❶ linux下多線程運行程序出現這種錯誤,double free or corruption (fasttop): 0x00007fed5c044f30
檢查free或delete語句,推薦valgrind進行內存錯誤分析。
❷ linux內核怎麼調度系統
1.調度器的概述
多任務操作系統分為非搶占式多任務和搶占式多任務。與大多數現代操作系統一樣,Linux採用的是搶占式多任務模式。這表示對CPU的佔用時間由操作系統決定的,具體為操作系統中的調度器。調度器決定了什麼時候停止一個進程以便讓其他進程有機會運行,同時挑選出一個其他的進程開始運行。
2.調度策略
在Linux上調度策略決定了調度器是如何選擇一個新進程的時間。調度策略與進程的類型有關,內核現有的調度策略如下:
#define SCHED_NORMAL 0#define SCHED_FIFO 1#define SCHED_RR 2#define SCHED_BATCH 3/* SCHED_ISO: reserved but not implemented yet */#define SCHED_IDLE 5
0: 默認的調度策略,針對的是普通進程。
1:針對實時進程的先進先出調度。適合對時間性要求比較高但每次運行時間比較短的進程。
2:針對的是實時進程的時間片輪轉調度。適合每次運行時間比較長得進程。
3:針對批處理進程的調度,適合那些非交互性且對cpu使用密集的進程。
SCHED_ISO:是內核的一個預留欄位,目前還沒有使用
5:適用於優先順序較低的後台進程。
註:每個進程的調度策略保存在進程描述符task_struct中的policy欄位
3.調度器中的機制
內核引入調度類(struct sched_class)說明了調度器應該具有哪些功能。內核中每種調度策略都有該調度類的一個實例。(比如:基於公平調度類為:fair_sched_class,基於實時進程的調度類實例為:rt_sched_class),該實例也是針對每種調度策略的具體實現。調度類封裝了不同調度策略的具體實現,屏蔽了各種調度策略的細節實現。
調度器核心函數schele()只需要調用調度類中的介面,完成進程的調度,完全不需要考慮調度策略的具體實現。調度類連接了調度函數和具體的調度策略。
武特師兄關於sche_class和sche_entity的解釋,一語中的。
調度類就是代表的各種調度策略,調度實體就是調度單位,這個實體通常是一個進程,但是自從引入了cgroup後,這個調度實體可能就不是一個進程了,而是一個組
4.schele()函數
linux 支持兩種類型的進程調度,實時進程和普通進程。實時進程採用SCHED_FIFO 和SCHED_RR調度策略,普通進程採用SCHED_NORMAL策略。
preempt_disable():禁止內核搶占
cpu_rq():獲取當前cpu對應的就緒隊列。
prev = rq->curr;獲取當前進程的描述符prev
switch_count = &prev->nivcsw;獲取當前進程的切換次數。
update_rq_clock() :更新就緒隊列上的時鍾
clear_tsk_need_resched()清楚當前進程prev的重新調度標志。
deactive_task():將當前進程從就緒隊列中刪除。
put_prev_task() :將當前進程重新放入就緒隊列
pick_next_task():在就緒隊列中挑選下一個將被執行的進程。
context_switch():進行prev和next兩個進程的切換。具體的切換代碼與體系架構有關,在switch_to()中通過一段匯編代碼實現。
post_schele():進行進程切換後的後期處理工作。
5.pick_next_task函數
選擇下一個將要被執行的進程無疑是一個很重要的過程,我們來看一下內核中代碼的實現
對以下這段代碼說明:
1.當rq中的運行隊列的個數(nr_running)和cfs中的nr_runing相等的時候,表示現在所有的都是普通進程,這時候就會調用cfs演算法中的pick_next_task(其實是pick_next_task_fair函數),當不相等的時候,則調用sched_class_highest(這是一個宏,指向的是實時進程),這下面的這個for(;;)循環中,首先是會在實時進程中選取要調度的程序(p = class->pick_next_task(rq);)。如果沒有選取到,會執行class=class->next;在class這個鏈表中有三種類型(fair,idle,rt).也就是說會調用到下一個調度類。
在這段代碼中體現了Linux所支持的兩種類型的進程,實時進程和普通進程。回顧下:實時進程可以採用SCHED_FIFO 和SCHED_RR調度策略,普通進程採用SCHED_NORMAL調度策略。
在這里首先說明一個結構體struct rq,這個結構體是調度器管理可運行狀態進程的最主要的數據結構。每個cpu上都有一個可運行的就緒隊列。剛才在pick_next_task函數中看到了在選擇下一個將要被執行的進程時實際上用的是struct rq上的普通進程的調度或者實時進程的調度,那麼具體是如何調度的呢?在實時調度中,為了實現O(1)的調度演算法,內核為每個優先順序維護一個運行隊列和一個DECLARE_BITMAP,內核根據DECLARE_BITMAP的bit數值找出非空的最高級優先隊列的編號,從而可以從非空的最高級優先隊列中取出進程進行運行。
我們來看下內核的實現
數組queue[i]裡面存放的是優先順序為i的進程隊列的鏈表頭。在結構體rt_prio_array 中有一個重要的數據構DECLARE_BITMAP,它在內核中的第一如下:
5.1對於實時進程的O(1)演算法
這個數據是用來作為進程隊列queue[MAX_PRIO]的索引點陣圖。bitmap中的每一位與queue[i]對應,當queue[i]的進程隊列不為空時,Bitmap的相應位就為1,否則為0,這樣就只需要通過匯編指令從進程優先順序由高到低的方向找到第一個為1的位置,則這個位置就是就緒隊列中最高的優先順序(函數sched_find_first_bit()就是用來實現該目的的)。那麼queue[index]->next就是要找的候選進程。
如果還是不懂,那就來看兩個圖
由結果可以看出當nice的值越小的時候,其睡眠時間越短,則表示其優先順序升高了。
7.關於獲取和設置優先順序的系統調用:sched_getscheler()和sched_setscheler
輸出結果:
可以看出進程的優先順序已經被改變。
❸ C語言在X64位LINUX系統編程時,double類弄的說明符到底是用f%還是Lf%
無論是哪個平台,只要是double都應該用%lf (long float的意思)! float才對應的是%f
❹ linux內存分配默認是多少位元組對齊
VC和GCC默認的都是4位元組對齊,編程中可以使用#pragma pack(n)指定對齊模數。出現以上差異的原因在於,VC和GCC中對於double類型的對齊方式不同。
Win32平台下的微軟VC編譯器在默認情況下採用如下的對齊規則: 任何基本數據類型T的對齊模數就是T的大小,即sizeof(T)。比如對於double類型(8位元組),就要求該類型數據的地址總是8的倍數,而char類型數據(1位元組)則可以從任何一個地址開始。
Linux下的GCC奉行的是另外一套規則:任何2位元組大小(包括單位元組嗎?)的數據類型(比如short)的對齊模數是2,而其它所有超過2位元組的數據類型(比如long,double)都以4為對齊模數。
復雜類型(如結構)的默認對齊方式是它最長的成員的對齊方式,這樣在成員是復雜類型時,可以最小化長度。
struct{char a;double b;}
在VC中,因為結構中存在double和char,按照最長數據類型對齊,char只佔1B,但是加上後面的double所佔空間超過8B,所以char獨佔8B;而double佔8B,一共16Byte。
在GCC中,double長度超過4位元組,按照4位元組對齊,原理同上,不過char佔4位元組,double占兩個4位元組,一共12Byte。
❺ linux中怎麼從鍵盤讀入兩個double數據
出現數字截斷。f代表輸出float類型的,如果是double 的話就輸出的高位的4位 如果是double的話,在輸入輸出的f前加l就行了
❻ linux gcc編譯,怎麼計算8位元組雙精度浮點數double
展開全部
怎麼可能有long
double這個類型呢。double是雙精度的浮點型,long是用來修飾整形的吧。
❼ linux 除法保留小數
因為int 是整數,整數除整數就是整數
double是小數。小數除小數才是小數
有兩種方法,
1.是直接用小數除
如3.0/5.0
這樣編譯器會認為他們是double類型
2.是轉換成double,或直接定義成double
如double a=3;
double b=5;
System.out.println(3/5);
還有什麼不懂可以HI我
❽ π在linux中是什麼型
操作系統是不定義算數產量的.
只有具體的編程語言會定義算數常量
一般π被定義成 pi 或 PI
一般是定義成 double
❾ linux c++ double類型數據socket發送到windows 下 用c#怎麼轉換接收
linux下C++的double也是64位的,C# 裡面system庫下也有Double數據類型啊,就用這個接收就完了