導航:首頁 > 配伺服器 > 伺服器端該如何處理高並發的任務

伺服器端該如何處理高並發的任務

發布時間:2023-05-31 02:23:44

Ⅰ 如何設計高並發的伺服器,如何提升伺服器性能

您好樓主.希望對您有幫助.高並發對後台開發宏襲神同學來說,既熟悉又陌生。熟悉是因為面試和工作經常會提及它。陌生的原由是伺服器因高並發導致出現各位問題的情況少之又少。同時,想收獲這方面的經驗也是摸著石頭過河,需要大量學習理論知識,再去探索。

如果是客戶端開發的同學,字典中是沒有「高並發」這個名詞。這驗證一句老話蔽虧,隔行如隔山。客戶端開發,特別是手機應用開發,更多地是考慮如何優化應用的性能,降低App的卡頓率

在這個「雲」的時代,提高分布式系統並發能力的方式,方法論上主要有兩種:垂直擴展(ScaleUp)與水平擴展(ScaleOut)。

1)垂直擴展

提升單機處理能力。垂直擴展的方式又有兩種:

增強單機硬體性能,例如:增加CPU核數如32核,升級更好的網卡如萬兆,升級更好的硬碟如SSD,擴充硬碟容量如2T,擴充系統內存如128G;

提升單機架構性能,例如:使用Cache來減少I/O次數,使用非同步來增加單服務吞吐量,使用無鎖數據結構來減少響應時間禪如;

2)水平擴展

只要增加伺服器數量,就能線性擴充系統性能。虛擬化技術的出現,讓水平擴展變得輕松且簡單。現在的雲主機幾乎是虛擬主機,而不是物理主機。這樣的話,線性擴充也就是分分鍾的事,前提是要有足夠的物理主機支撐。

Web框架層

Web框架層就是我們開發出來的DjangoWeb應用程序。它負責處理HTTP請求的動態數據。

WSGI層

WSGI不是用於與程序交互的API,也不是真實的代碼,WSGI只是一種介面。它只適用於Python語言,其全稱為WebServerGatewayInterface。其定義了web伺服器和web應用之間的介面規范。

Web伺服器層

Web服務層作用是主要是接收HTTP請求並返回響應。常見的web伺服器有Nginx,Apache,IIS等。

特別是Nginx,它的出現是為了解決C10K問題。Nginx依靠非同步事件驅動架構來幫助其處理大量的並發會話,由於其對資源的輕量利用和伸縮自如的特性,它成為了廣受歡迎的web伺服器。

Django框架注重的數據交互。所以考慮的問題是Django適不適合於高並發的場景。

它是一個經過大型網站規模驗證的框架。Instagram支撐上億日活,所以Django能適用於高並發場景。所以不是想著Django框架能支撐到多大的並發量,而是我們想要抗住很大的並發量,怎麼優化現有框架。總之這個問題不是這么簡單的.活到老學到老.多看看技術類書籍.結合自己的能力在進行改進.

php怎麼處理高並發

以下內容轉載自徐漢彬大牛的博客億級Web系統搭建——單機到分布式集群

當一個Web系統從日訪問量10萬逐步增長到1000萬,甚至超過1億的過程中,Web系統承受的壓力會越來越大,在這個過程中,我們會遇到很多的問題。為了解決這些性能壓力帶來問題,我們需要在Web系統架構層面搭建多個層次的緩存機制。在不同的壓力階段,我們會遇到不同的問題,通過搭建不同的服務和架構來解決。

Web負載均衡

Web負載均衡(Load Balancing),簡單地說就是給我們的伺服器集群分配「工作任務」,而採用恰當的分配方式,對於保護處於後端的Web伺服器來說,非常重要。

負載均衡的策略有很多,我們從簡單的講起哈。

1.HTTP重定向

當用戶發來請求的時候,Web伺服器通過修改HTTP響應頭中的Location標記來返回一個新的url,然後瀏覽器再繼續請求這個新url,實際上就是頁面重定向。通過重定向,來達到「負載均衡」的目標。例如,我們在下載PHP源碼包的時候,點擊下載鏈接時,為了解決不同國家和地域下載速度的問題,它會返回一個離我們近的下載地址。重定向的HTTP返回碼是302

這個重定向非常容易實現,並且可以自定義各種策略。但是,它在大規模訪問量下,性能不佳。而且,給用戶的體驗也不好,實際請求發生重定向,增加了網路延時。

2. 反向代理負載均衡

反向代理服務的核心工作主要是轉發HTTP請求,扮演了瀏覽器端和後台Web伺服器中轉的角色。因為它工作在HTTP層(應用層),也就是網路七層結構中的第七層,因此也被稱為「七層負載均衡」。可以做反向代理的軟體很多,比較常見的一種是Nginx。

Nginx是一種非常靈活的反向代理軟體,可以自由定製化轉發策略,分配伺服器流量的權重等。反向代理中,常見的一個問題,就是Web伺服器存儲的session數據,因為一般負載均衡的策略都是隨機分配請求的。同一個登錄用戶的請求,無法保證一定分配到相同的Web機器上,會導致無法找到session的問題。

解決方案主要有兩種:

1.配置反向代理的轉發規則,讓同一個用戶的請求一定落到同一台機器上(通過分析cookie),復雜的轉發規則將會消耗更多的CPU,也增加了代理伺服器的負擔。

2.將session這類的信息,專門用某個獨立服務來存儲,例如redis/memchache,這個方案是比較推薦的。

反向代理服務,也是可以開啟緩存的,如果開啟了,會增加反向代理的負擔,需要謹慎使用。這種負載均衡策略實現和部署非常簡單,而且性能表現也比較好。但是,它有「單點故障」的問題,如果掛了,會帶來很多的麻煩。而且,到了後期Web伺服器繼續增加,它本身可能成為系統的瓶頸。

3. IP負載均衡

IP負載均衡服務是工作在網路層(修改IP)和傳輸層(修改埠,第四層),比起工作在應用層(第七層)性能要高出非常多。原理是,他是對IP層的數據包的IP地址和埠信息進行修改,達到負載均衡的目的。這種方式,也被稱為「四層負載均衡」。常見的負載均衡方式,是LVS(linux Virtual Server,Linux虛擬服務),通過IPVS(IP Virtual Server,IP虛擬服務)來實現。

在負載均衡伺服器收到客戶端的IP包的時候,會修改IP包的目標IP地址或埠,然後原封不動地投遞到內部網路中,數據包會流入到實際Web伺服器。實際伺服器處理完成後,又會將數據包投遞回給負載均衡伺服器,它再修改目標IP地址為用戶IP地址,最終回到客戶端。

上述的方式叫LVS-NAT,除此之外,還有LVS-RD(直接路由),LVS-TUN(IP隧道),三者之間都屬於LVS的方式,但是有一定的區別,篇幅問題,不贅敘。

IP負載均衡的性能要高出Nginx的反向代理很多,它只處理到傳輸層為止的數據包,並不做進一步的組包,然後直接轉發給實際伺服器。不過,它的配置和搭建比較復雜。

4. DNS負載均衡

DNS(Domain Name System)負責域名解析的服務,域名url實際上是伺服器的別名,實際映射是一個IP地址,解析過程,就是DNS完成域名到IP的映射。而一個域名是可以配置成對應多個IP的。因此,DNS也就可以作為負載均衡服務。

這種負載均衡策略,配置簡單,性能極佳。但是,不能自由定義規則,而且,變更被映射的IP或者機器故障時很麻煩,還存在DNS生效延遲的問題。

5. DNS/GSLB負載均衡

我們常用的CDN(Content Delivery Network,內容分發網路)實現方式,其實就是在同一個域名映射為多IP的基礎上更進一步,通過GSLB(Global Server Load Balance,全局負載均衡)按照指定規則映射域名的IP。一般情況下都是按照地理位置,將離用戶近的IP返回給用戶,減少網路傳輸中的路由節點之間的跳躍消耗。

「向上尋找」,實際過程是LDNS(Local DNS)先向根域名服務(Root Name Server)獲取到頂級根的Name Server(例如.com的),然後得到指定域名的授權DNS,然後再獲得實際伺服器IP。

CDN在Web系統中,一般情況下是用來解決大小較大的靜態資源(html/Js/Css/圖片等)的載入問題,讓這些比較依賴網路下載的內容,盡可能離用戶更近,提升用戶體驗。

例如,我訪問了一張imgcache.gtimg.cn上的圖片(騰訊的自建CDN,不使用qq.com域名的原因是防止http請求的時候,帶上了多餘的cookie信息),我獲得的IP是183.60.217.90。

這種方式,和前面的DNS負載均衡一樣,不僅性能極佳,而且支持配置多種策略。但是,搭建和維護成本非常高。互聯網一線公司,會自建CDN服務,中小型公司一般使用第三方提供的CDN。

Web系統的緩存機制的建立和優化

剛剛我們講完了Web系統的外部網路環境,現在我們開始關注我們Web系統自身的性能問題。我們的Web站點隨著訪問量的上升,會遇到很多的挑戰,解決這些問題不僅僅是擴容機器這么簡單,建立和使用合適的緩存機制才是根本。

最開始,我們的Web系統架構可能是這樣的,每個環節,都可能只有1台機器。

我們從最根本的數據存儲開始看哈。

一、 MySQL資料庫內部緩存使用

MySQL的緩存機制,就從先從MySQL內部開始,下面的內容將以最常見的InnoDB存儲引擎為主。

1. 建立恰當的索引

最簡單的是建立索引,索引在表數據比較大的時候,起到快速檢索數據的作用,但是成本也是有的。首先,佔用了一定的磁碟空間,其中組合索引最突出,使用需要謹慎,它產生的索引甚至會比源數據更大。其次,建立索引之後的數據insert/update/delete等操作,因為需要更新原來的索引,耗時會增加。當然,實際上我們的系統從總體來說,是以select查詢操作居多,因此,索引的使用仍然對系統性能有大幅提升的作用。

2. 資料庫連接線程池緩存

如果,每一個資料庫操作請求都需要創建和銷毀連接的話,對資料庫來說,無疑也是一種巨大的開銷。為了減少這類型的開銷,可以在MySQL中配置thread_cache_size來表示保留多少線程用於復用。線程不夠的時候,再創建,空閑過多的時候,則銷毀。

其實,還有更為激進一點的做法,使用pconnect(資料庫長連接),線程一旦創建在很長時間內都保持著。但是,在訪問量比較大,機器比較多的情況下,這種用法很可能會導致「資料庫連接數耗盡」,因為建立連接並不回收,最終達到資料庫的max_connections(最大連接數)。因此,長連接的用法通常需要在CGI和MySQL之間實現一個「連接池」服務,控制CGI機器「盲目」創建連接數。

建立資料庫連接池服務,有很多實現的方式,PHP的話,我推薦使用swoole(PHP的一個網路通訊拓展)來實現。

3. Innodb緩存設置(innodb_buffer_pool_size)

innodb_buffer_pool_size這是個用來保存索引和數據的內存緩存區,如果機器是MySQL獨占的機器,一般推薦為機器物理內存的80%。在取表數據的場景中,它可以減少磁碟IO。一般來說,這個值設置越大,cache命中率會越高。

4. 分庫/分表/分區。

MySQL資料庫表一般承受數據量在百萬級別,再往上增長,各項性能將會出現大幅度下降,因此,當我們預見數據量會超過這個量級的時候,建議進行分庫/分表/分區等操作。最好的做法,是服務在搭建之初就設計為分庫分表的存儲模式,從根本上杜絕中後期的風險。不過,會犧牲一些便利性,例如列表式的查詢,同時,也增加了維護的復雜度。不過,到了數據量千萬級別或者以上的時候,我們會發現,它們都是值得的。

二、 MySQL資料庫多台服務搭建

1台MySQL機器,實際上是高風險的單點,因為如果它掛了,我們Web服務就不可用了。而且,隨著Web系統訪問量繼續增加,終於有一天,我們發現1台MySQL伺服器無法支撐下去,我們開始需要使用更多的MySQL機器。當引入多台MySQL機器的時候,很多新的問題又將產生。

1. 建立MySQL主從,從庫作為備份

這種做法純粹為了解決「單點故障」的問題,在主庫出故障的時候,切換到從庫。不過,這種做法實際上有點浪費資源,因為從庫實際上被閑著了。

2. MySQL讀寫分離,主庫寫,從庫讀。

兩台資料庫做讀寫分離,主庫負責寫入類的操作,從庫負責讀的操作。並且,如果主庫發生故障,仍然不影響讀的操作,同時也可以將全部讀寫都臨時切換到從庫中(需要注意流量,可能會因為流量過大,把從庫也拖垮)。

3. 主主互備。

兩台MySQL之間互為彼此的從庫,同時又是主庫。這種方案,既做到了訪問量的壓力分流,同時也解決了「單點故障」問題。任何一台故障,都還有另外一套可供使用的服務。

不過,這種方案,只能用在兩台機器的場景。如果業務拓展還是很快的話,可以選擇將業務分離,建立多個主主互備。

三、 MySQL資料庫機器之間的數據同步

每當我們解決一個問題,新的問題必然誕生在舊的解決方案上。當我們有多台MySQL,在業務高峰期,很可能出現兩個庫之間的數據有延遲的場景。並且,網路和機器負載等,也會影響數據同步的延遲。我們曾經遇到過,在日訪問量接近1億的特殊場景下,出現,從庫數據需要很多天才能同步追上主庫的數據。這種場景下,從庫基本失去效用了。

於是,解決同步問題,就是我們下一步需要關注的點。

1. MySQL自帶多線程同步

MySQL5.6開始支持主庫和從庫數據同步,走多線程。但是,限制也是比較明顯的,只能以庫為單位。MySQL數據同步是通過binlog日誌,主庫寫入到binlog日誌的操作,是具有順序的,尤其當SQL操作中含有對於表結構的修改等操作,對於後續的SQL語句操作是有影響的。因此,從庫同步數據,必須走單進程。

2. 自己實現解析binlog,多線程寫入。

以資料庫的表為單位,解析binlog多張表同時做數據同步。這樣做的話,的確能夠加快數據同步的效率,但是,如果表和表之間存在結構關系或者數據依賴的話,則同樣存在寫入順序的問題。這種方式,可用於一些比較穩定並且相對獨立的數據表。

國內一線互聯網公司,大部分都是通過這種方式,來加快數據同步效率。還有更為激進的做法,是直接解析binlog,忽略以表為單位,直接寫入。但是這種做法,實現復雜,使用范圍就更受到限制,只能用於一些場景特殊的資料庫中(沒有表結構變更,表和表之間沒有數據依賴等特殊表)。

四、 在Web伺服器和資料庫之間建立緩存

實際上,解決大訪問量的問題,不能僅僅著眼於資料庫層面。根據「二八定律」,80%的請求只關注在20%的熱點數據上。因此,我們應該建立Web伺服器和資料庫之間的緩存機制。這種機制,可以用磁碟作為緩存,也可以用內存緩存的方式。通過它們,將大部分的熱點數據查詢,阻擋在資料庫之前。

1. 頁面靜態化

用戶訪問網站的某個頁面,頁面上的大部分內容在很長一段時間內,可能都是沒有變化的。例如一篇新聞報道,一旦發布幾乎是不會修改內容的。這樣的話,通過CGI生成的靜態html頁面緩存到Web伺服器的磁碟本地。除了第一次,是通過動態CGI查詢資料庫獲取之外,之後都直接將本地磁碟文件返回給用戶。

在Web系統規模比較小的時候,這種做法看似完美。但是,一旦Web系統規模變大,例如當我有100台的Web伺服器的時候。那樣這些磁碟文件,將會有100份,這個是資源浪費,也不好維護。這個時候有人會想,可以集中一台伺服器存起來,呵呵,不如看看下面一種緩存方式吧,它就是這樣做的。

2. 單台內存緩存

通過頁面靜態化的例子中,我們可以知道將「緩存」搭建在Web機器本機是不好維護的,會帶來更多問題(實際上,通過PHP的apc拓展,可通過Key/value操作Web伺服器的本機內存)。因此,我們選擇搭建的內存緩存服務,也必須是一個獨立的服務。

內存緩存的選擇,主要有redis/memcache。從性能上說,兩者差別不大,從功能豐富程度上說,Redis更勝一籌。

3. 內存緩存集群

當我們搭建單台內存緩存完畢,我們又會面臨單點故障的問題,因此,我們必須將它變成一個集群。簡單的做法,是給他增加一個slave作為備份機器。但是,如果請求量真的很多,我們發現cache命中率不高,需要更多的機器內存呢?因此,我們更建議將它配置成一個集群。例如,類似redis cluster。

Redis cluster集群內的Redis互為多組主從,同時每個節點都可以接受請求,在拓展集群的時候比較方便。客戶端可以向任意一個節點發送請求,如果是它的「負責」的內容,則直接返回內容。否則,查找實際負責Redis節點,然後將地址告知客戶端,客戶端重新請求。

對於使用緩存服務的客戶端來說,這一切是透明的。

內存緩存服務在切換的時候,是有一定風險的。從A集群切換到B集群的過程中,必須保證B集群提前做好「預熱」(B集群的內存中的熱點數據,應該盡量與A集群相同,否則,切換的一瞬間大量請求內容,在B集群的內存緩存中查找不到,流量直接沖擊後端的資料庫服務,很可能導致資料庫宕機)。

4. 減少資料庫「寫」

上面的機制,都實現減少資料庫的「讀」的操作,但是,寫的操作也是一個大的壓力。寫的操作,雖然無法減少,但是可以通過合並請求,來起到減輕壓力的效果。這個時候,我們就需要在內存緩存集群和資料庫集群之間,建立一個修改同步機制。

先將修改請求生效在cache中,讓外界查詢顯示正常,然後將這些sql修改放入到一個隊列中存儲起來,隊列滿或者每隔一段時間,合並為一個請求到資料庫中更新資料庫。

除了上述通過改變系統架構的方式提升寫的性能外,MySQL本身也可以通過配置參數innodb_flush_log_at_trx_commit來調整寫入磁碟的策略。如果機器成本允許,從硬體層面解決問題,可以選擇老一點的RAID(Rendant Arrays of independent Disks,磁碟列陣)或者比較新的SSD(Solid State Drives,固態硬碟)。

5. NoSQL存儲

不管資料庫的讀還是寫,當流量再進一步上漲,終會達到「人力有窮時」的場景。繼續加機器的成本比較高,並且不一定可以真正解決問題的時候。這個時候,部分核心數據,就可以考慮使用NoSQL的資料庫。NoSQL存儲,大部分都是採用key-value的方式,這里比較推薦使用上面介紹過Redis,Redis本身是一個內存cache,同時也可以當做一個存儲來使用,讓它直接將數據落地到磁碟。

這樣的話,我們就將資料庫中某些被頻繁讀寫的數據,分離出來,放在我們新搭建的Redis存儲集群中,又進一步減輕原來MySQL資料庫的壓力,同時因為Redis本身是個內存級別的Cache,讀寫的性能都會大幅度提升。

國內一線互聯網公司,架構上採用的解決方案很多是類似於上述方案,不過,使用的cache服務卻不一定是Redis,他們會有更豐富的其他選擇,甚至根據自身業務特點開發出自己的NoSQL服務。

6. 空節點查詢問題

當我們搭建完前面所說的全部服務,認為Web系統已經很強的時候。我們還是那句話,新的問題還是會來的。空節點查詢,是指那些資料庫中根本不存在的數據請求。例如,我請求查詢一個不存在人員信息,系統會從各級緩存逐級查找,最後查到到資料庫本身,然後才得出查找不到的結論,返回給前端。因為各級cache對它無效,這個請求是非常消耗系統資源的,而如果大量的空節點查詢,是可以沖擊到系統服務的。

在我曾經的工作經歷中,曾深受其害。因此,為了維護Web系統的穩定性,設計適當的空節點過濾機制,非常有必要。

我們當時採用的方式,就是設計一張簡單的記錄映射表。將存在的記錄存儲起來,放入到一台內存cache中,這樣的話,如果還有空節點查詢,則在緩存這一層就被阻擋了。

異地部署(地理分布式)

完成了上述架構建設之後,我們的系統是否就已經足夠強大了呢?答案當然是否定的哈,優化是無極限的。Web系統雖然表面上看,似乎比較強大了,但是給予用戶的體驗卻不一定是最好的。因為東北的同學,訪問深圳的一個網站服務,他還是會感到一些網路距離上的慢。這個時候,我們就需要做異地部署,讓Web系統離用戶更近。

一、 核心集中與節點分散

有玩過大型網游的同學都會知道,網游是有很多個區的,一般都是按照地域來分,例如廣東專區,北京專區。如果一個在廣東的玩家,去北京專區玩,那麼他會感覺明顯比在廣東專區卡。實際上,這些大區的名稱就已經說明了,它的伺服器所在地,所以,廣東的玩家去連接地處北京的伺服器,網路當然會比較慢。

當一個系統和服務足夠大的時候,就必須開始考慮異地部署的問題了。讓你的服務,盡可能離用戶更近。我們前面已經提到了Web的靜態資源,可以存放在CDN上,然後通過DNS/GSLB的方式,讓靜態資源的分散「全國各地」。但是,CDN只解決的靜態資源的問題,沒有解決後端龐大的系統服務還只集中在某個固定城市的問題。

這個時候,異地部署就開始了。異地部署一般遵循:核心集中,節點分散。

·核心集中:實際部署過程中,總有一部分的數據和服務存在不可部署多套,或者部署多套成本巨大。而對於這些服務和數據,就仍然維持一套,而部署地點選擇一個地域比較中心的地方,通過網路內部專線來和各個節點通訊。

·節點分散:將一些服務部署為多套,分布在各個城市節點,讓用戶請求盡可能選擇近的節點訪問服務。

例如,我們選擇在上海部署為核心節點,北京,深圳,武漢,上海為分散節點(上海自己本身也是一個分散節點)。我們的服務架構如圖:

需要補充一下的是,上圖中上海節點和核心節點是同處於一個機房的,其他分散節點各自獨立機房。
國內有很多大型網游,都是大致遵循上述架構。它們會把數據量不大的用戶核心賬號等放在核心節點,而大部分的網游數據,例如裝備、任務等數據和服務放在地區節點里。當然,核心節點和地域節點之間,也有緩存機制。

二、 節點容災和過載保護

節點容災是指,某個節點如果發生故障時,我們需要建立一個機制去保證服務仍然可用。毫無疑問,這里比較常見的容災方式,是切換到附近城市節點。假如系統的天津節點發生故障,那麼我們就將網路流量切換到附近的北京節點上。考慮到負載均衡,可能需要同時將流量切換到附近的幾個地域節點。另一方面,核心節點自身也是需要自己做好容災和備份的,核心節點一旦故障,就會影響全國服務。

過載保護,指的是一個節點已經達到最大容量,無法繼續接接受更多請求了,系統必須有一個保護的機制。一個服務已經滿負載,還繼續接受新的請求,結果很可能就是宕機,影響整個節點的服務,為了至少保障大部分用戶的正常使用,過載保護是必要的。

解決過載保護,一般2個方向:

·拒絕服務,檢測到滿負載之後,就不再接受新的連接請求。例如網游登入中的排隊。

·分流到其他節點。這種的話,系統實現更為復雜,又涉及到負載均衡的問題。

小結

Web系統會隨著訪問規模的增長,漸漸地從1台伺服器可以滿足需求,一直成長為「龐然大物」的大集群。而這個Web系統變大的過程,實際上就是我們解決問題的過程。在不同的階段,解決不同的問題,而新的問題又誕生在舊的解決方案之上。

系統的優化是沒有極限的,軟體和系統架構也一直在快速發展,新的方案解決了老的問題,同時也帶來新的挑戰。

Ⅲ 求助,需要多線程處理時,並發量過大時該如何

這個很簡單,高並發有多種解決方法:

1、從代碼上分入手,必須得保證代碼沒有冗餘,不要有廢代碼;
2、從伺服器上入手,高並發一台伺服器並發量有限,我們可以採用多台伺服器來分擔壓力;
3、從存儲方便入手,像我們一般高並發但是數據卻可以不用存到資料庫中的,我們就存在內存中,因為讀內存的速度是資料庫的N倍。

Ⅳ 如何處理高並發

問題一:java程序員面試時被問到:如何在j2ee項目中處理高並發量訪問? 該怎麼回答? 請仔細看題干再回答 blog.csdn/y_h_t/article/details/6322823
你是一名java程序員,這些應該知道些吧

問題二:如何處理高並發帶來的系統性能問題 那必須了解linux中的基本使用,比如如何找到某個路徑,如何打開一個文件,如何編輯修改一個文件等等,那就是linux中命令的使用;還有就是必須知道linux伺服器中所用的什麼伺服器(有weblogic、websphere等等);精通相關伺服器的重要屬性配置等等。

問題三:JAVA中高訪問量高並發的問題怎麼解決? 你指的高並發量大概有多少?
幾點需要注意:
盡量使用緩存,包括用戶緩存,信息緩存等,多花點內存來做緩存,可以大量減少與資料庫的交互,提高性能。
用jprofiler等工具找出性能瓶頸,減少額外的開銷。
優化資料庫查詢語句,減少直接使用hibernate等工具的直接生成語句(僅耗時較長的查詢做優化)。
優化資料庫結構,多做索引,提高查詢效率。
統計的功能盡量做緩存,或按每天一統計或定時統計相關報表,避免需要時進行統計的功能。
能使用靜態頁面的地方盡量使用,減少容器的解析(盡量將動態內容生成靜態html來顯示)。
解決以上問題後,使用伺服器集群來解決單台的瓶頸問題。
基本上以上述問題解決後,達到系統最優。
至於樓上有人提到別用JAVA來做,除非是低層的連接數過大(如大量的埠佔用需求),這種情況下考慮直接C來寫,其他的可以用JAVA來做。

問題四:項目中怎麼控制多線程高並發訪問 synchronized關鍵字主要解決多線程共享數據同步問題。
ThreadLocal使用場合主要解決多線程中數據因並發產生不一致問題。
ThreadLocal和Synchonized都用於解決多線程並發訪問。但是ThreadLocal與synchronized有本質的區別:
synchronized是利用鎖的機制,使變數或代碼塊在某一時該只能被一個線程訪問。而ThreadLocal為每一個線程都提供了變數的副本,使 得每個線程在某一時間訪問到的並不是同一個對象,這樣就隔離了多個線程對數據的數據共享。而Synchronized卻正好相反,它用於在多個線程間通信 時能夠獲得數據共享。
Synchronized用於線程間的數據共享,而ThreadLocal則用於線程間的數據隔離。當然ThreadLocal並不能替代synchronized,它們處理不同的問題域。Synchronized用於實現同步機制,比ThreadLocal更加復雜。
1、Java中synchronized用法
使用了synchronized關鍵字可以輕松地解決多線程共享數據同步問題。
synchronized關鍵字可以作為函數的修飾符,也可作為函數內的語句,也就是平時說的同步方法和同步語句塊。如果再細的分 類,synchronized可作用於instance變數、object reference(對象引用)、static函數和class literals(類名稱字面常量)身上。
synchronized取得的鎖都是對象;每個對象只有一個鎖(lock)與之相關聯;實現同步是要很大的系統開銷作為代價的,甚至可能造成死鎖,所以盡量避免無謂的同步控制。

問題五:如何處理高並發或列舉處理高並發的業務邏輯 1、提高系統的並發能力2、減輕資料庫的負擔這兩種用途其實非常容易理解。由於memcached高性能,所以可以同時服務於更多的連接,大大提高了系統的並發處理的能力。另外,memcached 通常部署在業務邏輯層(前台應用)和存儲層(主指資料庫)之間,作為資料庫和前台應用的數據緩沖,因此可以快速的響應前端的請求,減少對資料庫的訪問。

問題六:資料庫怎樣處理高並發 1.用一個標識,在選擇那張票的時候先用(Update 表 set 票flag=『佔用了!』 where 票flag=『未佔用』 and ........)這樣是保險的,不可能存在並發問題,這就牽扯到sql鎖機制問題了,你可以測試一下,其實sql中update是先查詢出然後刪除再添加,但由於使用了update,過程中就自動加鎖了,很方便吧2.加鎖。Microsoft® SQL Server™ 2000 使用鎖定確保事務完整性和資料庫一致性。鎖定可以防止用戶讀取正在由其他用戶更改的數據,並可以防止多個用戶同時更改相同數據。如果不使用鎖定,則資料庫中的數據可能在邏輯上不正確,並且對數據的查詢可能會產生意想不到的結果。雖然 SQL Server 自動強制鎖定,但可以通過了解鎖定並在應用程序中自定義鎖定來設計更有效的應用程序。

問題七:資料庫怎樣處理高並發 理論上不限制並發連接數的.就是伺服器受硬體的限制.過高的並發是會使伺服器無法完成並發任務,而造成伺服器死機或者假死機.不過資料庫軟體可以優化並發連接,使並發持續的時間更短,以減起伺服器的負擔,但是一台伺服器不能完成幾十萬的並發.

問題八:如何處理大量數據並發操作 如何處理大量數據並發操作

文件緩存,資料庫緩存,優化sql,數據分流,資料庫表的橫向和縱向劃分,優化代碼結構!

鎖述的概
一. 為什麼要引入鎖
多個用戶同時對資料庫的並發操作時會帶來以下數據不一致的問題:

丟失更新
A,B兩個用戶讀同一數據並進行修改,其中一個用戶的修改結果破壞了另一個修改的結果,比如訂票系統

臟讀
A用戶修改了數據,隨後B用戶又讀出該數據,但A用戶因為某些原因取消了對數據的修改,數據恢復原值,此時B得到的數據就與資料庫內的數據產生了不一致

不可重復讀
A用戶讀取數據,隨後B用戶讀出該數據並修改,此時A用戶再讀取數據時發現前後兩次的值不一致

並發控制的主要方法是封鎖,鎖就是在一段時間內禁止用戶做某些操作以避免產生數據不一致

二 鎖的分類
鎖的類別有兩種分法:
1. 從資料庫系統的角度來看:分為獨占鎖(即排它鎖),共享鎖和更新鎖
MS-SQL Server 使用以下資源鎖模式。
鎖模式 描述
共享 (S) 用於不更改或不更新數據的操作(只讀操作),如 SELECT 語句。
更新 (U) 用於可更新的資源中。防止當多個會話在讀取、鎖定以及隨後可能進行的資源更新時發生常見形式的死鎖。
排它 (X) 用於數據修改操作,例如 INSERT、UPDATE 或 DELETE。確保不會同時同一資源進行多重更新。
意向鎖 用於建立鎖的層次結構。意向鎖的類型為:意向共享 (IS)、意向排它 (IX) 以及與意向排它共享 (SIX)。
架構鎖 在執行依賴於表架構的操作時使用。架構鎖的類型為:架構修改 (Sch-M) 和架構穩定性 (Sch-S)。
大容量更新 (BU) 向表中大容量復制數據並指定了 TABLOCK 提示時使用。

共享鎖
共享 (S) 鎖允許並發事務讀取 (SELECT) 一個資源。資源上存在共享 (S) 鎖時,任何其它事務都不能修改數據。一旦已經讀取數據,便立即釋放資源上的共享 (S) 鎖,除非將事務隔離級別設置為可重復讀或更高級別,或者在事務生存周期內用鎖定提示保留共享 (S) 鎖。

更新鎖
更新 (U) 鎖可以防止通常形式的死鎖。一般更新模式由一個事務組成,此事務讀取記錄,獲取資源(頁或行)的共享 (S) 鎖,然後修改行,此操作要求鎖轉換為排它 (X) 鎖。如果兩個事務獲得了資源上的共享模式鎖,然後試圖同時更新數據,則一個事務嘗試將鎖轉換為排它 (X) 鎖。共享模式到排它鎖的轉換必須等待一段時間,因為一個事務的排它鎖與其它事務的共享模式鎖不兼容;發生鎖等待。第二個事務試圖獲取排它 (X) 鎖以進行更新。由於兩個事務都要轉換為排它 (X) 鎖,並且每個事務都等待另一個事務釋放共享模式鎖,因此發生死鎖。

若要避免這種潛在的死鎖問題,請使用更新 (U) 鎖。一次只有一個事務可以獲得資源的更新 (U) 鎖。如果事務修改資源,則更新 (U) 鎖轉換為排它 (X) 鎖。否則,鎖轉換為共享鎖。

排它鎖
排它 (X) 鎖可以防止並發事務對資源進行訪問。其它事務不能讀取或修改排它 (X) 鎖鎖定的數據。

意向鎖
意向鎖表示 SQL Server 需要在層次結構中的某些底層資源上獲取共享 (S) 鎖或排它 (X) 鎖。例如,放置在表級的共享意向鎖表示事務打算在表中的頁或行上放置共享 (S) 鎖。在表級設置意向鎖可防止另一個事務隨後在包含那一頁的表上獲取排它 (X) 鎖。意向鎖可以提高性能,因為 SQL Server 僅在表級檢查意向鎖來確定事務是否可以安全地獲取該表上的鎖。而無須檢查表中的每行或每頁上的鎖......>>

問題九:高並發是什麼和如何解決 資料庫建立多表關聯,關鍵業務數據欄位和查詢欄位建立索引,對唯一性建立好,同時多任務並發時程序設計時注意數據的合理性檢驗和用戶處理數據有問題時的友好提示見面,建立好的結構文檔說明,同時對關鍵欄位的關系型作好記錄,有效地設計多表的結構安排,盡量減少數據的冗餘,同時又要避免對歷史數據的影響,保持良好的數據管理

問題十:如何處理高並發量的HTTP請求 盡量減少頁面的HTTP請求,可以提高頁面載入速度。減少頁面中的元素網頁中的的圖片、form、flash等等元素都會發出HTTP請求,盡可能的減少頁面中非必要的元素,可以減少HTTP請求的次數。

Ⅳ 如何解決高並發問題

使用高性能的伺服器、高性能的資料庫、高效率的編程語言、還有高性能的Web容器,(對架構分層+負載均衡+集群)這幾個解決思路在一定程度上意味著更大的投入。

1、高並發:在同一個時間點,有大量的客戶來訪問我們的網站,如果訪問量過大,就可能造成網站癱瘓。

2、高流量:當網站大後,有大量的圖片,視頻,這樣就會對流量要求高,需要更多更大的帶寬。

3、大存儲:可能對數據保存和查詢出現問題。

解決方案:

1、提高硬體能力、增加系統伺服器。(當伺服器增加到某個程度的時候系統所能提供的並發訪問量幾乎不變,所以不能根本解決問題)

2、本地緩存:本地可以使用JDK自帶的Map、Guava Cache.分布式緩存:Redis、Memcache.本地緩存不適用於提高系統並發量,一般是用處用在程序中。

Spiring把已經初始過的變數放在一個Map中,下次再要使用這個變數的時候,先判斷Map中有沒有,這也就是系統中常見的單例模式的實現。

Ⅵ 如何處理大量數據高並發大流量並發操作方案

大數據並發處理解決方案:
1、HTML靜態化
效率最高、消耗最小的就是純靜態化的html頁面,所以盡可能使網站上的頁面採用靜態頁面來實現,這個最簡單的方法其實也是最有效的方法。但是對於大量內容並且頻繁更新的網站,無法全部手動去挨個實現,於是出現了常見的信息發布系統CMS,像常訪問的各個門戶站點的新聞頻道,甚至他們的其他頻道,都是通過信息發布系統來管理和實現的,信息發布系統可以實現最簡單的信息錄入自動生成靜態頁面,還能具備頻道管理、許可權管理、自動抓取等功能,對於一個大型網站來說,擁有一套高效、可管理的CMS是必不可少的。
2、圖片伺服器分離
對於Web伺服器來說,不管是Apache、IIS還是其他容器,圖片是最消耗資源的,於是有必要將圖片與頁面進行分離,這是基本上大型網站都會採用的策略,他們都有獨立的圖片伺服器,甚至很多台圖片伺服器。這樣的架構可以降低提供頁面訪問請求的伺服器系統壓力,並且可以保證系統不會因為圖片問題而崩潰,在應用伺服器和圖片伺服器上,可以進行不同的配置優化,比如apache在配置ContentType的時候可以盡量少支持,盡可能少的LoadMole,保證更高的系統消耗和執行效率。 這一實現起來是比較容易的一現,如果伺服器集群操作起來更方便,如果是獨立的伺服器,新手可能出現上傳圖片只能在伺服器本地的情況下,可以在令一台伺服器設置的IIS採用網路路徑來實現圖片伺服器,即不用改變程序,又能提高性能,但對於伺服器本身的IO處理性能是沒有任何的改變。
3、資料庫集群和庫表散列
大型網站都有復雜的應用,這些應用必須使用資料庫,那麼在面對大量訪問的時候,資料庫的瓶頸很快就能顯現出來,這時一台資料庫將很快無法滿足應用,於是需要使用資料庫集群或者庫表散列。
4、緩存
緩存一詞搞技術的都接觸過,很多地方用到緩存。網站架構和網站開發中的緩存也是非常重要。架構方面的緩存,對Apache比較熟悉的人都能知道Apache提供了自己的緩存模塊,也可以使用外加的Squid模塊進行緩存,這兩種方式均可以有效的提高Apache的訪問響應能力。
網站程序開發方面的緩存,Linux上提供的Memory Cache是常用的緩存介面,可以在web開發中使用,比如用Java開發的時候就可以調用MemoryCache對一些數據進行緩存和通訊共享,一些大型社區使用了這樣的架構。另外,在使用web語言開發的時候,各種語言基本都有自己的緩存模塊和方法,PHP有Pear的Cache模塊,Java就更多了,.net不是很熟悉,相信也肯定有。
5、鏡像
鏡像是大型網站常採用的提高性能和數據安全性的方式,鏡像的技術可以解決不同網路接入商和地域帶來的用戶訪問速度差異,比如ChinaNet和ENet之間的差異就促使了很多網站在教育網內搭建鏡像站點,數據進行定時更新或者實時更新。在鏡像的細節技術方面,這里不闡述太深,有很多專業的現成的解決架構和產品可選。也有廉價的通過軟體實現的思路,比如Linux上的rsync等工具。
6、負載均衡
負載均衡將是大型網站解決高負荷訪問和大量並發請求採用的終極解決辦法。 負載均衡技術發展了多年,有很多專業的服務提供商和產品可以選擇。
硬體四層交換
第四層交換使用第三層和第四層信息包的報頭信息,根據應用區間識別業務流,將整個區間段的業務流分配到合適的應用伺服器進行處理。第四層交換功能就象是虛IP,指向物理伺服器。它傳輸的業務服從的協議多種多樣,有HTTP、FTP、NFS、Telnet或其他協議。這些業務在物理伺服器基礎上,需要復雜的載量平衡演算法。在IP世界,業務類型由終端TCP或UDP埠地址來決定,在第四層交換中的應用區間則由源端和終端IP地址、TCP和UDP埠共同決定。
在硬體四層交換產品領域,有一些知名的產品可以選擇,比如Alteon、F5等,這些產品很昂貴,但是物有所值,能夠提供非常優秀的性能和很靈活的管理能力。Yahoo中國當初接近2000台伺服器使用了三四台Alteon就搞定了。

Ⅶ java高並發,如何解決,什麼方式解決,高並發

首先,為防止高並發帶來的系統壓力,或者高並發帶來的系統處理異常,數據紊亂,可以以下幾方面考慮:1、加鎖,這里的加鎖不是指加java的多線程的鎖,是指加應用所和資料庫鎖,應用鎖這邊通常是使用redis的setnx來做,其次加資料庫鎖,因為代碼中加了應用所,所以資料庫不建議加悲觀鎖(排他鎖),一般加樂觀鎖(通過設置一個seq_no來解決),這兩個鎖一般能解決了,最後做合理的流控,丟棄一部分請求也是必不可少的

Ⅷ php 高並發解決思路解決方案

php 高並發解決思路解決方案,如何應對網站大流量高並發情況。本文為大家總結了常用的處理方式,但不是細節,後續一系列細節教程給出。希望大家喜歡。

一 高並發的概念

在互聯網時代,並發,高並發通常是指並發訪問。也就是在某個時間點,有多少個訪問同時到來。

二 高並發架構相關概念

1、QPS (每秒查詢率) : 每秒鍾請求或者查詢的數量,在互聯網領域,指每秒響應請求數(指 HTTP 請求)

2、PV(Page View):綜合瀏覽量,即頁面瀏覽量或者點擊量,一個訪客在 24 小時內訪問的頁面數量

--註:同一個人瀏覽你的網站的同一頁面,只記做一次 pv

3、吞吐量(fetches/sec) :單位時間內處理的請求數量 (通常由 QPS 和並發數決定)

4、響應時間:從請求發出到收到響應花費的時間

5、獨立訪客(UV):一定時間范圍內,相同訪客多次訪問網站,只計算為 1 個獨立訪客

6、帶寬:計算帶寬需關注兩個指標,峰值流量和頁面的平均大小

7、日網站帶寬: PV/統計時間(換算到秒) * 平均頁面大小(kb)* 8

三 需要注意點:

1、QPS 不等於並發連接數(QPS 是每秒 HTTP 請求數量,並發連接數是系統同時處理的請求數量)

2、峰值每秒請求數(QPS)= (總 PV 數*80%)/ (六小時秒數*20%)【代表 80%的訪問量都集中在 20%的時間內】

3、壓力測試: 測試能承受的最大並發數 以及測試最大承受的 QPS 值

4、常用的性能測試工具【ab,wrk,httpload,Web Bench,Siege,Apache JMeter】

四 優化

1、當 QPS 小於 50 時

優化方案:為一般小型網站,不用考慮優化

2、當 QPS 達到 100 時,遇到數據查詢瓶頸

優化方案: 資料庫緩存層,資料庫的負載均衡

3、當 QPS 達到 800 時, 遇到帶寬瓶頸

優化方案:CDN 加速,負載均衡

4、當 QPS 達到 1000 時

優化方案: 做 html 靜態緩存

5、當 QPS 達到 2000 時

優化方案: 做業務分離,分布式存儲

五、高並發解決方案案例:

1、流量優化

防盜鏈處理(去除惡意請求)

2、前端優化

(1) 減少 HTTP 請求[將 css,js 等合並]

(2) 添加非同步請求(先不將所有數據都展示給用戶,用戶觸發某個事件,才會非同步請求數據)

(3) 啟用瀏覽器緩存和文件壓縮

(4) CDN 加速

(5) 建立獨立的圖片伺服器(減少 I/O)

3、服務端優化

(1) 頁面靜態化

(2) 並發處理

(3) 隊列處理

4、資料庫優化

(1) 資料庫緩存

(2) 分庫分表,分區

(3) 讀寫分離

(4) 負載均衡

5、web 伺服器優化

(1) nginx 反向代理實現負載均衡

(2) lvs 實現負載均衡

Ⅸ 如何處理高並發

處理高並發的六種方法

1:系統拆分,將一個系統拆分為多個子系統,用bbo來搞。然後每個系統連一個資料庫,這樣本來就一個庫,現在多個資料庫,這樣就可以抗高並發。

2:緩存,必須得用緩存。大部分的高並發場景,都是讀多寫少,那你完全可以在資料庫和緩存里都寫一份,然後讀的時候大量走緩存不就得了。畢竟人家redis輕輕鬆鬆單機幾萬的並發啊。沒問題的。所以你可以考的慮考慮你的項目里,那些承載主要請求讀場景,怎麼用緩存來抗高並發。

3:MQ(消息隊列),必須得用MQ。可能你還是會出現高並發寫的場景,比如說一個業務操作里要頻繁搞資料庫幾十次,增刪改增刪改,瘋了。那高並發絕對搞掛你的系統,人家是緩存你要是用redis來承載寫那肯定不行,數據隨時就被LRU(淘汰掉最不經常使用的)了,數據格式還無比簡單,沒有事務支持。所以該用mysql還得用mysql啊。那你咋辦?用MQ吧,大量的寫請求灌入MQ里,排隊慢慢玩兒,後邊系統消費後慢慢寫,控制在mysql承載范圍之內。所以你得考慮考慮你的項目里,那些承載復雜寫業務邏輯的場景里,如何用MQ來非同步寫,提升並發性。MQ單機抗幾萬並發也是ok的。

4:分庫分表,可能到了最後資料庫層面還是免不了抗高並發的要求,好吧,那麼就將一個資料庫拆分為多個庫,多個庫來抗更高的並發;然後將一個表拆分為多個表,每個表的數據量保持少一點,提高sql跑的性能。

5:讀寫分離,這個就是說大部分時候資料庫可能也是讀多寫少,沒必要所有請求都集中在一個庫上吧,可以搞個主從架構,主庫寫入,從庫讀取,搞一個讀寫分離。讀流量太多的時候,還可以加更多的從庫。

6:solrCloud:
SolrCloud(solr 雲)是Solr提供的分布式搜索方案,可以解決海量數據的 分布式全文檢索,因為搭建了集群,因此具備高可用的特性,同時對數據進行主從備份,避免了單點故障問題。可以做到數據的快速恢復。並且可以動態的添加新的節點,再對數據進行平衡,可以做到負載均衡:

Ⅹ 如何提高高性能伺服器並發量

消除瓶頸是提高伺服器性能和並發能力的唯一途徑。 如果你能夠消除所有的瓶頸,你就能夠最大的發揮硬體性能,讓系統的性能和並發數到達最佳。 採用多線程多核編程,使用事件驅動或非同步消息機制,盡量減少阻塞和等待操作(如I/O阻塞、同步等待或計時/超時等)。 原理: 1、多線程多核編程,消除cpu瓶頸。 2、採用IOCP或epoll,利用狀態監測和通知方式,消除網路I/O阻塞瓶頸。 3、採用事件驅動或非同步消息機制,可以消除不必要的等待操作。 4、如果是Linux,可以採用AIO來消除磁碟I/O阻塞瓶頸。 5、在事件驅動框架或非同步消息中統一處理timer事件,變同步為非同步,而且可以在一個線程處理無數timer事件。 6、深入分析外部的阻塞來源,消除它。 比如資料庫查詢較慢,導致伺服器處理較慢,並發數上不去,這時就要優化資料庫性能。 7、如果與某個其他server通信量很大,導致性能下降較多。 可以考慮把這兩個server放在一個主機上,採用共享內存的方式來做IPC通信,可以大大提高性能。

閱讀全文

與伺服器端該如何處理高並發的任務相關的資料

熱點內容
遺傳演算法的變異運算元怎麼實現 瀏覽:683
spring如何添加app 瀏覽:664
python循環import 瀏覽:552
怎樣把js代碼加密 瀏覽:800
frp伺服器百度雲 瀏覽:792
12306演算法 瀏覽:630
單片機驅動小馬達 瀏覽:100
pythoncookbook27 瀏覽:518
c的指針和python 瀏覽:186
python寫sftp 瀏覽:957
讀文pdf 瀏覽:507
pythonnumpy內積 瀏覽:782
linux硬碟模式 瀏覽:15
怎麼查安卓的空間 瀏覽:589
linux命令復制命令 瀏覽:115
勞動法裡面有沒有帶工資演算法的 瀏覽:456
如何在u盤里拷解壓軟體 瀏覽:689
oracle資料庫登陸命令 瀏覽:616
python自動化運維之路 瀏覽:402
eclipsejava教程下載 瀏覽:989