『壹』 linux下的幾種時鍾和定時器機制
1. RTC(Real Time Clock)
所有PC都有RTC. 它和CPU和其他晶元獨立。它在電腦關機之後還可以正常運行。RTC可以在IRQ8上產生周期性中斷. 頻率在2Hz--8192HZ.
Linux只是把RTC用來獲取時間和日期. 當然它允許進程通過對/dev/rtc設備來對它進行編程。Kernel通過0x70和0x71 I/O埠來訪問RTC。
2. TSC(Time Stamp Counter)
80x86上的微處理器都有CLK輸入針腳. 從奔騰系列開始. 微處理器支持一個計數器. 每當一個時鍾信號來的時候. 計數器加1. 可以通過匯編指令rdtsc來得到計數器的值。通過calibrate_tsc可以獲得CPU的頻率. 它是通過計算大約5毫秒里tsc寄存器裡面的增加值來確認的。或者可以通過cat /proc/cpuinfo來獲取cpu頻率。tsc可以提供比PIT更精確的時間度量。
3. PIT(Programmable internval timer)
除了RTC和TSC. IBM兼容機提供了PIT。PIT類似微波爐的鬧鍾機制. 當時間到的時候. 提供鈴聲. PIT不是產生鈴聲. 而是產生一種特殊中斷. 叫定時器中斷或者時鍾中斷。它用來告訴內核一個間隔過去了。這個時間間隔也叫做一個滴答數。可以通過編譯內核是選擇內核頻率來確定。如內核頻率設為1000HZ,則時間間隔或滴答為1/1000=1微秒。滴答月短. 定時精度更高. 但是用戶模式的時間更短. 也就是說用戶模式下程序執行會越慢。滴答的長度以納秒形式存在tick_nsec變數裡面。PIT通過8254的0x40--0x43埠來訪問。它產生中斷號為IRQ 0.
下面是關於pIT裡面的一些宏定義:
HZ:每秒中斷數。
CLOCK_TICK_RATE:值是1,193,182. 它是8254晶元內部振盪器頻率。
LATCH:代表CLOCK_TICK_RATE和HZ的比率. 被用來編程PIT。
setup_pit_timer()如下:
spin_lock_irqsave(&i8253_lock, flags);
outb_p(0x34,0x43);
udelay(10);
outb_p(LATCH & 0xff, 0x40);
udelay(10);
outb (LATCH >> 8, 0x40);
spin_unlock_irqrestore(&i8253_lock, flags);
4. CPU Local Timer
最近的80x86架構的微處理器上的local apic提供了cpu local timer.他和pit區別在於它提供了one-shot和periodic中斷。它可以使中斷發送到特定cpu。one-shot中斷常用在實時系統裡面。
『貳』 怎樣在Linux下實現精確定時器
linux下使用select實現精確定時器
在編寫程序時,我們經常回用到定時器。本文講述如何使用select實現超級時鍾。使用select函數,我們能實現微妙級別精度的定時器。同時,select函數也是我們在編寫非阻塞程序時經常用到的一個函數。
首先看看select函數原型如下:
int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);
參數說明:
slect的第一個參數nfds為fdset集合中最大描述符值加1,fdset是一個位數組,其大小限制為__FD_SETSIZE(1024),位數組的每一位代表其對應的描述符是否需要被檢查。
select的第二三四個參數表示需要關注讀、寫、錯誤事件的文件描述符位數組,這些參數既是輸入參數也是輸出參數,可能會被內核修改用於標示哪些描述符上發生了關注的事件。所以每次調用select前都需重新初始化fdset。
timeout參數為超時時間,該結構會被內核修改,其值為超時剩餘的時間。
利用select實現定時器,需要利用其timeout參數,注意到:
1)select函數使用了一個結構體timeval作為其參數。
2)select函數會更新timeval的值,timeval保持的值為剩餘時間。
如果我們指定了參數timeval的值,而將其他參數都置為0或者NULL,那麼在時間耗盡後,select函數便返回,基於這一點,我們可以利用select實現精確定時。
timeval的結構如下:
struct timeval{
long tv_sec;/*secons*
long tv_usec;/*microseconds*/
}
我們可以看出其精確到microseconds也即微妙。
一、秒級定時器
void seconds_sleep(unsigned seconds){
struct timeval tv;
tv.tv_sec=seconds;
tv.tv_usec=0;
int err;
do{
err=select(0,NULL,NULL,NULL,&tv);
}while(err<0 && errno==EINTR);
}
二、毫秒級別定時器
void milliseconds_sleep(unsigned long mSec){
struct timeval tv;
tv.tv_sec=mSec/1000;
tv.tv_usec=(mSec%1000)*1000;
int err;
do{
err=select(0,NULL,NULL,NULL,&tv);
}while(err<0 && errno==EINTR);
}
三、微妙級別定時器
void microseconds_sleep(unsigned long uSec){
struct timeval tv;
tv.tv_sec=uSec/1000000;
tv.tv_usec=uSec%1000000;
int err;
do{
err=select(0,NULL,NULL,NULL,&tv);
}while(err<0 && errno==EINTR);
}
現在我們來編寫幾行代碼看看定時效果吧。
#include <stdio.h>
#include <sys/time.h>
#include <errno.h>
int main()
{
int i;
for(i=0;i<5;++i){
printf("%d\n",i);
//seconds_sleep(1);
//milliseconds_sleep(1500);
microseconds_sleep(1900000);
}
}
註:timeval結構體中雖然指定了一個微妙級別的解析度,但內核支持的分別率往往沒有這么高,很多unix內核將超時值向上舍入成10ms的倍數。此外,加上內核調度延時現象,即定時器時間到後,內核還需要花一定時間調度相應進程的運行。因此,定時器的精度,最終還是由內核支持的分別率決定。
『叄』 關於在linux 下如何實現定時器的請教
我知道linux下的select函數可以用來實現高精度的sleep,定時器暫不清楚,找找posix的API吧!
『肆』 如何在linux系統中自己新建一個內核定時器,用struct timer_list這樣子
大家來學習學習,「jiffies + HZ」這個時間是怎麼計算,還不是非常理解。我的整體理解是,驅動被載入一秒內,運行myfunc函數,myfunc函數列印一個「Hello,world!"後,每兩秒再列印一個"Hello,world!"。驅動函數不需要你自己寫main函數,你配置成y會自動被拉起,配置成m,需要手動通過工具拉起。
『伍』 Linux中斷與定時器
所謂中斷是指CPU在執行程序的過程中,出現了某些突發事件急待處理,CPU必須暫停當前程序的執行,轉去處理突發事件,處理完畢後又返回原程序被中斷的位置繼續執行。根據中斷的來源,中斷可分為內部中斷和外部中斷,內部中斷的中斷源來自CPU內部(軟體中斷指令、溢出、除法錯誤等,例如,操作系統從用戶態切換到內核態需藉助CPU內部的軟體中斷),外部中斷的中斷源來自CPU外部,由外設提出請求。根據中斷是否可以屏蔽,中斷可分為可屏蔽中斷與不可屏蔽中斷(NMI),可屏蔽中斷可以通過設置中斷控制器寄存器等方法被屏蔽,屏蔽後,該中斷不再得到響應,而不可屏蔽中斷不能被屏蔽。
根據中斷入口跳轉方法的不同,中斷可分為向量中斷和非向量中斷。採用向量中斷的CPU通常為不同的中斷分配不同的中斷號,當檢測到某中斷號的中斷到來後,就自動跳轉到與該中斷號對應的地址執行。不同中斷號的中斷有不同的入口地址。非向量中斷的多個中斷共享一個入口地址,進入該入口地址後,再通過軟體判斷中斷標志來識別具體是哪個中斷。也就是說,向量中斷由硬體提供中斷服務程序入口地址,非向量中斷由軟體提供中斷服務程序入口地址。
嵌入式系統以及x86PC中大多包含可編程中斷控制器(PIC),許多MCU內部就集成了PIC。如在80386中,PIC是兩片i8259A晶元的級聯。通過讀寫PIC的寄存器,程序員可以屏蔽/使能某中斷及獲得中斷狀態,前者一般通過中斷MASK寄存器完成,後者一般通過中斷PEND寄存器完成。定時器在硬體上也依賴中斷來實現,典型的嵌入式微處理器內可編程間隔定時器(PIT)的工作原理,它接收一個時鍾輸入,當時鍾脈沖到來時,將目前計數值增1並與預先設置的計數值(計數目標)比較,若相等,證明計數周期滿,並產生定時器中斷且復位目前計數值。
『陸』 Linux下的定時器,怎麼用
數為秒數,在經過指定秒數後,alarm會發出一個SIGALRM信號
singal函數用來綁定信號處理器函數,這里綁定的是timer,被綁定的函數必須固定為返回值void、參數int.
只需要alarm(時間)就設置了,可能由於getchar需要進入中斷導致信號被掛起所以沒反應,可以試試把getchar換成別的東西來延時看看。關於更多學習內容,請到《linux就該這么學》。
『柒』 如何在Linux下實現定時器
定時器Timer應用場景非常廣泛,在Linux下,有以下幾種方法:
1,使用sleep()和usleep()
其中sleep精度是1秒,usleep精度是1微妙,具體代碼就不寫了。使用這種方法缺點比較明顯,在Linux系統中,sleep類函數不能保證精度,尤其在系統負載比較大時,sleep一般都會有超時現象。
2,使用信號量SIGALRM + alarm()
這種方式的精度能達到1秒,其中利用了*nix系統的信號量機制,首先注冊信號量SIGALRM處理函數,調用alarm(),設置定時長度,代碼如下:
[cpp] view plain
#include <stdio.h>
#include <signal.h>
void timer(int sig)
{
if(SIGALRM == sig)
{
printf("timer\n");
alarm(1); //we contimue set the timer
}
return ;
}
int main()
{
signal(SIGALRM, timer); //relate the signal and function
alarm(1); //trigger the timer
getchar();
return 0;
}
alarm方式雖然很好,但是無法首先低於1秒的精度。
3,使用RTC機制
RTC機制利用系統硬體提供的Real Time Clock機制,通過讀取RTC硬體/dev/rtc,通過ioctl()設置RTC頻率,代碼如下:
[cpp] view plain
#include <stdio.h>
#include <linux/rtc.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <stdlib.h>
int main(int argc, char* argv[])
{
unsigned long i = 0;
unsigned long data = 0;
int retval = 0;
int fd = open ("/dev/rtc", O_RDONLY);
if(fd < 0)
{
perror("open");
exit(errno);
}
/*Set the freq as 4Hz*/
if(ioctl(fd, RTC_IRQP_SET, 1) < 0)
{
perror("ioctl(RTC_IRQP_SET)");
close(fd);
exit(errno);
}
/* Enable periodic interrupts */
if(ioctl(fd, RTC_PIE_ON, 0) < 0)
{
perror("ioctl(RTC_PIE_ON)");
close(fd);
exit(errno);
}
for(i = 0; i < 100; i++)
{
if(read(fd, &data, sizeof(unsigned long)) < 0)
{
perror("read");
close(fd);
exit(errno);
}
printf("timer\n");
}
/* Disable periodic interrupts */
ioctl(fd, RTC_PIE_OFF, 0);
close(fd);
return 0;
}
這種方式比較方便,利用了系統硬體提供的RTC,精度可調,而且非常高。
4,使用select()
這種方法在看APUE神書時候看到的,方法比較冷門,通過使用select(),來設置定時器;原理利用select()方法的第5個參數,第一個參數設置為0,三個文件描述符集都設置為NULL,第5個參數為時間結構體,代碼如下:
[cpp] view plain
#include <sys/time.h>
#include <sys/select.h>
#include <time.h>
#include <stdio.h>
/*seconds: the seconds; mseconds: the micro seconds*/
void setTimer(int seconds, int mseconds)
{
struct timeval temp;
temp.tv_sec = seconds;
temp.tv_usec = mseconds;
select(0, NULL, NULL, NULL, &temp);
printf("timer\n");
return ;
}
int main()
{
int i;
for(i = 0 ; i < 100; i++)
setTimer(1, 0);
return 0;
}
這種方法精度能夠達到微妙級別,網上有很多基於select()的多線程定時器,說明select()穩定性還是非常好。
總結:如果對系統要求比較低,可以考慮使用簡單的sleep(),畢竟一行代碼就能解決;如果系統對精度要求比較高,則可以考慮RTC機制和select()機制。
『捌』 求linux下用c語言編寫的定時器程序
//一個示常式序。
#include<stdlib.h>
#include<unistd.h>
#include<signal.h>
#include<time.h>
#include<sys/time.h>
#defineN100//設置最大的定時器個數
inti=0,t=1;//i代表定時器的個數;t表示時間,逐秒遞增
structTimer//Timer結構體,用來保存一個定時器的信息
{
inttotal_time;//每隔total_time秒
intleft_time;//還剩left_time秒
intfunc;//該定時器超時,要執行的代碼的標志
}myTimer[N];//定義Timer類型的數組,用來保存所有的定時器
voidsetTimer(intt,intf)//新建一個計時器
{
structTimera;
a.total_time=t;
a.left_time=t;
a.func=f;
myTimer[i++]=a;
}
voidtimeout()//判斷定時器是否超時,以及超時時所要執行的動作
{
printf("Time:%d ",t++);
intj;
for(j=0;j<i;j++)
{
if(myTimer[j].left_time!=0)
myTimer[j].left_time--;
else
{
switch(myTimer[j].func)
{//通過匹配myTimer[j].func,判斷下一步選擇哪種操作
case1:
printf("------Timer1:--HelloAillo! ");break;
case2:
printf("------Timer2:--HelloJackie! ");break;
case3:
printf("------Timer3:--HelloPiPi! ");break;
}
myTimer[j].left_time=myTimer[j].total_time;//循環計時
}
}
}
intmain()//測試函數,定義三個定時器
{
setTimer(3,1);
setTimer(4,2);
setTimer(5,3);
signal(SIGALRM,timeout);//接到SIGALRM信號,則執行timeout函數
while(1)
{
sleep(1);//每隔一秒發送一個SIGALRM
kill(getpid(),SIGALRM);
}
exit(0);
}
『玖』 linux 時鍾中斷 哪個定時器
一. Linux的硬體時間
PC機中的時間有三種硬體時鍾實現,這三種都是基於晶振產生的方波信號輸入。這三種時鍾為:(1)實時時鍾RTC ( Real Time Clock) (2)可編程間隔器PIT(Programmable Interval Timer )(3)時間戳計數器TSC(Time Stamp Clock)
1. 實時時鍾 RTC
用於長時間存放系統時間的設備,即時關機後也可依靠主板CMOS電池繼續保持系統的計時,原理圖如下:
Note: Linux與RTC的關系是,當Linux啟動時從RTC讀取時間和日期的基準值,然後在Kernel運行期間便拋開RTC,以軟體的形式維護系統的時間日期,並在適當時機由Kernel將時間寫回RTC Register.
1.1 RTC Register
(1). 時鍾與日歷Register
共10個,地址:0x00-0x09,分別用於保存時間日歷的具體信息,詳情如下:
00 Current Second for RTC
01 Alarm Second
02 Current Minute
03 Alarm Minute
04 Current Hour
05 Alarm Hour
06 Current Day of Week(1=Sunday)
07 Current Date of Month
08 Current Month
09 Current Year
(2).狀態和控制Register
共四個,地址:0x0a-0x0d,控制RTC晶元的工作方式,並表示當前狀態。
l 狀態RegisterA , 0x0A 格式如下:
bit[7]——UIP標志(Update in Progress),為1表示RTC正在更新日歷寄存器組中的值,此時日歷寄存器組是不可訪問的(此時訪問它們將得到一個無意義的漸變值)。
bit[6:4]——這三位是用來定義RTC的操作頻率。各種可能的值如下:
DV2 DV1 DV0
0 0 0 4.194304 MHZ
0 0 1 1.048576 MHZ
0 1 0 32.769 KHZ
1 1 0/1 任何
PC機通常設置成「010」。
bit[3:0]——速率選擇位(Rate Selection bits),用於周期性或方波信號輸出。
RS3 RS2 RS1 RS0 周期性中斷 方波 周期性中斷 方波
0 0 0 0 None None None None
0 0 0 1 30.517μs 32.768 KHZ 3.90625ms 256 HZ
0 0 1 0 61.035μs 16.384 KHZ
0 0 1 1 122.070μs 8.192KHZ
0 1 0 0 244.141μs 4.096KHZ
0 1 0 1 488.281μs 2.048KHZ
0 1 1 0 976.562μs 1.024KHZ
0 1 1 1 1.953125ms 512HZ
1 0 0 0 3.90625ms 256HZ
1 0 0 1 7.8125ms 128HZ
1 0 1 0 15.625ms 64HZ
1 0 1 1 31.25ms 32HZ
1 1 0 0 62.5ms 16HZ
1 1 0 1 125ms 8HZ
1 1 1 0 250ms 4HZ
1 1 1 1 500ms 2HZ
PC機BIOS對其默認的設置值是「0110」
l 狀態Register B , 0x0B 格式如下:
bit[7]——SET標志。為1表示RTC的所有更新過程都將終止,用戶程序隨後馬上對日歷寄存器組中的值進行初始化設置。為0表示將允許更新過程繼續。
bit[6]——PIE標志,周期性中斷enable標志。
bit[5]——AIE標志,告警中斷enable標志。
bit[4]——UIE標志,更新結束中斷enable標志。
bit[3]——SQWE標志,方波信號enable標志。
bit[2]——DM標志,用來控制日歷寄存器組的數據模式,0=BCD,1=BINARY。BIOS總是將它設置為0。
bit[1]——24/12標志,用來控制hour寄存器,0表示12小時制,1表示24小時制。PC機BIOS總是將它設置為1。
bit[0]——DSE標志。BIOS總是將它設置為0。
l 狀態Register C,0x0C 格式如下:
bit[7]——IRQF標志,中斷請求標志,當該位為1時,說明寄存器B中斷請求 發生。
bit[6]——PF標志,周期性中斷標志,為1表示發生周期性中斷請求。
bit[5]——AF標志,告警中斷標志,為1表示發生告警中斷請求。
bit[4]——UF標志,更新結束中斷標志,為1表示發生更新結束中斷請求。
l 狀態Register D,0x0D 格式如下:
bit[7]——VRT標志(Valid RAM and Time),為1表示OK,為0表示RTC 已經掉電。
bit[6:0]——總是為0,未定義。
2.可編程間隔定時器 PIT
每個PC機中都有一個PIT,以通過IRQ0產生周期性的時鍾中斷信號,作為系統定時器 system timer。當前使用最普遍的是Intel 8254 PIT晶元,它的I/O埠地址是0x40~0x43。
Intel 8254 PIT有3個計時通道,每個通道都有其不同的用途:
(1) 通道0用來負責更新系統時鍾。每當一個時鍾滴答過去時,它就會通過IRQ0向 系統 產生一次時鍾中斷。
(2) 通道1通常用於控制DMAC對RAM的刷新。
(3) 通道2被連接到PC機的揚聲器,以產生方波信號。
每 個通道都有一個向下減小的計數器,8254 PIT的輸入時鍾信號的頻率是1.193181MHZ,也即一秒鍾輸入1193181個clock-cycle。每輸入一個clock-cycle其時間 通道的計數器就向下減1,一直減到0值。因此對於通道0而言,當他的計數器減到0時,PIT就向系統產生一次時鍾中斷,表示一個時鍾滴答已經過去了。計數 器為16bit,因此所能表示的最大值是65536,一秒內發生的滴答數是:1193181/65536=18.206482.
PIT的I/O埠:
0x40 通道0 計數器 Read/Write
0X41 通道1計數器 Read/Write
0X42 通道2計數器 Read/Write
0X43 控制字 Write Only
Note: 因PIT I/O埠是8位,而PIT相應計數器是16位,因此必須對PIT計數器進行兩次讀寫。
8254 PIT的控制寄存器(0X43)的格式如下:
bit[7:6] — 通道選擇位:00 ,通道0;01,通道1;10,通道2;11,read-back command,僅8254。
bit[5:4] – Read/Write/Latch鎖定位,00,鎖定當前計數器以便讀取計數值;01,只讀高位元組;10,只讀低位元組;11,先高後低。
bit[3:1] – 設定各通道的工作模式。
000 mode0 當通道處於count out 時產生中斷信號,可用於系統定時
001 mode1 Hardware retriggerable one-shot
010 mode2 Rate Generator。產生實時時鍾中斷,通道0通常工作在這個模式下
011 mode3 方波信號發生器
100 mode4 Software triggered strobe
101 mode5 Hardware triggered strobe
3. 時間戳計數器 TSC
從Pentium開始,所有的Intel 80x86 CPU就都包含一個64位的時間戳記數器(TSC)的寄存器。該寄存器實際上是一個不斷增加的計數器,它在CPU的每個時鍾信號到來時加1(也即每一個clock-cycle輸入CPU時,該計數器的值就加1)。
匯編指令rdtsc可以用於讀取TSC的值。利用CPU的TSC,操作系統通常可以得到更為精準的時間度量。假如clock-cycle的頻率是400MHZ,那麼TSC就將每2.5納秒增加一次。
二. Linux時鍾中斷處理程序
1. 幾個概念
(1)時鍾周期(clock cycle)的頻率:8253/8254 PIT的本質就是對由晶體振盪器產生的時鍾周期進行計數,晶體振盪器在1秒時間內產生的時鍾脈沖個數就是時鍾周期的頻率。Linux用宏 CLOCK_TICK_RATE來表示8254 PIT的輸入時鍾脈沖的頻率(在PC機中這個值通常是1193180HZ),該宏定義在include/asm-i386/timex.h頭文件中
#define CLOCK_TICK_RATE 1193180 kernel=2.4 &2.6
(2)時鍾滴答(clock tick):當PIT通道0的計數器減到0值時,它就在IRQ0上產生一次時鍾中斷,也即一次時鍾滴答。PIT通道0的計數器的初始值決定了要過多少時鍾周期才產生一次時鍾中斷,因此也就決定了一次時鍾滴答的時間間隔長度。
(3)時鍾滴答的頻率(HZ):1秒時間內PIT所產生的時鍾滴答次數。 這個值也由PIT通道0的計數器初值決定的.Linux內核用宏HZ來表示時鍾滴答的頻率,而且在不同的平台上HZ有不同的定義值。對於ALPHA和 IA62平台HZ的值是1024,對於SPARC、MIPS、ARM和i386等平台HZ的值都是100。該宏在i386平台上的定義如下 (include/asm-i386/param.h):
#define HZ 100 kernel=2.4
#define HZ CONFIG_HZ kernel=2.6
(4)宏LATCH:定義要寫到PIT通道0的計數器中的值,它表示PIT將隔多少個時鍾周期產生一次時鍾中斷。公式計算:
LATCH=(1秒之內的時鍾周期個數)÷(1秒之內的時鍾中斷次數)=(CLOCK_TICK_RATE)÷(HZ)
定義在<include/linux/timex.h>
#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)
(5)全局變數jiffies:用於記錄系統自啟動以來產生的滴答總數。啟動時,kernel將該變數初始為0,每次時鍾中斷處理程序timer_interrupt()將該變數加1。因為一秒鍾內增加的時鍾中斷次數等於Hz,所以jiffies一秒內增加的值也是Hz。由此可得系統運行時間是jiffies/Hz 秒。
jiffies定義於<linux/jiffies.h>中:
extern unsigned long volatile jiffies;
Note:在kernel 2.4,jiffies是32位無符號數;kernel 2.6,jiffies是64位無符號數。
(6)全局變數xtime: 結構類型變數,用於表示當前時間距UNIX基準時間1970-01-01 00:00:00的相對秒數值。當系統啟動時,Kernel通過讀取RTC Register中的數據來初始化系統時間(wall_time),該時間存放在xtime中。
void __init time_init (void) {
... ...
xtime.tv_sec = get_cmos_time ();
xtime.tv_usec = 0;
... ... }
Note:實時時鍾RTC的最主要作用便是在系統啟動時用來初始化xtime變數。
2.Linux的時鍾中斷處理程序
Linux下時鍾中斷處理由time_interrupt() 函數實現,主要完成以下任務:
l 獲得xtime_lock鎖,以便對訪問的jiffies_64 (kernel2.6)和 xtime進行保護
l 需要時應答或重新設置系統時鍾。
l 周期性的使用系統時間(wall_time)更新實時時鍾RTC
l 調用體系結構無關的時鍾常式:do_timer()。
do_timer()主要完成以下任務:
l 更新jiffies;
l 更新系統時間(wall_time),該時間存放在xtime變數中
l 執行已經到期的動態定時器
l 計算平均負載值
void do_timer(unsigned long ticks)
{
jiffies_64 += ticks;
update_process_times(user_mode(regs));
update_times (ticks);
}
static inline void update_times(unsigned long ticks)
{
update_wall_time ();
calc_load (ticks);
}
time_interrupt ():
static void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) {
int count;
write_lock (&xtime_lock); //獲得xtime_lock鎖
if(use_cyclone)
mark_timeoffset_cyclone();
else if (use_tsc) {
rdtscl(last_tsc_low); //讀TSC register到last_tsc_low
spin_lock (&i8253_lock); //對自旋鎖i8253_lock加鎖,對8254PIT訪問
outb_p (0x00, 0x43);
count = inb_p(0x40);
count |= inb(0x40) << 8;
if (count > LATCH) {
printk (KERN_WARNING "i8253 count too high! resetting../n");
outb_p (0x34, 0x43);
outb_p (LATCH & 0xff, 0x40);
outb(LATCH >> 8, 0x40);
count = LATCH - 1;
}
spin_unlock (&i8253_lock);
if (count = = LATCH) {
count- -;
}
count = ((LATCH-1) - count) * TICK_SIZE;
delay_at_last_interrupt = (count + LATCH/2) / LATCH;
} //end use_tsc
do_timer_interrupt (irq, NULL, regs);
write_unlock(&xtime_lock);
}//end time_interrupt
do_timer_interrupt():
static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
……
do_timer(regs);
if((time_status & STA_UNSYNC)= =0&&xtime.tv_sec> last_rtc_update + 660 && xtime.tv_usec >= 500000 - ((unsigned) tick) / 2 && xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) {
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
last_rtc_update = xtime.tv_sec - 600;
……
}
do_timer_interrupt()主要完成:調用do_timer()和判斷是否需要更新CMOS時鍾。更新CMOS時鍾的條件如下:三個須同時成立
1.系統全局時間狀態變數time_status中沒有設置STA_UNSYNC標志,即Linux沒有設置外部同步時鍾(如NTP)
2.自從上次CMOS時鍾更新已經過去11分鍾。全局變數last_rtc_update保存上次更新CMOS時鍾的時間.
3.由於RTC存在Update Cycle,因此應在一秒鍾間隔的中間500ms左右調用set_rtc_mmss()函數,將當前時間xtime.tv_sec寫回RTC中。
Note. Linux kernel 中定義了一個類似jiffies的變數wall_jiffies,用於記錄kernel上一次更新xtime時,jiffies的值。
Summary: Linux kernel在啟動時,通過讀取RTC里的時間日期初始化xtime,此後由kernel通過初始PIT來提供軟時鍾。
時鍾中斷處理過程可歸納為:系統時鍾system timer在IRQ0上產生中斷;kernel調用time_interrupt();time_interrupt()判斷系統是否使用TSC,若使用 則讀取TSC register;然後讀取PIT 通道0的計數值;調用do_time_interrupt(),實現系統時間更新.