❶ 探討最受歡迎的15頂級Python庫
1 TensorFlow(貢獻者:1757,貢獻:25756,Stars:116765)
「TensorFlow 是一個使用數據流圖進行數值計算的開源軟體庫。圖形節點表示數學運算,而圖形邊緣表示在它們之間流動的多維數據陣列(張量)。這種靈活的體系結構使用戶可以將計算部署到桌面、伺服器或移動設備中的一個或多個 CPU/GPU,而無需重寫代碼。 」
GitHub 地址:
https://github.com/tensorflow/tensorflow
2 pandas(貢獻者:1360,貢獻:18441,Stars :17388)
「pandas 是一個 Python 包,、供快速,靈活和富有表現力的數據結構,旨在讓」關系「或」標記「數據使用既簡單又直觀。它的目標是成為用 Python 進行實際,真實數據分析的基礎高級構建塊。」
GitHub 地址:
https://github.com/pandas-dev/pandas
3 scikit-learn(貢獻者:1218,貢獻者:23509,Stars :32326)
「scikit-learn 是一個基於 NumPy,SciPy 和 matplotlib 的機器學習 Python 模塊。它為數據挖掘和數據分析提供了簡單而有效的工具。SKLearn 所有人都可用,並可在各種環境中重復使用。
GitHub 地址:
https://github.com/scikit-learn/scikit-learn
4 PyTorch(貢獻者:861,貢獻:15362,Stars:22763)
「PyTorch 是一個 Python 包,提供兩個高級功能:
具有強大的 GPU 加速度的張量計算(如 NumPy)
基於磁帶的自動編程系統構建的深度神經網路
你可以重復使用自己喜歡的 Python 軟體包,如 NumPy,SciPy 和 Cython,以便在需要時擴展 PyTorch。」
GitHub 地址:
https://github.com/pytorch/pytorch
5 Matplotlib(貢獻者:778,貢獻:28094,Stars :8362)
「Matplotlib 是一個 Python 2D 繪圖庫,可以生成各種可用於出版品質的硬拷貝格式和跨平台互動式環境數據。Matplotlib 可用於 Python 腳本,Python 和 IPython shell(例如 MATLAB 或 Mathematica),Web 應用程序伺服器和各種圖形用戶界面工具包。」
GitHub 地址:
https://github.com/matplotlib/matplotlib
6 Keras(貢獻者:856,貢者:4936,Stars :36450)
「Keras 是一個高級神經網路 API,用 Python 編寫,能夠在 TensorFlow,CNTK 或 Theano 之上運行。它旨在實現快速實驗,能夠以最小的延遲把想法變成結果,這是進行研究的關鍵。」
GitHub 地址:
https://github.com/keras-team/keras
7 NumPy(貢獻者:714,貢獻:19399,Stars:9010)
「NumPy 是使用 Python 進行科學計算所需的基礎包。它提供了強大的 N 維數組對象,復雜的(廣播)功能,集成 C / C ++ 和 Fortran 代碼的工具以及有用的線性代數,傅里葉變換和隨機數功能。
GitHub 地址:
https://github.com/numpy/numpy
8 SciPy(貢獻者:676,貢獻:20180,Stars:5188)
「SciPy(發音為」Sigh Pie「)是數學、科學和工程方向的開源軟體,包含統計、優化、集成、線性代數、傅立葉變換、信號和圖像處理、ODE 求解器等模塊。」
GitHub 地址:
https://github.com/scipy/scipy
9 Apache MXNet(貢獻者:653,貢獻:9060,Stars:15812)
「Apache MXNet(孵化)是一個深度學習框架,旨在提高效率和靈活性,讓你可以混合符號和命令式編程,以最大限度地提高效率和生產力。 MXNet 的核心是一個動態依賴調度程序,可以動態地自動並行化符號和命令操作。」
GitHub 地址:
https://github.com/apache/incubator-mxnet
10 Theano(貢獻者:333,貢獻:28060,Stars :8614)
「Theano 是一個 Python 庫,讓你可以有效地定義、優化和評估涉及多維數組的數學表達式。它可以使用 GPU 並實現有效的符號區分。」
GitHub 地址:
https://github.com/Theano/Theano
11 Bokeh(貢獻者:334,貢獻:17395,Stars :8649)
「Bokeh 是一個用於 Python 的互動式可視化庫,可以在現代 Web 瀏覽器中實現美觀且有意義的數據視覺呈現。使用 Bokeh,你可以快速輕松地創建互動式圖表、儀錶板和數據應用程序。」
GitHub 地址:
https://github.com/bokeh/bokeh
12 XGBoost(貢獻者:335,貢獻:3557,Stars:14389)
「XGBoost 是一個優化的分布式梯度增強庫,旨在變得高效、強大、靈活和便攜。它在 Gradient Boosting 框架下實現機器學習演算法。XGBoost 提供了梯度提升決策樹(也稱為 GBDT,GBM),可以快速准確地解決許多數據科學問題,可以在主要的分布式環境(Hadoop,SGE,MPI)上運行相同的代碼,並可以解決數十億個示例之外的問題。」
GitHub 地址:
https://github.com/dmlc/xgboost
13 Gensim(貢獻者:301,貢獻:3687,Stars :8295)
「Gensim 是一個用於主題建模、文檔索引和大型語料庫相似性檢索的 Python 庫,目標受眾是自然語言處理(NLP)和信息檢索(IR)社區。」
GitHub 地址:
https://github.com/RaRe-Technologies/gensim
14 Scrapy(貢獻者:297,貢獻:6808,Stars :30507)
「Scrapy 是一種快速的高級 Web 爬行和 Web 抓取框架,用於抓取網站並從其頁面中提取結構化數據。它可用於從數據挖掘到監控和自動化測試的各種用途。」
GitHub 地址:
https://github.com/scrapy/scrapy
15 Caffe(貢獻者:270,貢獻:4152,Stars :26531)
「Caffe 是一個以表達、速度和模塊化為基礎的深度學習框架,由伯克利人工智慧研究(BAIR)/ 伯克利視覺與學習中心(BVLC)和社區貢獻者開發。」
GitHub 地址:
https://github.com/BVLC/caffe
以上就是2018年最受歡迎的15個庫了,不知有沒有你的菜喔!希望本文對所列出的庫對你有所幫助!
❷ github伺服器在哪
美國。
GitHub伺服器的最新位置在美譽侍國,所有的伺服器都位於美國,與中國的連接速度緩慢且不夠可靠。
github是基於git的指虛友代碼託管平台,付費用戶可以建設唯槐個人倉庫。我們的一般免費用戶只能使用公共倉庫,這意味著代碼將被公開。