⑴ linux 信號量是什麼怎麼用
Linux信號量(semaphore)是一種互斥機制。即對某個互斥資源的訪問會收到信號量的保護,在訪問之前需要獲得信號量。
在操作完共享資源後,需釋放信號量,以便另外的進程來獲得資源。獲得和釋放應該成對出現。
獲得信號量集,需要注意的是,獲得的是一個集合,而不是一個單一的信號量。
#include
#include
#include
1: int semget(key_t key,int nsems,int semflg);
key:系統根據這個值來獲取信號量集。
nsems:此信號集包括幾個信號量。
semflg:創建此信號量的屬性。 (IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR)
成功則返回該信號量集的ID。
註:
既指定IPC_CREAT又指定IPC_EXCL時,如果系統中該信號量集已經存在,則馬上返回。
如果需要獲得存在的信號量,則將此參數置0.
2: int semctl(int semid,int senum,int cmd....)
semid:信號量ID。
senum:對信號量集中的第幾個信號量進行控制。(從0開始)
cmd:需要進行的操作。(SETVAL是其中的一個)。
根據cmd的不同可能存在第四個參數,cmd=SETVAL時,表示同時信號量可以被獲得幾次,如第四個參數
num=1表示只能被獲得一次,既被信號量保護的資源只能同時被一個程序使用。
該系統調用,是在對信號量初始化時用的。
-3: 「3」前面加了"-"表示當需要使用互斥資源時應該做這步。
int semop(int semid,struct sembuf *sem,int num_elements);
struct sembuf {
unsigned short sem_num; //該信號量集中的第幾個信號量。
int sem_op;//需要獲得還是釋放信號量
int sem_flg;//相關動作
};
num_elements:需要對該信號量集中的多少個信號量進行處理。
獲得信號量時,將sembuf結構提初始化為:
sem_num = 0; //該信號量集中的首個信號量
sem_op = -1; //獲得信號量
sem_flag = IPC_NOWAIT; //如果不能獲得信號量,馬上返回。
semop(semid,_sem,1);
同理釋放信號量時,將sem_op設為1.
以上是對信號量的簡單處理
⑵ Linux信號 機制和Linux信號量機制的區別
首先,一句話總結它們之間的區別:
字面上相似,但是本質上存在巨大的差別!請看詳細解答...
Linux信號(signal) 機制
signal,又簡稱為信號(軟中斷信號)用來通知進程發生了非同步事件。
原理:
一個進程收到一個信號與處理器收到一個中斷請求可以說是一樣的。信號是進程間通信機制中唯一的非同步通信機制,一個進程不必通過任何操作來等待信號的到達,事實上,進程也不知道信號到底什麼時候到達。進程之間可以互相通過系統調用kill發送軟中斷信號。內核也可以因為內部事件而給進程發送信號,通知進程發生了某個事件。信號機制除了基本通知功能外,還可以傳遞附加信息。
分類:
從兩個不同的分類角度對信號進行:
可靠性方面:可靠信號與不可靠信號;
與時間的關繫上:實時信號與非實時信號。
部分定義轉自:http://www.cnblogs.com/hoys/archive/2012/08/19/2646377.html
Linux信號量(semaphore)機制
Linux內核的信號量用來操作系統進程間同步訪問共享資源。
原理:信號量在創建時需要設置一個初始值,表示同時可以有幾個任務可以訪問該信號量保護的共享資源,初始值為1就變成互斥鎖(Mutex),即同時只能有一個任務可以訪問信號量保護的共享資源。
一個任務要想訪問共享資源,首先必須得到信號量,獲取信號量的操作將把信號量的值減1,若當前信號量的值為負數,表明無法獲得信號量,該任務必須掛起在該信號量的等待隊列等待該信號量可用;若當前信號量的值為非負數,表示可以獲得信號量,因而可以立刻訪問被該信號量保護的共享資源。
當任務訪問完被信號量保護的共享資源後,必須釋放信號量,釋放信號量通過把信號量的值加1實現,如果信號量的值為非正數,表明有任務等待當前信號量,因此它也喚醒所有等待該信號量的任務。
常用的信號量的API:
DECLARE_MUTEX(name)
該宏聲明一個信號量name並初始化它的值為0,即聲明一個互斥鎖。
DECLARE_MUTEX_LOCKED(name)
該宏聲明一個互斥鎖name,但把它的初始值設置為0,即鎖在創建時就處在已鎖狀態。因此對於這種鎖,一般是先釋放後獲得。
void sema_init (struct semaphore *sem, int val);
該函用於數初始化設置信號量的初值,它設置信號量sem的值為val。
void init_MUTEX (struct semaphore *sem);
該函數用於初始化一個互斥鎖,即它把信號量sem的值設置為1。
void init_MUTEX_LOCKED (struct semaphore *sem);
該函數也用於初始化一個互斥鎖,但它把信號量sem的值設置為0,即一開始就處在已鎖狀態。
void down(struct semaphore * sem);
該函數用於獲得信號量sem,它會導致睡眠,因此不能在中斷上下文(包括IRQ上下文和softirq上下文)使用該函數。該函數將把sem的值減1,如果信號量sem的值非負,就直接返回,否則調用者將被掛起,直到別的任務釋放該信號量才能繼續運行。
int down_interruptible(struct semaphore * sem);
該函數功能與down類似,不同之處為,down不會被信號(signal)打斷,但down_interruptible能被信號打斷,因此該函數有返回值來區分是正常返回還是被信號中斷,如果返回0,表示獲得信號量正常返回,如果被信號打斷,返回-EINTR。
int down_trylock(struct semaphore * sem);
該函數試著獲得信號量sem,如果能夠立刻獲得,它就獲得該信號量並返回0,否則,表示不能獲得信號量sem,返回值為非0值。因此,它不會導致調用者睡眠,可以在中斷上下文使用。
void up(struct semaphore * sem);
該函數釋放信號量sem,即把sem的值加1,如果sem的值為非正數,表明有任務等待該信號量,因此喚醒這些等待者。
實例:
信號量在絕大部分情況下作為互斥鎖使用,下面以console驅動系統為例說明信號量的使用。
在內核源碼樹的kernel/printk.c中,使用宏DECLARE_MUTEX聲明了一個互斥鎖console_sem,它用於保護console驅動列表console_drivers以及同步對整個console驅動系統的訪問。
⑶ linux 內核信號量和 posix信號量內核實現上的區別
他們是有關信號量的兩組程序設計介面函數。POSIX信號量來源於POSIX技術規范的實時擴展方案(POSIX Realtime Extension),常用於線程;system v信號量,常用於進程的同步。這兩者非常相近,但它們使用的函數調用各不相同。前一種的頭文件為semapho...
⑷ linux信號量的問題
sem_init:初始化信號量sem_t,初始化的時候可以指定信號量的初始值,以及是否可以在多進程間共享。
sem_wait:一直阻塞等待直到信號量>0。
sem_timedwait:阻塞等待若干時間直到信號量>0。
sem_post:使信號量加1。
sem_destroy:釋放信號量。和sem_init對應。 答案補充 關於各函數的具體參數請用man查看,如man sem_init可查看該函數的幫助
⑸ linux 內核 互斥量為什麼比信號量效率高
linux的常用信號量 BUS與SEGV二者都是錯誤信號,BUS表示匯流排錯誤,SEGV表示段錯誤,程序崩潰的時候99%都是這兩個錯誤導致的。進程可以捕獲和封鎖這兩類錯誤。內核對二者的默認處理是memory mp WINCH窗口改變信號(WINdown CHanged)
⑹ Linux下信號量的加減操作問題
void down(struct semaphore *sem); //不可中斷
int down_interruptible(struct semaphore *sem);//可中斷
int down_killable(struct semaphore *sem);//睡眠的進程可以因為受到致命信號而被喚醒,中斷獲取信號量的操作。
int down_trylock(struct semaphore *sem);//試圖獲取信號量,若無法獲得則直接返回1而不睡眠。返回0則 表示獲取到了信號量
int down_timeout(struct semaphore *sem,long jiffies);//表示睡眠時間是有限制的,如果在jiffies指明的時間到期時仍然無法獲得信號量,則將返回錯誤碼。
⑺ linux內核信號量是怎麼實現同步的
從最初的原子操作,到後來的信號量,從大內核鎖到今天的自旋鎖。這些同步機制的發展伴隨Linux從單處理器到對稱多處理器的過渡; 伴隨著從非搶占內核到搶占內核的過度。Linux的鎖機制越來越有效,也越來越復雜。 Linux的內核鎖主要是自旋鎖和信號...
⑻ linux下信號量和互斥鎖的區別
信號量用在多線程多任務同步的,一個線程完成了某一個動作就通過信號量告訴別的線程,別的線程再進行某些動作(大家都在semtake的時候,就阻塞在哪裡)。
而互斥鎖是用在多線程多任務互斥的,一個線程佔用了某一個資源,那麼別的線程就無法訪問,直到這個線程unlock,其他的線程才開始可以利用這個資源。比如對全局變數的訪問,有時要加鎖,操作完了,在解鎖。
有的時候鎖和信號量會同時使用的。我記得以前做的一個項目就是既有semtake,又有lock。
⑼ linux下 信號量初值是多少
1.在UNIX的System V中,信號量通常被認為是對資源的訪問,因此資源可用則用正整數表示,當資源被全部佔用,則為零。
2.在不同的Linux版本內核中,或者操作系統內核介紹的文章或教程中,可能會見到用先增後減的方式來對信號量進行訪問的情形,這取決於實際操作系統內核的處理實現。
⑽ linux編程時的信號量問題。 我以前用過的信號量頭文件是<semaphore.h>,而現在又發現還有個<sys/sem.h>
semaphore.h 提供的是 POSIX 標準定義的 semaphore 介面 ( sem_open, sem_wait, ...) ,這組介面使用更簡單,設計的較好。
而 sys/sem.h 里 提供的是符合 System V 標準的 semaphore介面 (semget, semop, ...),這些介面都比較老了, linux提供主要是為了兼容老代碼。
對於 linux 開發來說,新寫的代碼,都應該考慮採用 POSIX 標準的信號量。