影像設備能夠互連,為此,1983年,在北美放射學會(ACR)的倡議下,成立了ACR-NEMA數字成像及通信標准委員會。眾多廠商響應其倡議,同意在所生產的醫學放射設備中採用通用介面標准,以便不同廠商的影像設備相互之間可以進行圖像數據交流。1985年,ACR/NEMA1.0標准版本發布;1988年,該標准再次修訂;1992年,ACR/NEMA第三版本正式更名為DICOM3.0(Digital lmaging and Communication in Medicine),中文可譯為"醫學數字圖像及通信標准"。DICOM3.0已為國際醫療影像設備廠商普遍遵循,所生產的影像設備均提供DICOM3.0標准通訊協議。符合該標準的影像設備可以相互通信,並可與其他網路通信設備互連。
在系統的輸出和輸入上必須支持DICOM3.0標准,已成為PACS的國際規范。只有在DICOM3.0標准下建立的PACS才能為用戶提供最好的系統連接和擴展功能。
pacs - 通信技術
網路2信息技術是現代文明的基礎,是開展科學研究和技術開發的重要支撐手段,是高技術中的關鍵技術。信息技術的發展,直接影響著社會生產力和綜合國力的變化。
近50年來,由於半導體、計算機和通信技術的迅猛發展,數字化的信息已經滲透到了與人們生活密切相關的各個領域。在醫學圖像處理領域,隨著放射學(Radiology)的迅速發展,為醫療診斷提供了多種人體成像技術,例如:CT、MRI、DSA(數字減影)、NM(核醫學成像)、US(超聲掃描顯像裝置)、CR(計算機投影射線照像術)、PET(正電子發射斷層X線照相術)等。這些新的醫學成像技術為臨床診斷提供了豐富的影像學資料,在相當程度上提高了醫療機構的診斷和治療水平,但同時也使得如何有效地管理、處理和利用大量繁雜的醫學圖像資料的問題日益突出,急待解決。
計算機技術日新月異的發展,尤其是高速計算設備、網路通訊及圖像採集、處理的軟、硬體技術的一系列突破性進展,為醫學圖像的數字化採集、存儲、管理、處理、傳輸及有效利用提供了現實的數字技術基礎。
PACS系統(Picture Archiving & Communication System),即醫學影像的存儲和傳輸系統,它是放射學、影像醫學、數字化圖像技術、計算機技術及通信技術的結合,它將醫學圖像資料轉化為計算機數字形式,通過高速計算設備及通訊網路,完成對圖像信息的採集、存儲、管理、處理及傳輸等功能,使得圖像資料得以有效管理和充分利用。
PACS其主要應用方向為:設備集群使用:從多種影像設備或數字化設備中採集圖像;拍照與列印等多種輸出設備的 共享與選擇;影像傳輸與分送:在醫院內各科室之間快速傳輸圖像數據;遠程傳輸圖像及診斷報告等;輔助醫療功能:醫學圖像資料的管理、處理、變換等。
pacs - 系統介紹
PACS系統(圖像歸檔和通訊系統)原意為醫學影像計算機存檔與傳輸(醫學影像的採集和數字化,圖像的存儲和管理,數字化醫學圖像的高速傳輸,圖像的數字化處理和重現,圖像信息與其它信息的集成五個方面)。而在第二代PACS系統中,已經擴大為HIS-PACS的無縫連接,將病人流變為信息流,關注的核心是醫院臨床業務的流程再造。通過第二代PACS系統,可以輕松的實現.無紙化、無膠片化,降低醫院的運營成本,提高醫院整體效率,提高臨床診斷質量,實現遠程醫療。
通俗的講法,PACS系統出現類似於數碼相機取代膠片相機。過去病人進行影像檢查(如骨折拍片),需要等待膠片沖洗出來醫生才能診斷。而現在直接從檢查設備上讀出圖像到計算機上觀察診斷,大大提高了效率。PACS系統延伸到醫院其他的工作也進行數字化管理(如病歷本不再手寫,檢查單不再手寫,統計醫生工作量不再依靠護士手工統計)
pacs - 系統構成
系統依照規模的大小,圖像存檔與傳輸系統(PACS)可分為四大類:科室內;院內圖像發布系統;整個醫院的PACS系統;基於全院PACS的遠程放射醫學系統。
依據需要解決的問題不同,存在各種各樣的PACS系統設計方案,但概括來看,PACS系統由成像採集設備、遠近程顯示設備、儲存設備和遠近程通信設備等四部分組成。成像採集設備包括各類斷層掃描成像系統和各種射線照相技術形成的膠片等硬拷貝數字化掃描採集設備;圖像顯示設備包括各種圖像終端、圖像工作站;圖像存儲設備包括軟硬磁碟、磁帶和光碟等存儲設備;通訊設備包括數據機、網卡、電話交換系統、計算機局部網、廣域網、公用數據網等有關硬體通信模塊和設備。PACS在醫學信息領域主要提供四方面的功能:在診斷、報告、會診和遠程工作站上觀察醫學圖像;根據圖像的性質,把圖像儲存在適於短期或長期保存的存儲介質中;利用區域網、廣域網和公共通訊設施進行通訊;向用戶提供一個集成信息系統。PACS目的在於促進數字化醫院環境的形成,提高診斷效率,降低成本。相對於傳統的基於膠片的醫學圖像系統,無膠片的PACS具有眾多的優勢:數字圖像代替膠片減少了製造和購買膠片及相應的化學製品的費用;無膠片化存檔,可節省原來的硬拷貝和相關的管理費用、人力和場地,減少了管理膠片的工作人員,將不再有膠片的丟失、錯放、老化等問題,大大降低了醫院成本,可以更有效地使用龐大的醫學圖像資源為患者提供更好的服務,又達到了更高效、低價地觀察、存儲和傳送醫學圖像的目的。同時,利用計算機先進的存儲方式和強大的圖像壓縮功能以及網路傳輸能力,對已存儲的圖像進行多份拷貝變的簡單又直接,快速獲取圖像,根據診斷的需要,可以靈活地處理圖像,可以實現醫院內部甚至遠程的醫院之間的醫學圖像信息的共享,便於提供遠程醫療服務。
pacs - 關鍵技術
關鍵技術PACS涉及多項技術,它們包括:計算機、通訊、文件存儲、數據獲取、顯示、圖像數據壓縮、人工智慧、光電子設備、軟體、標准化和系統集成。PACS涉及的關鍵技術問題標准化技術:標准化技術應用在建立PACS中是非常重要的。由於各廠家生產的影像設備的圖像格式各異,網路介面標准不一致,阻礙了醫學數字影像的交換和通訊;數字化圖像信息的採集:首先要實現圖像的數字化。CT、MRI、DSA、CR、DR以及一些超聲成像等已是數字成像,通過採集介面模塊或設備就可將數字化圖像信息從主機中取出,並構成數據文件到存儲設備中去,供顯示或傳輸。而大量X射線成相系統仍處於非數字化圖像階段,通常購置數字化儀將它們數字化。由於各廠家生產的各種影像設備的圖像格式各異,網路介面標准不一致,阻礙了醫學數字影像的交換和通訊;圖像壓縮技術:醫學圖像數據量大,建立PACS中許多技術困難都與圖像的壓縮、傳輸、顯示等有關。如何能對圖像進行壓縮,是多年圖像處理技術研究重點之一,由於醫學影像對醫學診斷的可靠性影響非常大。
常用的也只有無損壓縮演算法;醫用圖像的歸檔管理:圖像實現數字化以後,可將其分門別類存儲於計算機介質中,如磁碟、光碟內,尤其是光碟存儲器,以其經濟實惠被廣泛應用。一片光碟上可以存儲幾百幅圖像;醫用圖像顯示和通信技術:計算機技術為醫學圖像的觀察提供了「數字信息監視器」組合模式,極大地方便和加速了醫學圖像資源的形成、周轉和調閱。計算機軟硬體技術和多媒體技術,使醫學圖像的顯示圖像監視器和圖像工作站幾乎可瞬時顯示整幅圖像。醫學圖像通信,首先是通過區域網在醫院內部實現患者影像信息的調閱,其次是通過專線網或互聯網實現影像的遠程調用和異地診斷。
pacs - 發展情況
系統構成PACS是現代影像診斷的模式和潮流,是一項具有燦爛前景的高新技術,它的發展與普及將對醫學發展起到重大的推動作用。把傳統的醫學圖像拷貝方式改成電子式的軟拷貝方式,推廣應用PACS在醫院是非常必要的,隨著數字成像技術、計算機技術和網路技術的進步,國內眾多醫院其影像設備逐漸更新為數字化,PACS的應用和普及已成為現代化醫療不可阻擋的潮流。進入90年代,為了提高醫院的現代化管理水平和工作效率,各級醫療機構對醫院信息系統的建設給予了極大的關注,許多醫院已經建立了不同規模的醫院信息系統。就醫院信息系統發展而言,醫院信息系統大多數屬於醫院管理系統(HIS)的范疇,主要針對醫院人員的財務管理;而同樣是數字化醫院環境重要組成部分的PACS卻發展相對遲慢。
中國PACS系統發展還存在如下一些問題:研究和開發經費少;多數醫院的醫療圖像設備較為陳舊,很少有標准數字介面,尤其是能夠利用網路傳輸醫學圖像的設備更為少見;醫院的信息基礎機構建設落後,多數醫務人員對計算機應用環境不熟悉;以往開發的HIS/RIS系統往往忽略了標准化問題,難以進行與PACS系統的集成;多數影像設備是從國外引進的,在這樣的環境下,PACS開發和應用過程中需要考慮中文化的問題。PACS發展應關注於:對醫院信息基礎結構的改進;對老舊圖像設備的改造;對現有醫院信息系統的標准化。國內由於對PACS的研究還處於初級階段,在構建PACS時會遇到各種各樣的技術問題。
在設計PACS系統時應該充分考慮系統所要實現的功能在選擇規模時應該充分考慮醫院的實際條件不要一哄而上。資金雄厚的大型醫院由於在這一方面的工作開展較早,並且已經構成了小型或者部分PACS,這時可以考慮建立比較完整的PACS。而中小型醫院由於資金和技術方面的原因,最好首先構建小型或部分PACS在一方面積累經驗,而不是一味趕時髦。醫院可以根據自身的條件和需求建立不同規模的PACS系統,逐步向數字化醫院過度。尤為重要的是,醫學圖像領域的發展與技術的進步緊密相關,醫學圖像領域的進步是醫院實際要求、大學和其他研究機構技術開發以及企業商業目標相互推動的結果,PACS系統開發和應用同樣需要醫院、研究機構及企業界的大力支持和良好的合作。
pacs - 前景展望
系統構成PACS 最初是從處理放射科的數字圖像發展起來的。然而隨著 PACS 標准化的進程,尤其是 ACR-NEMA(American College of Radiology & National Electrical Manufactures ′ Association ,美國放射學會和美國電器製造商學會 )DICOM(digital imaging and communications in medicine ,醫學數字成像和通信標准 )3.0 標準的普遍接受,目前的 PACS 已擴展到所有的醫學圖像領域,如心臟病學、病理學、眼科學、皮膚病學、核醫學、超聲學以及牙科學等。
21世紀的醫院管理系統中,PACS系統將占據醫學診斷分析得據主導地位。
PCAS系統在應用中涉及到數字化存儲圖像,無膠片管理,節省用於沖洗、保存膠片和記錄的大量人力物力;如:化學葯品費用,處理和保養費用 、存儲費用、擺放費用 、人工費用 、查閱費用 、送片費用;可提供更多醫生網路化的協同工作;提供遠程會診功能,節省人力物力,同時能夠提高醫院會診能力,擴大知名度。可以實現資料統計的自動化,對於科研分析有重大意義,同時可以對科室人員的工作量 和狀態進行統計,能夠發現管理薄弱環節,更好評價員工,激勵員工,為科室創造更大的效益。可以規范診斷報告,列印出圖文並茂的病歷,同時生成電子病歷,形成社區電子病歷中心,為病人提供電子病歷存放查詢服務,增加對用戶的影響力。 共享輸出設備,節省設備投資,比如激光相機, DICOM相機等。減少、消除重復工作。更高的生產力 , 更低的運行成本和更多收入。不再丟失檢查資料和膠片。
對於臨床:提供更快、更有效獲取病人信息的途徑。通過與周圍醫院聯合提供更多的醫療服。 方便臨床醫生隨時調閱病人的信息。
對於放射醫生:方便。在家或辦公室即可讀片,不用擠在集中讀片的地方 快速得到病人的以往膠片。幾秒鍾便獲得檢查數據。多種圖像,如超聲,核磁, CT,DSA等圖像可以直接參考對比,並進行相應圖像處理,方便診斷。減小工作量和提高工作效率。影像可以永久利用。直接得到無失真的原始圖像用於學術交流。
對於病人:減少住院時間。更快的診斷和治療。同時參考多次檢查結果。更快的報告時間。能夠得到專家的服務 。
輔助醫療功能:醫學圖像資料的管理、處理、變換等。