『壹』 python分布式爬蟲是什麼意思
一、分布式爬蟲架構
在了解分布式爬蟲架構之前,首先回顧一下Scrapy的架構,如下圖所示。
我們需要做的就是在多台主機上同時運行爬蟲任務協同爬取,而協同爬取的前提就是共享爬取隊列。這樣各台主機就不需要各自維護爬取隊列,而是從共享爬取隊列存取Request。但是各台主機還是有各自的Scheler和Downloader,所以調度和下載功能分別完成。如果不考慮隊列存取性能消耗,爬取效率還是會成倍提高。
二、維護爬取隊列
那麼這個隊列用什麼來維護?首先需要考慮的就是性能問題。我們自然想到的是基於內存存儲的Redis,它支持多種數據結構,例如列表(List)、集合(Set)、有序集合(Sorted Set)等,存取的操作也非常簡單。
Redis支持的這幾種數據結構存儲各有優點。
列表有lpush()、lpop()、rpush()、rpop()方法,我們可以用它來實現先進先出式爬取隊列,也可以實現先進後出棧式爬取隊列。
集合的元素是無序的且不重復的,這樣我們可以非常方便地實現隨機排序且不重復的爬取隊列。
有序集合帶有分數表示,而Scrapy的Request也有優先順序的控制,我們可以用它來實現帶優先順序調度的隊列。
我們需要根據具體爬蟲的需求來靈活選擇不同的隊列。
三、如何去重
Scrapy有自動去重,它的去重使用了Python中的集合。這個集合記錄了Scrapy中每個Request的指紋,這個指紋實際上就是Request的散列值。我們可以看看Scrapy的源代碼,如下所示:
importhashlib
defrequest_fingerprint(request, include_headers=None):
ifinclude_headers:
include_headers = tuple(to_bytes(h.lower())
forhinsorted(include_headers))
cache = _fingerprint_cache.setdefault(request, {})
ifinclude_headersnotincache:
fp = hashlib.sha1()
fp.update(to_bytes(request.method))
fp.update(to_bytes(canonicalize_url(request.url)))
fp.update(request.bodyorb'')
ifinclude_headers:
forhdrininclude_headers:
ifhdrinrequest.headers:
fp.update(hdr)
forvinrequest.headers.getlist(hdr):
fp.update(v)
cache[include_headers] = fp.hexdigest()
returncache[include_headers]
request_fingerprint()就是計算Request指紋的方法,其方法內部使用的是hashlib的sha1()方法。計算的欄位包括Request的Method、URL、Body、Headers這幾部分內容,這里只要有一點不同,那麼計算的結果就不同。計算得到的結果是加密後的字元串,也就是指紋。每個Request都有獨有的指紋,指紋就是一個字元串,判定字元串是否重復比判定Request對象是否重復容易得多,所以指紋可以作為判定Request是否重復的依據。
那麼我們如何判定重復呢?Scrapy是這樣實現的,如下所示:
def__init__(self):
self.fingerprints = set()
defrequest_seen(self, request):
fp = self.request_fingerprint(request)
iffpinself.fingerprints:
returnTrue
self.fingerprints.add(fp)
在去重的類RFPDupeFilter中,有一個request_seen()方法,這個方法有一個參數request,它的作用就是檢測該Request對象是否重復。這個方法調用request_fingerprint()獲取該Request的指紋,檢測這個指紋是否存在於fingerprints變數中,而fingerprints是一個集合,集合的元素都是不重復的。如果指紋存在,那麼就返回True,說明該Request是重復的,否則這個指紋加入到集合中。如果下次還有相同的Request傳遞過來,指紋也是相同的,那麼這時指紋就已經存在於集合中,Request對象就會直接判定為重復。這樣去重的目的就實現了。
Scrapy的去重過程就是,利用集合元素的不重復特性來實現Request的去重。
對於分布式爬蟲來說,我們肯定不能再用每個爬蟲各自的集合來去重了。因為這樣還是每個主機單獨維護自己的集合,不能做到共享。多台主機如果生成了相同的Request,只能各自去重,各個主機之間就無法做到去重了。
那麼要實現去重,這個指紋集合也需要是共享的,Redis正好有集合的存儲數據結構,我們可以利用Redis的集合作為指紋集合,那麼這樣去重集合也是利用Redis共享的。每台主機新生成Request之後,把該Request的指紋與集合比對,如果指紋已經存在,說明該Request是重復的,否則將Request的指紋加入到這個集合中即可。利用同樣的原理不同的存儲結構我們也實現了分布式Reqeust的去重。
四、防止中斷
在Scrapy中,爬蟲運行時的Request隊列放在內存中。爬蟲運行中斷後,這個隊列的空間就被釋放,此隊列就被銷毀了。所以一旦爬蟲運行中斷,爬蟲再次運行就相當於全新的爬取過程。
要做到中斷後繼續爬取,我們可以將隊列中的Request保存起來,下次爬取直接讀取保存數據即可獲取上次爬取的隊列。我們在Scrapy中指定一個爬取隊列的存儲路徑即可,這個路徑使用JOB_DIR變數來標識,我們可以用如下命令來實現:
scrapy crawl spider -s JOB_DIR=crawls/spider
更加詳細的使用方法可以參見官方文檔,鏈接為:https://doc.scrapy.org/en/latest/topics/jobs.html。
在Scrapy中,我們實際是把爬取隊列保存到本地,第二次爬取直接讀取並恢復隊列即可。那麼在分布式架構中我們還用擔心這個問題嗎?不需要。因為爬取隊列本身就是用資料庫保存的,如果爬蟲中斷了,資料庫中的Request依然是存在的,下次啟動就會接著上次中斷的地方繼續爬取。
所以,當Redis的隊列為空時,爬蟲會重新爬取;當Redis的隊列不為空時,爬蟲便會接著上次中斷之處繼續爬取。
五、架構實現
我們接下來就需要在程序中實現這個架構了。首先實現一個共享的爬取隊列,還要實現去重的功能。另外,重寫一個Scheer的實現,使之可以從共享的爬取隊列存取Request。
幸運的是,已經有人實現了這些邏輯和架構,並發布成叫Scrapy-Redis的Python包。接下來,我們看看Scrapy-Redis的源碼實現,以及它的詳細工作原理
『貳』 Python編程基礎之(五)Scrapy爬蟲框架
經過前面四章的學習,我們已經可以使用Requests庫、Beautiful Soup庫和Re庫,編寫基本的Python爬蟲程序了。那麼這一章就來學習一個專業的網路爬蟲框架--Scrapy。沒錯,是框架,而不是像前面介紹的函數功能庫。
Scrapy是一個快速、功能強大的網路爬蟲框架。
可能大家還不太了解什麼是框架,爬蟲框架其實是實現爬蟲功能的一個軟體結構和功能組件的集合。
簡而言之, Scrapy就是一個爬蟲程序的半成品,可以幫助用戶實現專業的網路爬蟲。
使用Scrapy框架,不需要你編寫大量的代碼,Scrapy已經把大部分工作都做好了,允許你調用幾句代碼便自動生成爬蟲程序,可以節省大量的時間。
當然,框架所生成的代碼基本是一致的,如果遇到一些特定的爬蟲任務時,就不如自己使用Requests庫搭建來的方便了。
PyCharm安裝
測試安裝:
出現框架版本說明安裝成功。
掌握Scrapy爬蟲框架的結構是使用好Scrapy的重中之重!
先上圖:
整個結構可以簡單地概括為: 「5+2」結構和3條數據流
5個主要模塊(及功能):
(1)控制所有模塊之間的數據流。
(2)可以根據條件觸發事件。
(1)根據請求下載網頁。
(1)對所有爬取請求進行調度管理。
(1)解析DOWNLOADER返回的響應--response。
(2)產生爬取項--scraped item。
(3)產生額外的爬取請求--request。
(1)以流水線方式處理SPIDER產生的爬取項。
(2)由一組操作順序組成,類似流水線,每個操作是一個ITEM PIPELINES類型。
(3)清理、檢查和查重爬取項中的HTML數據並將數據存儲到資料庫中。
2個中間鍵:
(1)對Engine、Scheler、Downloader之間進行用戶可配置的控制。
(2)修改、丟棄、新增請求或響應。
(1)對請求和爬取項進行再處理。
(2)修改、丟棄、新增請求或爬取項。
3條數據流:
(1):圖中數字 1-2
1:Engine從Spider處獲得爬取請求--request。
2:Engine將爬取請求轉發給Scheler,用於調度。
(2):圖中數字 3-4-5-6
3:Engine從Scheler處獲得下一個要爬取的請求。
4:Engine將爬取請求通過中間件發送給Downloader。
5:爬取網頁後,Downloader形成響應--response,通過中間件發送給Engine。
6:Engine將收到的響應通過中間件發送給Spider處理。
(3):圖中數字 7-8-9
7:Spider處理響應後產生爬取項--scraped item。
8:Engine將爬取項發送給Item Pipelines。
9:Engine將爬取請求發送給Scheler。
任務處理流程:從Spider的初始爬取請求開始爬取,Engine控制各模塊數據流,不間斷從Scheler處獲得爬取請求,直至請求為空,最後到Item Pipelines存儲數據結束。
作為用戶,只需配置好Scrapy框架的Spider和Item Pipelines,也就是數據流的入口與出口,便可完成一個爬蟲程序的搭建。Scrapy提供了簡單的爬蟲命令語句,幫助用戶一鍵配置剩餘文件,那我們便來看看有哪些好用的命令吧。
Scrapy採用命令行創建和運行爬蟲
PyCharm打開Terminal,啟動Scrapy:
Scrapy基本命令行格式:
具體常用命令如下:
下面用一個例子來學習一下命令的使用:
1.建立一個Scrapy爬蟲工程,在已啟動的Scrapy中繼續輸入:
執行該命令,系統會在PyCharm的工程文件中自動創建一個工程,命名為pythonDemo。
2.產生一個Scrapy爬蟲,以教育部網站為例http://www.moe.gov.cn:
命令生成了一個名為demo的spider,並在Spiders目錄下生成文件demo.py。
命令僅用於生成demo.py文件,該文件也可以手動生成。
觀察一下demo.py文件:
3.配置產生的spider爬蟲,也就是demo.py文件:
4.運行爬蟲,爬取網頁:
如果爬取成功,會發現在pythonDemo下多了一個t20210816_551472.html的文件,我們所爬取的網頁內容都已經寫入該文件了。
以上就是Scrapy框架的簡單使用了。
Request對象表示一個HTTP請求,由Spider生成,由Downloader執行。
Response對象表示一個HTTP響應,由Downloader生成,有Spider處理。
Item對象表示一個從HTML頁面中提取的信息內容,由Spider生成,由Item Pipelines處理。Item類似於字典類型,可以按照字典類型來操作。
『叄』 python 爬蟲 ip池怎麼做
Python爬蟲採集信息都是採用IP進行更改,不然就不能快速的爬取信息,可以加入採用這類方式,就失去了快速抓取的意義。
所以,如果要大批量的抓取信息,就不能避免的使用IP池,針對Python爬蟲使用的IP池,是如何搭建起來的呢?接下來和大家說明一下如何建爬蟲IP池的問題。
第一步:找IP資源
IP資源並不豐富,換句話說是供不應求的,因此一般是使用動態IP。
免費方法,直接在網路上找,在搜索引擎中一搜索特別多能夠提供IP資源的網站,進行採集即可。
付費方法,通過購買芝麻代理上的IP資源,並進行提取,搭建IP池。
第二步,檢測可用IP保存
提取到的IP,可以進一步進行檢測是否可用,比如訪問某個固定的網站,找出訪問成功的IP進行保存。
第三步,隨機調用IP
在爬蟲需要使用IP時,可用讀取保存IP的文件,進行隨機調用IP。
本文介紹了如何建爬蟲的IP池方法,可以說搭建IP池很容易,可有些IP的時效性很短,使用之前還可以再測試一次的。如果考慮免費IP,那麼對於IP的效果性要做好心理准備的。
『肆』 Python爬蟲:如何在一個月內學會爬取大規模數
爬蟲是入門Python最好的方式,沒有之一。Python有很多應用的方向,比如後台開發、web開發、科學計算等等,但爬蟲對於初學者而言更友好,原理簡單,幾行代碼就能實現基本的爬蟲,學習的過程更加平滑,你能體會更大的成就感。
掌握基本的爬蟲後,你再去學習Python數據分析、web開發甚至機器學習,都會更得心應手。因為這個過程中,Python基本語法、庫的使用,以及如何查找文檔你都非常熟悉了。
對於小白來說,爬蟲可能是一件非常復雜、技術門檻很高的事情。比如有人認為學爬蟲必須精通 Python,然後哼哧哼哧系統學習 Python 的每個知識點,很久之後發現仍然爬不了數據;有的人則認為先要掌握網頁的知識,遂開始 HTMLCSS,結果入了前端的坑,瘁……
但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現,但建議你從一開始就要有一個具體的目標。
在目標的驅動下,你的學習才會更加精準和高效。那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。這里給你一條平滑的、零基礎快速入門的學習路徑。
1.學習 Python 包並實現基本的爬蟲過程
2.了解非結構化數據的存儲
3.學習scrapy,搭建工程化爬蟲
4.學習資料庫知識,應對大規模數據存儲與提取
5.掌握各種技巧,應對特殊網站的反爬措施
6.分布式爬蟲,實現大規模並發採集,提升效率
- -
學習 Python 包並實現基本的爬蟲過程
大部分Python爬蟲都是按「發送請求——獲得頁面——解析頁面——抽取並儲存內容」這樣的流程來進行,這其實也是模擬了我們使用瀏覽器獲取網頁信息的過程。
Python爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,建議從requests+Xpath 開始,requests 負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。
如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多,一般的靜態網站根本不在話下,豆瓣、糗事網路、騰訊新聞等基本上都可以上手了。
當然如果你需要爬取非同步載入的網站,可以學習瀏覽器抓包分析真實請求或者學習Selenium來實現自動化,這樣,知乎、時光網、貓途鷹這些動態的網站也可以迎刃而解。
- -
了解非結構化數據的存儲
爬回來的數據可以直接用文檔形式存在本地,也可以存入資料庫中。
開始數據量不大的時候,你可以直接通過 Python 的語法或 pandas 的方法將數據存為csv這樣的文件。
當然你可能發現爬回來的數據並不是干凈的,可能會有缺失、錯誤等等,你還需要對數據進行清洗,可以學習 pandas 包的基本用法來做數據的預處理,得到更干凈的數據。
- -
學習 scrapy,搭建工程化的爬蟲
掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常復雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy 框架就非常有用了。
scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。
學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備爬蟲工程師的思維了。
- -
學習資料庫基礎,應對大規模數據存儲
爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種資料庫是必須的,學習目前比較主流的 MongoDB 就OK。
MongoDB 可以方便你去存儲一些非結構化的數據,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因為這里要用到的資料庫知識其實非常簡單,主要是數據如何入庫、如何進行提取,在需要的時候再學習就行。
- -
掌握各種技巧,應對特殊網站的反爬措施
當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態載入等等。
遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等。
往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了。
- -
分布式Python爬蟲,實現大規模並發採集
爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字:分布式爬蟲。
分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具。
Scrapy 前面我們說過了,用於做基本的
『伍』 python中,進行爬蟲抓取怎麼樣能夠使用代理IP
在python中用爬蟲再用到代理伺服器,有兩個辦法,①直接在布署該python爬蟲的電腦上設置代理伺服器,這樣從該電腦上出站的信息就只能由代理伺服器處理了,爬蟲的也不例外,可以搜"windows設置代理伺服器"、"Linux設置代理伺服器"。通常是」設置->網路->連接->代理「。
②若想讓python單獨使用這個代理伺服器,可以搜一下"python proxy config","python配置代理伺服器",有一些庫支持簡單的BM代理伺服器連接。
『陸』 python爬蟲怎麼抓取代理伺服器
如果你下面那個可以使用個,你就都加上代理就是了,應該是有的網站限制了爬蟲的頭部數據。 雖然你可以通過urlopen返回的數據判斷,但是不建議做,增加成本。 如果解決了您的問題請採納! 如果未解決請繼續追問
『柒』 python爬蟲能做什麼
Python是一門非常適合開發網路爬蟲的編程語言,相比於其他靜態編程語言,Python抓取網頁文檔的介面更簡潔;相比於其他動態腳本語言,Python的urllib2包提供了較為完整的訪問網頁文檔的API。此外,python中有優秀的第三方包可以高效實現網頁抓取,並可用極短的代碼完成網頁的標簽過濾功能。
Python爬蟲架構組成:
1. URL管理器:管理待爬取的url集合和已爬取的url集合,傳送待爬取的url給網頁下載器;
2. 網頁下載器:爬取url對應的網頁,存儲成字元串,傳送給網頁解析器;
3. 網頁解析器:解析出有價值的數據,存儲下來,同時補充url到URL管理器。
Python爬蟲工作原理:
Python爬蟲通過URL管理器,判斷是否有待爬URL,如果有待爬URL,通過調度器進行傳遞給下載器,下載URL內容,並通過調度器傳送給解析器,解析URL內容,並將價值數據和新URL列表通過調度器傳遞給應用程序,並輸出價值信息的過程。
爬蟲可以做什麼?
你可以用爬蟲爬圖片,爬取視頻等等你想要爬取的數據,只要你能通過瀏覽器訪問的數據都可以通過爬蟲獲取。
Python爬蟲常用框架有:
grab:網路爬蟲框架;
scrapy:網路爬蟲框架,不支持Python3;
pyspider:一個強大的爬蟲系統;
cola:一個分布式爬蟲框架;
portia:基於Scrapy的可視化爬蟲;
restkit:Python的HTTP資源工具包。它可以讓你輕松地訪問HTTP資源,並圍繞它建立的對象。
demiurge:基於PyQuery的爬蟲微框架。