❶ arm單片機和stm32單片機的區別
arm是單片機的CPU內核架構的名稱,它不是一種特定的單片機型號,stm32型單片機的內核是arm的 ,所以也可以說是 arm內核的單片機(但stm32也可以不用arm內核)。就像搭載酷睿內核的電腦和聯想電腦的區別。
❷ 請問51單片機中的51內核是什麼樣的東西分種類嗎
51內核泛指一種8位單片機架構的單片機,盡管種類繁多,但結構基本一樣,就如機械鍾表。基本指令也大多相同,所以編寫程序的工具和做法也差不多,就如組裝和維修機械鍾表。當然也有精簡與豪華的分別,但主要工作原理是一樣的
❸ 哪位大俠能幫我解釋一下:單片機、cpu、處理器、內核都是什麼東西,以及他們之間的關系
單片機是一種集成在電路晶元,是採用超大規模集成電路技術把具有數據處理能力的中央處理器CPU隨機存儲器RAM、只讀存儲器ROM、多種I/O口和中斷系統、定時器/計時器等功能(可能還包括顯示驅動電路、脈寬調制電路、模擬多路轉換器、A/D轉換器等電路)集成到一塊矽片上構成的一個小而完善的計算機系統。
實際上所謂內核就是用 不同的邏輯電路處理不同的電平請求, 之後輸出設計好的電平狀態. 之所以單片機能工作,就是這種電平轉換電路起的作用. 一群具有特定電平轉換電路的晶體管組合到一起就能完成對不同電平的響應. 其實指令就是這種電平的轉換, 只是我們稱之為指令...,對於單片機內核來說,指令就是把一組特定的電平轉換為另一組特定的指令
❹ 單片機的cpu內核指什麼
內核主要指架構方面,比如有51內核的,有cortex-m3核等等
❺ 我們說的51單片機,是不是因為他的核心是51的。
只要是51內核架構的MCU都可以理解為51單片機;
ARM是指基於ARM內核架構的一類低功耗MCU,ARM公司本身不做晶元,只做架構設計,然後授權給其他晶元公司製作帶有不同功能的MCU,但內核架構都是ARM。
DSP(Digital Signal Processing,簡稱DSP)數字信號處理器是一種獨特的微處理器,是以數字信號來處理大量信息的器件。其工作原理是接收模擬信號,轉換為0或1的數字信號。再對數字信號進行修改、刪除、強化,並在其他系統晶元中把數字數據解譯回模擬數據或實際環境格式。它不僅具有可編程性,而且其實時運行速度可達每秒數以千萬條復雜指令程序,遠遠超過通用微處理器,是數字化電子世界中日益重要的電腦晶元。它的強大數據處理能力和高運行速度,是最值得稱道的兩大特色。不同於51和ARM。可以理解為一種專門的數據處理晶元。DSP的內核架構不同於前兩者,但是如果理解為一種DSP內核架構的話,並不能說一定是錯的。看個人怎麼理解了,隨著你認知的深入可能會有別的理解。
至於指令集,不同的公司可能有自己的開發編譯環境,指令集助記符可能會與學校學習的51指令略有差別(針對匯編語言),如果是高級語言(C語言,而且大多數都支持C編程,工作效率高——指人)就沒什麼大的差別了。
❻ 什麼是單片機內核它是指單片機的那一部分軟體還是硬體
所謂內核 就是 撥開外殼後 裡面的芯 ,很多水果 裡面有個核 就叫內核。
單片機 是 一種帶有處理功能的集成電路,集成電路的 內核 就是 把引腳 封裝的外殼去掉 後的
硅晶片,經過特種工藝 加工 各種電路晶元,單片機就是 一種,常見的 51 系列的單片機,
我們稱為 51 內核。
❼ 請問單片機應用中常說的「內核」是什麼東西呢
每種單片機都有自己的內部構架的,內核就是指的它內部的構架,構架不同就所謂內核不同。
❽ 什麼是cpu內核(核心),什麼是cpu構架,什麼又是cpu核心構架。
CPU的中間就是我們平時稱作核心晶元或CPU內核的地方,這顆由單晶硅做成的晶元可以說是電腦的大腦了,所有的計算、接受/存儲命令、處理數據都是在這指甲蓋大小的地方進行的。目前絕大多數CPU都採用了一種翻轉內核的封裝形式,也就是說平時我們所看到的CPU內核其實是這顆硅晶元的底部,它是翻轉後封裝在陶瓷電路基板上的,這樣的好處是能夠使CPU內核直接與散熱裝置接觸。這種技術也被使用在當今絕大多數的CPU上。而CPU核心的另一面,也就是被蓋在陶瓷電路基板下面的那面要和外界的電路相連接。現在的CPU都有以千萬計算的晶體管,它們都要連到外面的電路上,而連接的方法則是將每若干個晶體管焊上一根導線連到外電路上。例如Duron核心上面需要焊上3000條導線,而奔騰4的數量為5000條,用於伺服器的64位處理器Itanium則達到了7500條。這么小的晶元上要安放這么多的焊點,這些焊點必須非常的小,設計起來也要非常的小心。由於所有的計算都要在很小的晶元上進行,所以CPU內核會散發出大量的熱,核心內部溫度可以達到上網路,而表面溫度也會有數十度,一旦溫度過高,就會造成CPU運行不正常甚至燒毀,因此很多電腦書籍或者雜志都會常常強調對CPU散熱的重要性。
核心(Die)又稱為內核,是CPU最重要的組成部分。CPU中心那塊隆起的晶元就是核心,是由單晶硅以一定的生產工藝製造出來的,CPU所有的計算、接受/存儲命令、處理數據都由核心執行。各種CPU核心都具有固定的邏輯結構,一級緩存、二級緩存、執行單元、指令級單元和匯流排介面等邏輯單元都會有科學的布局。
[編輯本段]內核類型
為了便於CPU設計、生產、銷售的管理,CPU製造商會對各種CPU核心給出相應的代號,這也就是所謂的CPU核心類型。
不同的CPU(不同系列或同一系列)都會有不同的核心類型(例如Pentium 4的Northwood,Willamette以及K6-2的CXT和K6-2+的ST-50等等),甚至同一種核心都會有不同版本的類型(例如Northwood核心就分為B0和C1等版本),核心版本的變更是為了修正上一版存在的一些錯誤,並提升一定的性能,而這些變化普通消費者是很少去注意的。每一種核心類型都有其相應的製造工藝(例如0.25um、0.18um、0.13um、0.09um、0.65um、以及0.45um等)、核心面積(這是決定CPU成本的關鍵因素,成本與核心面積基本上成正比)、核心電壓、電流大小、晶體管數量、各級緩存的大小、主頻范圍、流水線架構和支持的指令集(這兩點是決定CPU實際性能和工作效率的關鍵因素)、功耗和發熱量的大小、封裝方式(例如S.E.P、PGA、FC-PGA、FC-PGA2等等)、介面類型(例如LGA775、Socket 370,Socket A,Socket 478,Socket T,Slot 1、Socket 940等等)、前端匯流排頻率(FSB)等等。因此,核心類型在某種程度上決定了CPU的工作性能。
一般說來,新的核心類型往往比老的核心類型具有更好的性能(例如同頻的Northwood核心Pentium 4 1.8A GHz就要比Willamette核心的Pentium 4 1.8GHz性能要高),但這也不是絕對的,這種情況一般發生在新核心類型剛推出時,由於技術不完善或新的架構和製造工藝不成熟等原因,可能會導致新的核心類型的性能反而還不如老的核心類型的性能。例如,早期Willamette核心Socket 423介面的Pentium 4的實際性能不如Socket 370介面的Tualatin核心的Pentium III和賽揚,現在的低頻Prescott核心Pentium 4的實際性能不如同頻的Northwood核心Pentium 4等等,但隨著技術的進步以及CPU製造商對新核心的不斷改進和完善,新核心的中後期產品的性能必然會超越老核心產品。
[編輯本段]內核發展
CPU核心的發展方向是更低的電壓、更低的功耗、更先進的製造工藝、集成更多的晶體管、更小的核心面積(這會降低CPU的生產成本從而最終會降低CPU的銷售價格)、更先進的流水線架構和更多的指令集、更高的前端匯流排頻率、集成更多的功能(例如集成內存控制器等等)以及雙核心和多核心(也就是1個CPU內部有2個或更多個核心)等。CPU核心的進步對普通消費者而言,最有意義的就是能以更低的價格買到性能更強的CPU。
[編輯本段]著名內核
INTEL CPU的核心類型
Northwood(北木)
這是目前主流的Pentium 4和賽揚所採用的核心,其與Willamette核心最大的改進是採用了0.13um製造工藝,並都採用Socket 478介面,核心電壓1.5V左右,二級緩存分別為128KB(賽揚)和512KB(Pentium 4),前端匯流排頻率分別為400/533/800MHz(賽揚都只有400MHz),主頻范圍分別為2.0GHz到2.8GHz(賽揚),1.6GHz到2.6GHz(400MHz FSB Pentium 4),2.26GHz到3.06GHz(533MHz FSB Pentium 4)和2.4GHz到3.4GHz(800MHz FSB Pentium 4),並且3.06GHz Pentium 4和所有的800MHz Pentium 4都支持超線程技術(Hyper-Threading Technology),封裝方式採用PPGA FC-PGA2和PPGA。按照Intel的規劃,Northwood核心會很快被Prescott核心所取代。
Prescott(普雷斯科特)
這是Intel最新的CPU核心,目前還只有Pentium 4而沒有低端的賽揚採用,其與Northwood最大的區別是採用了0.09um製造工藝和更多的流水線結構,初期採用Socket 478介面,以後會全部轉到LGA 775介面,核心電壓1.25-1.525V,前端匯流排頻率為533MHz(不支持超線程技術)和800MHz(支持超線程技術),主頻分別為533MHz FSB的2.4GHz和2.8GHz以及800MHz FSB的2.8GHz、3.0GHz、3.2GHz和3.4GHz,其與Northwood相比,其L1 數據緩存從8KB增加到16KB,而L2緩存則從512KB增加到1MB,封裝方式採用PPGA。按照Intel的規劃,Prescott核心會很快取代Northwood核心並且很快就會推出Prescott核心533MHz FSB的賽揚。
Smithfield(士美非路)
這是Intel公司的第一款雙核心處理器的核心類型,於2005年4月發布,基本上可以認為Smithfield核心是簡單的將兩個Prescott核心鬆散地耦合在一起的產物,這是基於獨立緩存的鬆散型耦合方案,其優點是技術簡單,缺點是性能不夠理想。目前Pentium D 8XX系列以及Pentium EE 8XX系列採用此核心。Smithfield核心採用90nm製造工藝,全部採用Socket 775介面,核心電壓1.3V左右,封裝方式都採用PLGA,都支持硬體防病毒技術EDB和64位技術EM64T,並且除了Pentium D 8X5和Pentium D 820之外都支持節能省電技術EIST。前端匯流排頻率是533MHz(Pentium D 8X5)和800MHz(Pentium D 8X0和Pentium EE 8XX),主頻范圍從2.66GHz到3.2GHz(Pentium D)、3.2GHz(Pentium EE)。Pentium EE和Pentium D的最大區別就是Pentium EE支持超線程技術而Pentium D則不支持。Smithfield核心的兩個核心分別具有1MB的二級緩存,在CPU內部兩個核心是互相隔絕的,其緩存數據的同步是依靠位於主板北橋晶元上的仲裁單元通過前端匯流排在兩個核心之間傳輸來實現的,所以其數據延遲問題比較嚴重,性能並不盡如人意。按照Intel的規劃,Smithfield核心將會很快被Presler核心取代。
Cedar Mill
這是Pentium 4 6X1系列和Celeron D 3X2/3X6系列採用的核心,從2005末開始出現。其與Prescott核心最大的區別是採用了65nm製造工藝,其它方面則變化不大,基本上可以認為是Prescott核心的65nm製程版本。Cedar Mill核心全部採用Socket 775介面,核心電壓1.3V左右,封裝方式採用PLGA。其中,Pentium 4全部都為800MHz FSB、2MB二級緩存,都支持超線程技術、硬體防病毒技術EDB、節能省電技術EIST以及64位技術EM64T;而Celeron D則是533MHz FSB、512KB二級緩存,支持硬體防病毒技術EDB和64位技術EM64T,不支持超線程技術以及節能省電技術EIST。Cedar Mill核心也是Intel處理器在NetBurst架構上的最後一款單核心處理器的核心類型,按照Intel的規劃,Cedar Mill核心將逐漸被Core架構的Conroe核心所取代。
Presler
這是Pentium D 9XX和Pentium EE 9XX採用的核心,Intel於2005年末推出。基本上可以認為Presler核心是簡單的將兩個Cedar Mill核心鬆散地耦合在一起的產物,是基於獨立緩存的鬆散型耦合方案,其優點是技術簡單,缺點是性能不夠理想。Presler核心採用65nm製造工藝,全部採用Socket 775介面,核心電壓1.3V左右,封裝方式都採用PLGA,都支持硬體防病毒技術EDB、節能省電技術EIST和64位技術EM64T,並且除了Pentium D 9X5之外都支持虛擬化技術Intel VT。前端匯流排頻率是800MHz(Pentium D)和1066MHz(Pentium EE)。與Smithfield核心類似,Pentium EE和Pentium D的最大區別就是Pentium EE支持超線程技術而Pentium D則不支持,並且兩個核心分別具有2MB的二級緩存。在CPU內部兩個核心是互相隔絕的,其緩存數據的同步同樣是依靠位於主板北橋晶元上的仲裁單元通過前端匯流排在兩個核心之間傳輸來實現的,所以其數據延遲問題同樣比較嚴重,性能同樣並不盡如人意。Presler核心與Smithfield核心相比,除了採用65nm製程、每個核心的二級緩存增加到2MB和增加了對虛擬化技術的支持之外,在技術上幾乎沒有什麼創新,基本上可以認為是Smithfield核心的65nm製程版本。Presler核心也是Intel處理器在NetBurst架構上的最後一款雙核心處理器的核心類型,可以說是在NetBurst被拋棄之前的最後絕唱,以後Intel桌面處理器全部轉移到Core架構。按照Intel的規劃,Presler核心從2006年第三季度開始將逐漸被Core架構的Conroe核心所取代。
Yonah
目前採用Yonah核心CPU的有雙核心的Core Duo和單核心的Core Solo,另外Celeron M也採用了此核心,Yonah是Intel於2006年初推出的。這是一種單/雙核心處理器的核心類型,其在應用方面的特點是具有很大的靈活性,既可用於桌面平台,也可用於移動平台;既可用於雙核心,也可用於單核心。Yonah核心來源於移動平台上大名鼎鼎的處理器Pentium M的優秀架構,具有流水線級數少、執行效率高、性能強大以及功耗低等等優點。Yonah核心採用65nm製造工藝,核心電壓依版本不同在1.1V-1.3V左右,封裝方式採用PPGA,介面類型是改良了的新版Socket 478介面(與以前台式機的Socket 478並不兼容)。在前端匯流排頻率方面,目前Core Duo和Core Solo都是667MHz,而Yonah核心Celeron M是533MHz。在二級緩存方面,目前Core Duo和Core Solo都是2MB,而即Yonah核心Celeron M是1MB。Yonah核心都支持硬體防病毒技術EDB以及節能省電技術EIST,並且多數型號支持虛擬化技術Intel VT。但其最大的遺憾是不支持64位技術,僅僅只是32位的處理器。值得注意的是,對於雙核心的Core Duo而言,其具有的2MB二級緩存在架構上不同於目前所有X86處理器,其它的所有X86處理器都是每個核心獨立具有二級緩存,而Core Duo的Yonah核心則是採用了與IBM的多核心處理器類似的緩存方案----兩個核心共享2MB的二級緩存!共享式的二級緩存配合Intel的「Smart cache」共享緩存技術,實現了真正意義上的緩存數據同步,大幅度降低了數據延遲,減少了對前端匯流排的佔用。這才是嚴格意義上的真正的雙核心處理器!Yonah核心是共享緩存的緊密型耦合方案,其優點是性能理想,缺點是技術比較復雜。不過,按照Intel的規劃,以後Intel各個平台的處理器都將會全部轉移到Core架構,Yonah核心其實也只是一個過渡的核心類型,從2006年第三季度開始,其在桌面平台上將會被Conroe核心取代,而在移動平台上則會被Merom核心所取代。
Conroe
這是更新的Intel桌面平台雙核心處理器的核心類型,其名稱來源於美國德克薩斯州的小城市「Conroe」。Conroe核心於2006年7月27日正式發布,是全新的Core(酷睿)微架構(Core Micro-Architecture)應用在桌面平台上的第一種CPU核心。目前採用此核心的有Core 2 Duo E6x00系列和Core 2 Extreme X6x00系列。與上代採用NetBurst微架構的Pentium D和Pentium EE相比,Conroe核心具有流水線級數少、執行效率高、性能強大以及功耗低等等優點。Conroe核心採用65nm製造工藝,核心電壓為1.3V左右,封裝方式採用PLGA,介面類型仍然是傳統的Socket 775。在前端匯流排頻率方面,目前Core 2 Duo和Core 2 Extreme都是1066MHz,而頂級的Core 2 Extreme將會升級到1333MHz;在一級緩存方面,每個核心都具有32KB的數據緩存和32KB的指令緩存,並且兩個核心的一級數據緩存之間可以直接交換數據;在二級緩存方面,Conroe核心都是兩個內核共享4MB。Conroe核心都支持硬體防病毒技術EDB、節能省電技術EIST和64位技術EM64T以及虛擬化技術Intel VT。與Yonah核心的緩存機制類似,Conroe核心的二級緩存仍然是兩個核心共享,並通過改良了的Intel Advanced Smart Cache(英特爾高級智能高速緩存)共享緩存技術來實現緩存數據的同步。Conroe核心是目前最先進的桌面平台處理器核心,在高性能和低功耗上找到了一個很好的平衡點,全面壓倒了目前的所有桌面平台雙核心處理器,加之又擁有非常不錯的超頻能力,確實是目前最強勁的台式機CPU核心。
Allendale
這是與Conroe同時發布的Intel桌面平台雙核心處理器的核心類型,其名稱來源於美國加利福尼亞州南部的小城市「Allendale」。Allendale核心於2006年7月27日正式發布,仍然基於全新的Core(酷睿)微架構,目前採用此核心的有1066MHz FSB的Core 2 Duo E6x00系列,即將發布的還有800MHz FSB的Core 2 Duo E4x00系列。Allendale核心的二級緩存機制與Conroe核心相同,但共享式二級緩存被削減至2MB。Allendale核心仍然採用65nm製造工藝,核心電壓為1.3V左右,封裝方式採用PLGA,介面類型仍然是傳統的Socket 775,並且仍然支持硬體防病毒技術EDB、節能省電技術EIST和64位技術EM64T以及虛擬化技術Intel VT。除了共享式二級緩存被削減到2MB以及二級緩存是8路64Byte而非Conroe核心的16路64Byte之外,Allendale核心與Conroe核心幾乎完全一樣,可以說就是Conroe核心的簡化版。當然由於二級緩存上的差異,在頻率相同的情況下Allendale核心性能會稍遜於Conroe核心。
Merom
這是與Conroe同時發布的Intel移動平台雙核心處理器的核心類型,其名稱來源於以色列境內約旦河旁邊的一個湖泊「Merom」。Merom核心於2006年7月27日正式發布,仍然基於全新的Core(酷睿)微架構,這也是Intel全平台(台式機、筆記本和伺服器)處理器首次採用相同的微架構設計,目前採用此核心的有667MHz FSB的Core 2 Duo T7x00系列和Core 2 Duo T5x00系列。與桌面版的Conroe核心類似,Merom核心仍然採用65nm製造工藝,核心電壓為1.3V左右,封裝方式採用PPGA,介面類型仍然是與Yonah核心Core Duo和Core Solo兼容的改良了的新版Socket 478介面(與以前台式機的Socket 478並不兼容)或Socket 479介面,仍然採用Socket 479插槽。Merom核心同樣支持硬體防病毒技術EDB、節能省電技術EIST和64位技術EM64T以及虛擬化技術Intel VT。Merom核心的二級緩存機制也與Conroe核心相同,Core 2 Duo T7x00系列的共享式二級緩存為4MB,而Core 2 Duo T5x00系列的共享式二級緩存為2MB。Merom核心的主要技術特性與Conroe核心幾乎完全相同,只是在Conroe核心的基礎上利用多種手段加強了功耗控制,使其TDP功耗幾乎只有Conroe核心的一半左右,以滿足移動平台的節電需求。
Penryn
Penryn採用了45納米高-k製造技術(採用鉻合金高-K與金屬柵極晶體管設計),並對酷睿微體系結構進行了增強。跟65納米工藝相比,45納米高k製程技術可以將晶體管數量提高近2倍,如下一代英特爾酷睿2 四核處理器將採用8.2億個晶體管。藉助新發明的高-k金屬柵極晶體管技術,這8.2億個晶體管能夠以光速更高效地進行開關,晶體管切換速度提升了20% 以上,實現了更高的內核速度,並增加了每個時鍾周期的指令數。雙核處理器中的硅核尺寸為107平方毫米,比英特爾目前的65納米產品小了25%,大約僅為普通郵票的四分之一大小,為添加新的特性、實現更高性能提供了更多自由空間。同時,由於減少了漏電流,因而可以降低功耗,同英特爾現有的雙核處理器相比,新一代處理器能夠以相同甚至更低的功耗運行,如Penryn處理器的散熱設計功耗是,雙核為40瓦/65瓦/80瓦,四核是50瓦/80瓦/120瓦。
全新的特性:快速Raidix-16除法器、增強型虛擬化技術、更大的高速緩存、分離負載高速緩存增強、更高的匯流排速度、英特爾SSE4指令、超級Shuffle引擎、深層關機技術、增強型動態加速技術、插槽兼容等。這些新特性使得Penryn能在性能、功耗、數字媒體應用、虛擬化應用等方面得到提升,如跟當前的產品相比,採用1600MHz前端匯流排、3GHz的Penryn處理器可以提升性能約45%。
不再使用鉛作為原料
英特爾表示,其新一代處理器已經不再使用鉛作為原料,預計到2008年將停止使用鹵素。通過這些舉措,英特爾處理器對於環境的危害將大大降低。英特爾新型處理器的一個最大特點是採用了鉿,可以有效地解決電泄漏的問題,使處理器功耗效率提升了30%。隨著晶體管的體積不斷縮小,電泄漏也更加嚴重,導致處理器發熱和功耗過大的問題日益突出。從某種程度上講,電泄漏已經成為阻礙處理器性能進一步提升的瓶頸。
功耗最低25W
英特爾數字企業集團主管斯蒂芬·史密斯(Stephen Smith)表示,Penryn處理器的最大功耗不會超過120瓦。將於明年第一季度上市的Penryn筆記本處理器的功耗為25瓦,而當前65納米筆記本處理器的功耗為35瓦。據史密斯稱,Penryn處理器加入了用於加速圖像處理和高清晰視頻編碼的新指令。同上一代產品相比,Penryn處理器的視頻和圖形性能有40%到60%的提升。得益於硬體的增強,虛擬機的性能也提升了75%。
AMD CPU的核心類型
Athlon XP的核心類型
Athlon XP有4種不同的核心類型,但都有共同之處:都採用Socket A介面而且都採用PR標稱值標注。
Thorton
採用0.13um製造工藝,核心電壓1.65V左右,二級緩存為256KB,封裝方式採用OPGA,前端匯流排頻率為333MHz。可以看作是屏蔽了一半二級緩存的Barton。
Barton
採用0.13um製造工藝,核心電壓1.65V左右,二級緩存為512KB,封裝方式採用OPGA,前端匯流排頻率為333MHz和400MHz。
新Duron的核心類型
AppleBred
採用0.13um製造工藝,核心電壓1.5V左右,二級緩存為64KB,封裝方式採用OPGA,前端匯流排頻率為266MHz。沒有採用PR標稱值標注而以實際頻率標注,有1.4GHz、1.6GHz和1.8GHz三種。
Athlon 64系列CPU的核心類型
Clawhammer
採用0.13um製造工藝,核心電壓1.5V左右,二級緩存為1MB,封裝方式採用mPGA,採用Hyper Transport匯流排,內置1個128bit的內存控制器。採用Socket 754、Socket 940和Socket 939介面。
Newcastle
其與Clawhammer的最主要區別就是二級緩存降為512KB(這也是AMD為了市場需要和加快推廣64位CPU而採取的相對低價政策的結果),其它性能基本相同。
Wincheste
Wincheste是比較新的AMD Athlon 64CPU核心,是64位CPU,一般為939介面,0.09微米製造工藝。這種核心使用200MHz外頻,支持1GHyperTransprot匯流排,512K二級緩存,性價比較好。Wincheste集成雙通道內存控制器,支持雙通道DDR內存,由於使用新的工藝,Wincheste的發熱量比舊的Athlon小,性能也有所提升。
Troy
Troy是AMD第一個使用90nm製造工藝的Opteron核心。Troy核心是在Sledgehammer基礎上增添了多項新技術而來的,通常為940針腳,擁有128K一級緩存和1MB (1,024 KB)二級緩存。同樣使用200MHz外頻,支持1GHyperTransprot匯流排,集成了內存控制器,支持雙通道DDR400內存,並且可以支持ECC 內存。此外,Troy核心還提供了對SSE-3的支持,和Intel的Xeon相同,總的來說,Troy是一款不錯的CPU核心。
Venice
Venice核心是在Wincheste核心的基礎上演變而來,其技術參數和Wincheste基本相同:一樣基於X86-64架構、整合雙通道內存控制器、512KB L2緩存、90nm製造工藝、200MHz外頻,支持1GHyperTransprot匯流排。Venice的變化主要有三方面:一是使用了Dual Stress Liner (簡稱DSL)技術,可以將半導體晶體管的響應速度提高24%,這樣是CPU有更大的頻率空間,更容易超頻;二是提供了對SSE-3的支持,和Intel的CPU相同;三是進一步改良了內存控制器,一定程度上增加處理器的性能,更主要的是增加內存控制器對不同DIMM模塊和不同配置的兼容性。此外Venice核心還使用了動態電壓,不同的CPU可能會有不同的電壓。
SanDiego
SanDiego核心與Venice一樣是在Wincheste核心的基礎上演變而來,其技術參數和Venice非常接近,Venice擁有的新技術、新功能,SanDiego核心一樣擁有。不過AMD公司將SanDiego核心定位到頂級Athlon 64處理器之上,甚至用於伺服器CPU。可以將SanDiego看作是Venice核心的高級版本,只不過緩存容量由512KB提升到了1MB。當然由於L2緩存增加,SanDiego核心的內核尺寸也有所增加,從Venice核心的84平方毫米增加到115平方毫米,當然價格也更高昂。
Orleans
這是2006年5月底發布的第一種Socket AM2介面單核心Athlon 64的核心類型,其名稱來源於法國城市奧爾良(Orleans)。Manila核心定位於桌面中端處理器,採用90nm製造工藝,支持虛擬化技術AMD VT,仍然採用1000MHz的HyperTransport匯流排,二級緩存為512KB,最大亮點是支持雙通道DDR2 667內存,這是其與只支持單通道DDR 400內存的Socket 754介面Athlon 64和只支持雙通道DDR 400內存的Socket 939介面Athlon 64的最大區別。Orleans核心Athlon 64同樣也分為TDP功耗62W的標准版(核心電壓1.35V左右)和TDP功耗35W的超低功耗版(核心電壓1.25V左右)。除了支持雙通道DDR2內存以及支持虛擬化技術之外,Orleans核心Athlon 64相對於以前的Socket 754介面和Socket 940介面的Athlon 64並無架構上的改變,性能並無多少出彩之處。
閃龍系列CPU的核心類型
Paris
Paris核心是Barton核心的繼任者,主要用於AMD的閃龍,早期的754介面閃龍部分使用Paris核心。Paris採用90nm製造工藝,支持iSSE2指令集,一般為256K二級緩存,200MHz外頻。Paris核心是32位CPU,來源於K8核心,因此也具備了內存控制單元。CPU內建內存控制器的主要優點在於內存控制器可以以CPU頻率運行,比起傳統上位於北橋的內存控制器有更小的延時。使用Paris核心的閃龍與Socket A介面閃龍CPU相比,性能得到明顯提升。
Palermo
Palermo核心目前主要用於AMD的閃龍CPU,使用Socket 754介面、90nm製造工藝,1.4V左右電壓,200MHz外頻,128K或者256K二級緩存。Palermo核心源於K8的Wincheste核心,新的E6步進版本已經支持64位。除了擁有與AMD高端處理器相同的內部架構,還具備了EVP、Cool『n』Quiet;和HyperTransport等AMD獨有的技術,為廣大用戶帶來更「冷靜」、更高計算能力的優秀處理器。由於脫胎與ATHLON64處理器,所以Palermo同樣具備了內存控制單元。CPU內建內存控制器的主要優點在於內存控制器可以以CPU頻率運行,比起傳統上位於北橋的內存控制器有更小的延時。
Manila
這是2006年5月底發布的第一種Socket AM2介面Sempron的核心類型,其名稱來源於菲律賓首都馬尼拉(Manila)。Manila核心定位於桌面低端處理器,採用90nm製造工藝,不支持虛擬化技術AMD VT,仍然採用800MHz的HyperTransport匯流排,二級緩存為256KB或128KB,最大亮點是支持雙通道DDR2 667內存,這是其與只支持單通道DDR 400內存的Socket 754介面Sempron的最大區別。Manila核心Sempron分為TDP功耗62W的標准版(核心電壓1.35V左右)和TDP功耗35W的超低功耗版(核心電壓1.25V左右)。除了支持雙通道DDR2之外,Manila核心Sempron相對於以前的Socket 754介面Sempron並無架構上的改變,性能並無多少出彩之處。
❾ stm32的arm內核和cortex架構到底是什麼意思有什麼區別求指教!
ARM處理器:英國Acorn有限公司設計的低功耗成本的第一款RISC微處理器。全稱為Advanced RISC Machine。ARM處理器本身是32位設計,但也配備16位指令集,一般來講比等價32位代碼節省達35%,卻能保留32位系統的所有優勢。
cortex架構:ARM公司在經典處理器ARM11以後的產品改用Cortex命名,並分成A、R和M三類,旨在為各種不同的市場提供服務。
arm內核和cortex架構的區別:
1、構架不一樣:
arm內核:RM處理器本身是32位設計,但也配備16位指令集。
cortex架構:屬於ARMv7架構,這是到2010年為止ARM公司最新的指令集架構。
2、應用領域不一樣:
arm內核:在CISC指令集的各種指令中,大約有20%的指令會被反復使用,占整個程序代碼的80%。而餘下的指令卻不經常使用,在程序設計中只佔20%。
cortex架構:於應用領域不同,基於v7架構的Cortex處理器系列所採用的技術也不相同,基於v7A的稱為Cortex-A系列,基於v7R的稱為Cortex-R系列,基於v7M的稱為Cortex-M系列。
(9)如何理解單片機的內核和架構擴展閱讀:
cortex架構的特點:
Cortex-A15 和 Cortex-A7 都支持 ARMv7A 架構的擴展,從而為大型物理地址訪問和硬體虛擬化以及處理 AMBA4 ACE 一致性提供支持。同時,這些都支持big.LITTLE 處理。
ARM在Cortex-A系列處理器大體上可以排序為:Cortex-A57處理器、Cortex-A53處理器、Cortex-A15處理器、Cortex-A9處理器、Cortex-A8處理器、Cortex-A7處理器、Cortex-A5處理器、ARM11處理器、ARM9處理器、ARM7處理器,再往低的部分手機產品中基本已經不再使用,這里就不再介紹。
需要指出的是,單從命名數字來看Cortex-A7似乎比A8和A9低端,但是從ARM的官方數據看,A7的架構和工藝都是仿照A15來做的,單個性能超過A8並且能耗控制很好。另外A57和A53屬於ARMv8架構。
❿ ARM內核和架構都是什麼意思,內核和架構的關系是什麼
譬如coretex A8、A9都是armv7a 架構;coretex M3、M4是armv7m架構;前者是內核,後者是指令集的架構
arm
的架構都是基於RISC指令集而架構的,而其內核只是實現這一指令集的硬體架構的基礎,Thumb-2指令集架構(ISA)的子集,包含所有基本的16位
和32位Thumb-2指令; 哈佛處理器架構,在載入/存儲數據的同時能夠執行指令取指,帶分支預測的三級流水線等;