導航:首頁 > 操作系統 > linux下線程

linux下線程

發布時間:2022-07-11 17:27:50

linux線程如何運行

pthread_create執行後,如果執行成功會生成一個子線程 也就是現在有兩個線程同時運行
父線程還會繼續執行後面的代碼 直到結束
子線程則開始執行thread函數體里的代碼了 別的不執行
pthread_join會按照父線程執行順序 到它了就會執行 該函數的作用是阻塞等待一個線程執行完畢
在你的代碼里 不一定在子線程執行3次後才啟動 也可能子線程沒有執行呢 父線程就執行到pthread_join了 然後阻塞等待子線程
如果你想讓pthread_join在子線程3次執行後才啟動 可以讓父線程sleep下 不過子線程執行完了 你再執行pthread_join也就沒有什麼意義了
不懂再問

⑵ Linux下多線程的如何執行

主線程結束,則進程結束,屬於該進程的所有線程都會結束,可以在主線程中join,也可以在主線程中加死循環。

⑶ 如何進行Linux下多線程的調試

方法一:PS
在ps命令中,「-T」選項可以開啟線程查看。下面的命令列出了由進程號為<pid>的進程創建的所有線程。
1.$ ps -T -p <pid>

「SID」欄表示線程ID,而「CMD」欄則顯示了線程名稱。

方法二: Top
top命令可以實時顯示各個線程情況。要在top輸出中開啟線程查看,請調用top命令的「-H」選項,該選項會列出所有Linux線程。在top運行時,你也可以通過按「H」鍵將線程查看模式切換為開或關。
1.$ top -H

要讓top輸出某個特定進程<pid>並檢查該進程內運行的線程狀況:
$ top -H -p <pid>

⑷ 如何使用 linux下多線程中條件變數

如何使用 linux下多線程中條件變數

使用條件變數最大的好處是可以避免忙等。相當與多線程中的信號。

條件變數是線程中的東西就是等待某一條件的發生和信號一樣

以下是說明
,條件變數使我們可以睡眠等待某種條件出現。
條件變數是利用線程間共享的全局變數進行同步的一種機制,主要包括兩個動作:一個線程等待」條件變數的條件成立」而掛起;另一個線程使」條件成立」(給出條件成立信號)。為了防止競爭,條件變數的使用總是和一個互斥鎖結合在一起。
條件變數類型為pthread_cond_t

創建和注銷
條件變數和互斥鎖一樣,都有靜態動態兩種創建方式,靜態方式使用PTHREAD_COND_INITIALIZER常量,如下:
pthread_cond_t cond=PTHREAD_COND_INITIALIZER
動態方式調用pthread_cond_init()函數,API定義如下:
int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr)
盡管POSIX標准中為條件變數定義了屬性,但在LinuxThreads中沒有實現,因此cond_attr值通常為NULL,且被忽略。
注銷一個條件變數需要調用pthread_cond_destroy(),只有在沒有線程在該條件變數上等待的時候才能注銷這個條件變數,否則返回EBUSY。API定義如下:
int pthread_cond_destroy(pthread_cond_t *cond)

等待和激發
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime)
等待條件有兩種方式:無條件等待pthread_cond_wait()和計時等待pthread_cond_timedwait(),其中計時等待方式如果在給定時刻前條件沒有滿足,則返回ETIMEOUT,結束等待,其中abstime以與time()系統調用相同意義的絕對時間形式出現,0表示格林尼治時間1970年1月1日0時0分0秒。
使用絕對時間而非相對時間的優點是。如果函數提前返回(很可能因為捕獲了一個信號,)
無論哪種等待方式,都必須和一個互斥鎖配合,以防止多個線程同時請求pthread_cond_wait()(或pthread_cond_timedwait(),下同)的競爭條件(Race Condition)。mutex互斥鎖必須是普通鎖(PTHREAD_MUTEX_TIMED_NP)或者適應鎖(PTHREAD_MUTEX_ADAPTIVE_NP),且在調用pthread_cond_wait()前必須由本線程加鎖(pthread_mutex_lock()),而在更新條件等待隊列以前,mutex保持鎖定狀態,並在線程掛起進入等待前解鎖。在條件滿足從而離開pthread_cond_wait()之前,mutex將被重新加鎖,以與進入pthread_cond_wait()前的加鎖動作對應。
激發條件有兩種形式,pthread_cond_signal()激活一個等待該條件的線程,存在多個等待線程時按入隊順序激活其中一個;而pthread_cond_broadcast()則激活所有等待線程。

其他
pthread_cond_wait()和pthread_cond_timedwait()都被實現為取消點,因此,在該處等待的線程將立即重新運行,在重新鎖定mutex後離開pthread_cond_wait(),然後執行取消動作。也就是說如果pthread_cond_wait()被取消,mutex是保持鎖定狀態的,因而需要定義退出回調函數來為其解鎖。

EXAMPLE
Consider two shared variables x and y, protected by the mutex mut, and
a condition variable cond that is to be signaled whenever x becomes
greater than y.
int x,y;
pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
Waiting until x is greater than y is performed as follows:
pthread_mutex_lock(&mut);
while (x <= y) {
pthread_cond_wait(&cond, &mut);
}
/* operate on x and y */
pthread_mutex_unlock(&mut);
Modifications on x and y that may cause x to become greater than y
should signal the condition if needed:
pthread_mutex_lock(&mut);
/* modify x and y */
if (x > y) pthread_cond_broadcast(&cond);
pthread_mutex_unlock(&mut);
If it can be proved that at most one waiting thread needs to be waken
up (for instance, if there are only two threads communicating through x
and y), pthread_cond_signal can be used as a slightly more efficient
alternative to pthread_cond_broadcast. In doubt, use
pthread_cond_broadcast.
To wait for x to becomes greater than y with a timeout of 5 seconds,
do:

struct timeval now;
struct timespec timeout;
int retcode;
pthread_mutex_lock(&mut);
gettimeofday(&now);
timeout.tv_sec = now.tv_sec + 5;
timeout.tv_nsec = now.tv_usec * 1000;
retcode = 0;
while (x <= y && retcode != ETIMEDOUT) {
retcode = pthread_cond_timedwait(&cond, &mut, &timeout);
}
if (retcode == ETIMEDOUT) {
/* timeout occurred */
} else {
/* operate on x and y */
}
pthread_mutex_unlock(&mut);

⑸ linux下線程屬性常用操作有哪些

LinuxThread的線程機制

LinuxThreads是目前Linux平台上使用最為廣泛的線程庫,由Xavier Leroy ([email protected]) 負責開發完成,並已綁定在GLIBC中發行。它所實現的就是基於核心輕量級進程的"一對一"線程模型,一個線程實體對應一個核心輕量級進程,而線程之間的 管理在核外函數庫中實現。

1.線程描述數據結構及實現限制

LinuxThreads定義了一個struct _pthread_descr_struct數據結構來描述線程,並使用全局數組變數 __pthread_handles來描述和引用進程所轄線程。在__pthread_handles中的前兩項,LinuxThreads定義了兩個全 局的系統線程:__pthread_initial_thread和__pthread_manager_thread,並用 __pthread_main_thread表徵__pthread_manager_thread的父線程(初始為 __pthread_initial_thread)。

struct _pthread_descr_struct是一個雙環鏈表結構,__pthread_manager_thread所在的鏈表僅包括它 一個元素,實際上,__pthread_manager_thread是一個特殊線程,LinuxThreads僅使用了其中的errno、p_pid、 p_priority等三個域。而__pthread_main_thread所在的鏈則將進程中所有用戶線程串在了一起。經過一系列 pthread_create()之後形成的__pthread_handles數組將如下圖所示:

圖2 __pthread_handles數組結構

新創建的線程將首先在__pthread_handles數組中占據一項,然後通過數據結構中的鏈指針連入以__pthread_main_thread為首指針的鏈表中。這個鏈表的使用在介紹線程的創建和釋放的時候將提到。

LinuxThreads遵循POSIX1003.1c標准,其中對線程庫的實現進行了一些范圍限制,比如進程最大線程數,線程私有數據區大小等等。在 LinuxThreads的實現中,基本遵循這些限制,但也進行了一定的改動,改動的趨勢是放鬆或者說擴大這些限制,使編程更加方便。這些限定宏主要集中 在sysdeps/unix/sysv/linux/bits/local_lim.h(不同平台使用的文件位置不同)中,包括如下幾個:

每進程的私有數據key數,POSIX定義_POSIX_THREAD_KEYS_MAX為128,LinuxThreads使用 PTHREAD_KEYS_MAX,1024;私有數據釋放時允許執行的操作數,LinuxThreads與POSIX一致,定義 PTHREAD_DESTRUCTOR_ITERATIONS為4;每進程的線程數,POSIX定義為64,LinuxThreads增大到1024 (PTHREAD_THREADS_MAX);線程運行棧最小空間大小,POSIX未指定,LinuxThreads使用 PTHREAD_STACK_MIN,16384(位元組)。

2.管理線程

"一對一"模型的好處之一是線程的調度由核心完成了,而其他諸如線程取消、線程間的同步等工作,都是在核外線程庫中完成的。在LinuxThreads 中,專門為每一個進程構造了一個管理線程,負責處理線程相關的管理工作。當進程第一次調用pthread_create()創建一個線程的時候就會創建 (__clone())並啟動管理線程。

在一個進程空間內,管理線程與其他線程之間通過一對"管理管道(manager_pipe[2])"來通訊,該管道在創建管理線程之前創建,在成功啟動 了管理線程之後,管理管道的讀端和寫端分別賦給兩個全局變數__pthread_manager_reader和 __pthread_manager_request,之後,每個用戶線程都通過__pthread_manager_request向管理線程發請求, 但管理線程本身並沒有直接使用__pthread_manager_reader,管道的讀端(manager_pipe[0])是作為__clone ()的參數之一傳給管理線程的,管理線程的工作主要就是監聽管道讀端,並對從中取出的請求作出反應。

創建管理線程的流程如下所示:
(全局變數pthread_manager_request初值為-1)

圖3 創建管理線程的流程

初始化結束後,在__pthread_manager_thread中記錄了輕量級進程號以及核外分配和管理的線程id, 2*PTHREAD_THREADS_MAX+1這個數值不會與任何常規用戶線程id沖突。管理線程作為pthread_create()的調用者線程的 子線程運行,而pthread_create()所創建的那個用戶線程則是由管理線程來調用clone()創建,因此實際上是管理線程的子線程。(此處子 線程的概念應該當作子進程來理解。)

__pthread_manager()就是管理線程的主循環所在,在進行一系列初始化工作後,進入while(1)循環。在循環中,線程以2秒為 timeout查詢(__poll())管理管道的讀端。在處理請求前,檢查其父線程(也就是創建manager的主線程)是否已退出,如果已退出就退出 整個進程。如果有退出的子線程需要清理,則調用pthread_reap_children()清理。

然後才是讀取管道中的請求,根據請求類型執行相應操作(switch-case)。具體的請求處理,源碼中比較清楚,這里就不贅述了。

3.線程棧

在LinuxThreads中,管理線程的棧和用戶線程的棧是分離的,管理線程在進程堆中通過malloc()分配一個THREAD_MANAGER_STACK_SIZE位元組的區域作為自己的運行棧。

用戶線程的棧分配辦法隨著體系結構的不同而不同,主要根據兩個宏定義來區分,一個是NEED_SEPARATE_REGISTER_STACK,這個屬 性僅在IA64平台上使用;另一個是FLOATING_STACK宏,在i386等少數平台上使用,此時用戶線程棧由系統決定具體位置並提供保護。與此同 時,用戶還可以通過線程屬性結構來指定使用用戶自定義的棧。因篇幅所限,這里只能分析i386平台所使用的兩種棧組織方式:FLOATING_STACK 方式和用戶自定義方式。

在FLOATING_STACK方式下,LinuxThreads利用mmap()從內核空間中分配8MB空間(i386系統預設的最大棧空間大小,如 果有運行限制(rlimit),則按照運行限制設置),使用mprotect()設置其中第一頁為非訪問區。該8M空間的功能分配如下圖:

圖4 棧結構示意

低地址被保護的頁面用來監測棧溢出。

對於用戶指定的棧,在按照指針對界後,設置線程棧頂,並計算出棧底,不做保護,正確性由用戶自己保證。

不論哪種組織方式,線程描述結構總是位於棧頂緊鄰堆棧的位置。

4.線程id和進程id

每個LinuxThreads線程都同時具有線程id和進程id,其中進程id就是內核所維護的進程號,而線程id則由LinuxThreads分配和維護。

⑹ linux 下的線程創建

gdb你倒是進入線程內看看阿!
在你的線程里列印點什麼,或者寫點日誌,實在不行反匯編吧!

⑺ Linux下線程式控制制。

不可以啊。。
原因:
flag=0;不原子操作,因為把他分解為匯編指令時就是幾個語句了。
這就會發生一個線程剛賦值flag為1,另一個線程認為是0的情況發生沖突。

這些原子操作只能在硬體上才能有保證,這些線程同步的指令就是基於硬體的。。

⑻ linux有沒有線程

一般情況下。都存在線程的概念,但是實際的內容是被虛擬化的,為的是多進程,多任務等情況的發生,如果一個系統不能多任務,那麼可以認為是沒有多線程這概念

⑼ 在windows中的進程、線程和在linux中的進程、線程有什麼區別

1、windows里的進程/線程是繼承自OS/2的。在windows里,"進程"是指一個程序,而"線程"是一個"進程"里的一個執行"線索"。從核心上講,windows的多進程與Linux並無多大的區別,在windows里的線程才相當於Linux的進程,是一個實際正在執行的代碼。但是,windows里同一個進程里各個線程之間是共享數據段的。這才是與Linux的進程最大的不同。2、在windows下,使用CreateThread函數創建線程,與Linux下創建進程同,windows線程不是從創建處開始運行的,而是由CreateThread指定一個函數,線程就從那個函數處開始運行。此程序同前面的UNIX程序一樣,由兩個線程各列印1000條信息。threadID是子線程的線程號,另外,全局變數g是子線程與父線程共享的,這就是與Linux最大的不同之處。大家可以看出,windows的進程/線程要比Linux復雜,在Linux要實現類似windows的線程並不難,只要fork以後,讓子進程調用ThreadProc函數,並且為全局變數開設共享數據區就行了,但在windows下就無法實現類似fork的功能了。所以現在windows下的C語言編譯器所提供的庫函數雖然已經能兼容大多數Linux/UNIX的庫函數,但卻仍無法實現fork。3、對於多任務系統,共享數據區是必要的,但也是一個容易引起混亂的問題,windows下,一個程序員很容易忘記線程之間的數據是共享的這一情況,一個線程修改過一個變數後,另一個線程卻又修改了它,結果引起程序出問題。但在Linux下,由於變數本來並不共享,而由程序員來顯式地指定要共享的數據,使程序變得更清晰與安全。在windows中的進程、線程和在linux中的進程、線程有什麼區別?

⑽ 介紹下linux 的線程

優點:好
缺點:不好

閱讀全文

與linux下線程相關的資料

熱點內容
為什麼小度APP一直連不上網路 瀏覽:163
pdf模板java 瀏覽:40
現代瑞納的壓縮比 瀏覽:128
網吧里的ftp伺服器有什麼用 瀏覽:872
程序員年終總結工作體會 瀏覽:153
pdf可以直接列印 瀏覽:661
android刷wp8 瀏覽:912
歷史地圖集pdf 瀏覽:925
快手app極速版怎麼掃碼 瀏覽:805
qq程序員玩法 瀏覽:95
1是什麼門電路app 瀏覽:867
博之輪運動手錶用什麼app 瀏覽:646
asp視頻聊天源碼 瀏覽:85
網路游戲編程pdf 瀏覽:534
360壓縮出錯 瀏覽:848
源碼編輯器沒聲音 瀏覽:915
兒童源碼編程網址 瀏覽:828
有個app叫尺度空間怎麼樣 瀏覽:674
微博登陸java 瀏覽:683
一枚程序員 瀏覽:744