導航:首頁 > 操作系統 > linux多線程加鎖

linux多線程加鎖

發布時間:2022-07-30 16:42:23

A. linux中,多線程互斥鎖問題

線程一:
pthread_mutex_lock(&mutex);
線程一鎖中做的事
pthread_mutex_unlock(&mutex);
線程一鎖外做的事

線程二:
pthread_mutex_lock(&mutex);
線程二鎖中做的事
pthread_mutex_unlock(&mutex);
線程二鎖外做的事

當線程一二同時加鎖時,只有一個獲得鎖(比如線程一),並開始處理鎖中做的事,此時線程二被掛起。當線程一釋放鎖後,線程一將繼續做鎖外做的事,而線程二加鎖做鎖中做的事,再解鎖做鎖外做的事。

B. Linux多進程和線程同步的幾種方式

Linux 線程同步的三種方法
線程的最大特點是資源的共享性,但資源共享中的同步問題是多線程編程的難點。linux下提供了多種方式來處理線程同步,最常用的是互斥鎖、條件變數和信號量。
一、互斥鎖(mutex)
通過鎖機制實現線程間的同步。
初始化鎖。在Linux下,線程的互斥量數據類型是pthread_mutex_t。在使用前,要對它進行初始化。
靜態分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
動態分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);
加鎖。對共享資源的訪問,要對互斥量進行加鎖,如果互斥量已經上了鎖,調用線程會阻塞,直到互斥量被解鎖。
int pthread_mutex_lock(pthread_mutex *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
解鎖。在完成了對共享資源的訪問後,要對互斥量進行解鎖。
int pthread_mutex_unlock(pthread_mutex_t *mutex);
銷毀鎖。鎖在是使用完成後,需要進行銷毀以釋放資源。
int pthread_mutex_destroy(pthread_mutex *mutex);
[csharp] view plain
#include <cstdio>
#include <cstdlib>
#include <unistd.h>
#include <pthread.h>
#include "iostream"
using namespace std;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int tmp;
void* thread(void *arg)
{
cout << "thread id is " << pthread_self() << endl;
pthread_mutex_lock(&mutex);
tmp = 12;
cout << "Now a is " << tmp << endl;
pthread_mutex_unlock(&mutex);
return NULL;
}
int main()
{
pthread_t id;
cout << "main thread id is " << pthread_self() << endl;
tmp = 3;
cout << "In main func tmp = " << tmp << endl;
if (!pthread_create(&id, NULL, thread, NULL))
{
cout << "Create thread success!" << endl;
}
else
{
cout << "Create thread failed!" << endl;
}
pthread_join(id, NULL);
pthread_mutex_destroy(&mutex);
return 0;
}
//編譯:g++ -o thread testthread.cpp -lpthread
二、條件變數(cond)
互斥鎖不同,條件變數是用來等待而不是用來上鎖的。條件變數用來自動阻塞一個線程,直到某特殊情況發生為止。通常條件變數和互斥鎖同時使用。條件變數分為兩部分: 條件和變數。條件本身是由互斥量保護的。線程在改變條件狀態前先要鎖住互斥量。條件變數使我們可以睡眠等待某種條件出現。條件變數是利用線程間共享的全局變數進行同步的一種機制,主要包括兩個動作:一個線程等待"條件變數的條件成立"而掛起;另一個線程使"條件成立"(給出條件成立信號)。條件的檢測是在互斥鎖的保護下進行的。如果一個條件為假,一個線程自動阻塞,並釋放等待狀態改變的互斥鎖。如果另一個線程改變了條件,它發信號給關聯的條件變數,喚醒一個或多個等待它的線程,重新獲得互斥鎖,重新評價條件。如果兩進程共享可讀寫的內存,條件變數可以被用來實現這兩進程間的線程同步。
初始化條件變數。
靜態態初始化,pthread_cond_t cond = PTHREAD_COND_INITIALIER;
動態初始化,int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
等待條件成立。釋放鎖,同時阻塞等待條件變數為真才行。timewait()設置等待時間,仍未signal,返回ETIMEOUT(加鎖保證只有一個線程wait)
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
激活條件變數。pthread_cond_signal,pthread_cond_broadcast(激活所有等待線程)
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有線程的阻塞
清除條件變數。無線程等待,否則返回EBUSY
int pthread_cond_destroy(pthread_cond_t *cond);
[cpp] view plain
#include <stdio.h>
#include <pthread.h>
#include "stdlib.h"
#include "unistd.h"
pthread_mutex_t mutex;
pthread_cond_t cond;
void hander(void *arg)
{
free(arg);
(void)pthread_mutex_unlock(&mutex);
}
void *thread1(void *arg)
{
pthread_cleanup_push(hander, &mutex);
while(1)
{
printf("thread1 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread1 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(4);
}
pthread_cleanup_pop(0);
}
void *thread2(void *arg)
{
while(1)
{
printf("thread2 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread2 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(1);
}
}
int main()
{
pthread_t thid1,thid2;
printf("condition variable study!\n");
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cond, NULL);
pthread_create(&thid1, NULL, thread1, NULL);
pthread_create(&thid2, NULL, thread2, NULL);
sleep(1);
do
{
pthread_cond_signal(&cond);
}while(1);
sleep(20);
pthread_exit(0);
return 0;
}
[cpp] view plain
#include <pthread.h>
#include <unistd.h>
#include "stdio.h"
#include "stdlib.h"
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
struct node
{
int n_number;
struct node *n_next;
}*head = NULL;

static void cleanup_handler(void *arg)
{
printf("Cleanup handler of second thread./n");
free(arg);
(void)pthread_mutex_unlock(&mtx);
}
static void *thread_func(void *arg)
{
struct node *p = NULL;
pthread_cleanup_push(cleanup_handler, p);
while (1)
{
//這個mutex主要是用來保證pthread_cond_wait的並發性
pthread_mutex_lock(&mtx);
while (head == NULL)
{
//這個while要特別說明一下,單個pthread_cond_wait功能很完善,為何
//這里要有一個while (head == NULL)呢?因為pthread_cond_wait里的線
//程可能會被意外喚醒,如果這個時候head != NULL,則不是我們想要的情況。
//這個時候,應該讓線程繼續進入pthread_cond_wait
// pthread_cond_wait會先解除之前的pthread_mutex_lock鎖定的mtx,
//然後阻塞在等待對列里休眠,直到再次被喚醒(大多數情況下是等待的條件成立
//而被喚醒,喚醒後,該進程會先鎖定先pthread_mutex_lock(&mtx);,再讀取資源
//用這個流程是比較清楚的
pthread_cond_wait(&cond, &mtx);
p = head;
head = head->n_next;
printf("Got %d from front of queue/n", p->n_number);
free(p);
}
pthread_mutex_unlock(&mtx); //臨界區數據操作完畢,釋放互斥鎖
}
pthread_cleanup_pop(0);
return 0;
}
int main(void)
{
pthread_t tid;
int i;
struct node *p;
//子線程會一直等待資源,類似生產者和消費者,但是這里的消費者可以是多個消費者,而
//不僅僅支持普通的單個消費者,這個模型雖然簡單,但是很強大
pthread_create(&tid, NULL, thread_func, NULL);
sleep(1);
for (i = 0; i < 10; i++)
{
p = (struct node*)malloc(sizeof(struct node));
p->n_number = i;
pthread_mutex_lock(&mtx); //需要操作head這個臨界資源,先加鎖,
p->n_next = head;
head = p;
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mtx); //解鎖
sleep(1);
}
printf("thread 1 wanna end the line.So cancel thread 2./n");
//關於pthread_cancel,有一點額外的說明,它是從外部終止子線程,子線程會在最近的取消點,退出
//線程,而在我們的代碼里,最近的取消點肯定就是pthread_cond_wait()了。
pthread_cancel(tid);
pthread_join(tid, NULL);
printf("All done -- exiting/n");
return 0;
}
三、信號量(sem)
如同進程一樣,線程也可以通過信號量來實現通信,雖然是輕量級的。信號量函數的名字都以"sem_"打頭。線程使用的基本信號量函數有四個。
信號量初始化。
int sem_init (sem_t *sem , int pshared, unsigned int value);
這是對由sem指定的信號量進行初始化,設置好它的共享選項(linux 只支持為0,即表示它是當前進程的局部信號量),然後給它一個初始值VALUE。
等待信號量。給信號量減1,然後等待直到信號量的值大於0。
int sem_wait(sem_t *sem);
釋放信號量。信號量值加1。並通知其他等待線程。
int sem_post(sem_t *sem);
銷毀信號量。我們用完信號量後都它進行清理。歸還佔有的一切資源。
int sem_destroy(sem_t *sem);
[cpp] view plain
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>
#include <errno.h>
#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}
typedef struct _PrivInfo
{
sem_t s1;
sem_t s2;
time_t end_time;
}PrivInfo;

static void info_init (PrivInfo* thiz);
static void info_destroy (PrivInfo* thiz);
static void* pthread_func_1 (PrivInfo* thiz);
static void* pthread_func_2 (PrivInfo* thiz);

int main (int argc, char** argv)
{
pthread_t pt_1 = 0;
pthread_t pt_2 = 0;
int ret = 0;
PrivInfo* thiz = NULL;
thiz = (PrivInfo* )malloc (sizeof (PrivInfo));
if (thiz == NULL)
{
printf ("[%s]: Failed to malloc priv./n");
return -1;
}
info_init (thiz);
ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);
if (ret != 0)
{
perror ("pthread_1_create:");
}
ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);
if (ret != 0)
{
perror ("pthread_2_create:");
}
pthread_join (pt_1, NULL);
pthread_join (pt_2, NULL);
info_destroy (thiz);
return 0;
}
static void info_init (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
thiz->end_time = time(NULL) + 10;
sem_init (&thiz->s1, 0, 1);
sem_init (&thiz->s2, 0, 0);
return;
}
static void info_destroy (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
sem_destroy (&thiz->s1);
sem_destroy (&thiz->s2);
free (thiz);
thiz = NULL;
return;
}
static void* pthread_func_1 (PrivInfo* thiz)
{
return_if_fail(thiz != NULL);
while (time(NULL) < thiz->end_time)
{
sem_wait (&thiz->s2);
printf ("pthread1: pthread1 get the lock./n");
sem_post (&thiz->s1);
printf ("pthread1: pthread1 unlock/n");
sleep (1);
}
return;
}
static void* pthread_func_2 (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
while (time (NULL) < thiz->end_time)
{
sem_wait (&thiz->s1);
printf ("pthread2: pthread2 get the unlock./n");
sem_post (&thiz->s2);
printf ("pthread2: pthread2 unlock./n");
sleep (1);
}
return;
}

C. linux多線程設計中互斥鎖是什麼有什麼作用

hao

D. LINUX多線程求解,列題是華清遠見上面的,代碼如下,利用線程互斥鎖實現線程的同步

目測是線程退出時沒有解開互斥鎖,導致其它線程一直在等互斥鎖被解開。

以下是修改後的thrd_func函數代碼:

//線程函數入口
void*thrd_func(void*arg)
{
intthrd_num=(int)arg;
intdelay_time=0;
intcount=0;
intres;

res=pthread_mutex_lock(&mutex);//互斥鎖上鎖
if(res)
{
printf("Thread%dlockfailed ",thrd_num);
pthread_exit(NULL);
}

printf("Thread%disstarting ",thrd_num);

for(count=0;count<REPEAT_NUMBER;count++)
{
delay_time=(int)(rand()%5);//隨機時間數
sleep(delay_time);
printf(" Thread%d:job%ddelay=%d ",thrd_num,count,delay_time);
}

pthread_mutex_unlock(&mutex);//解開互斥鎖

printf("Thread%dfinished ",thrd_num);
pthread_exit(NULL);
}

E. linux下互斥鎖mutex,貌似鎖不上呢

多線程的效果就是同一時間各個線程都在執行。
加鎖不是給線程上鎖。

pthread_mutex_lock(&qlock);表示嘗試去把qlock上鎖,它會先判斷qlock是否已經上鎖,如果已經上鎖這個線程就會停在這一步直到其他線程把鎖解開。它才繼續運行。
所以代碼中要麼是線程1先執行完後執行線程2,要麼就是線程2先執行,再執行線程1.而線程3一開始就執行了。
互斥量mutex是用來給多線程之間的貢獻資源上鎖的。也就是同一個時間只允許一個線程去訪問該資源(資源:比如對文件的寫操作)。
現在來回答樓主的問題:
不是只要在pthread_mutex_lock(&qlock)與pthread_mutex_unlock(&qlock)之間的代碼執行,其他的都不能介入嗎?
其他的都不能介入,不是整個進程只運行這一個線程,其他線程都停住了。
「不能介入「這個動作需要程序員自己設計來保證:好比前面提到的文件讀寫操作。為了防止多個線程同時對文件進行寫入操作,這就需要把資源上鎖了。
如果只有線程1加鎖,那是不是這個鎖就沒有意義了呢?
這個理解可以有

F. 關於linux 線程互斥鎖的問題,到底怎麼鎖的

首先初始化的鎖為全局變數,為所有線程共享,你一個線程得到鎖後自然而然就將其他線程阻塞了嘛,解鎖後其他線程才能獲取鎖,理解哪個鎖是一個阻塞性函數就ok,何必糾結呢,具體深挖掘的話就可以參照Linux環境高級編程了!

G. linux線程同步的互斥鎖(mutex)到底怎麼用的》謝謝

互斥鎖(mutex) 通過鎖機制實現線程間的同步。

1、初始化鎖。在Linux下,線程的互斥量數據類型是pthread_mutex_t。在使用前,要對它進行初始化。

2、靜態分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

3、動態分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);

4、加鎖。對共享資源的訪問,要對互斥量進行加鎖,如果互斥量已經上了鎖,調用線程會阻塞,直到互斥量被解鎖。

intpthread_mutex_lock(pthread_mutex*mutex);
intpthread_mutex_trylock(pthread_mutex_t*mutex);
解鎖。在完成了對共享資源的訪問後,要對互斥量進行解鎖。
intpthread_mutex_unlock(pthread_mutex_t*mutex);
銷毀鎖。鎖在是使用完成後,需要進行銷毀以釋放資源。
intpthread_mutex_destroy(pthread_mutex*mutex);
#include<cstdio>
#include<cstdlib>
#include<unistd.h>
#include<pthread.h>
#include"iostream"
usingnamespacestd;
pthread_mutex_tmutex=PTHREAD_MUTEX_INITIALIZER;
inttmp;
void*thread(void*arg)
{
cout<<"threadidis"<<pthread_self()<<endl;
pthread_mutex_lock(&mutex);
tmp=12;
cout<<"Nowais"<<tmp<<endl;
pthread_mutex_unlock(&mutex);
returnNULL;
}
intmain()
{
pthread_tid;
cout<<"mainthreadidis"<<pthread_self()<<endl;
tmp=3;
cout<<"Inmainfunctmp="<<tmp<<endl;
if(!pthread_create(&id,NULL,thread,NULL))
{
cout<<"Createthreadsuccess!"<<endl;
}
else
{
cout<<"Createthreadfailed!"<<endl;
}
pthread_join(id,NULL);
pthread_mutex_destroy(&mutex);
return0;
}
//編譯:g++-othreadtestthread.cpp-lpthread

H. linux中,"加鎖/解鎖"處理追加後對線程a和b執行過程有什麼改變

如果a和b使用同一個鎖,那麼加鎖解鎖過程會使線程a和線程b在共同操作的數據上保持互斥性,即每次只有一個線程對共同的數據進行操作;如果不使用同一個鎖,那就沒什麼關系

閱讀全文

與linux多線程加鎖相關的資料

熱點內容
c語言中編譯和運行 瀏覽:997
畫流圖找循環編譯原理 瀏覽:129
oppo手機西瓜視頻的文件夾 瀏覽:867
騎手一般用哪個app 瀏覽:610
程序員老闆用什麼手機 瀏覽:848
比心app頭像不通過為什麼 瀏覽:105
加密幣市值前十走勢 瀏覽:190
單片機學習推薦課程 瀏覽:473
對數ln的運演算法則圖片 瀏覽:735
仿微博app源碼 瀏覽:781
怎麼取消調用app 瀏覽:545
程序員去哪裡求助 瀏覽:834
伺服器里的埠是什麼 瀏覽:975
aspnetjavaphp 瀏覽:399
程序員畢業時間 瀏覽:286
程序員用戶免費軟體 瀏覽:754
51單片機匯編語言指令 瀏覽:139
女程序員好難 瀏覽:688
三田壓縮機與電裝 瀏覽:710
重生細胞安卓版沒鍵盤怎麼玩 瀏覽:994