① 兩個8051單片機之間用方式2串列通信
串列口是單片機與外界進行信息交換的工具,8051單片機的通信方式有兩種:
並行通信:數據的各位同時發送或接收。
串列通信:數據一位一位次序發送或接收。
串列通信的方式
非同步通信
用一個起始位0表示字元的開始,用停止位1表示字元的結束,中間夾著8個數據位,字元能一個接一個傳送
CPU與外設之間必須有字元格式和波特率兩項規定
字元格式規定能使雙方把0和1串理解成同一種意義,原則上自由制定,通用角度使用標准如ASCII
波特率即數據傳輸速率,每秒傳送的二進制位數,如120字元/s,每個字元10數位,則傳送波特率為1200波特
同步通信
去掉了開始結束標志提高速度,但由於數據塊傳遞開始要用同步字元來指示,同時要求由時鍾來實現發送端與接收端之間的同步,故硬體較復雜。
通信方向
在串列通信中,把通信介面只能發送或接收的單向傳送辦法叫單工傳送;把數據能雙向傳遞稱為雙工傳送。半雙工傳送兩機之間不能同時進行發送和接收,任一時該,只能發或者只能收信息。全雙工傳送是能同時發送接收。
串列介面結構
51單片機一個可編程的全雙工串列通信介面。可用作非同步通信方式(UART),與串列傳送信息的外部設備相連接。或用於通過同步或非同步標准通信協議進行全雙工的8051多機系統,使用TTL或CMOS移位寄存器來擴充I/O口。
8051單片機通過管腳RXD(P3.0,串列數據接收端)和管腳TXD(P3.1,串列數據發送端)與外界通信。SBUF是串列口緩沖寄存器,包括發送寄存器和接收寄存器。它們有相同名字和地址空間,但不會出現沖突,因為它們兩個一個只能被CPU讀出數據,一個只能被CPU寫入數據。
② 51單片機串口通訊
51單片機串口通信
來源:維庫 作者:
關鍵字:51單片機 串口通信
這節我們主要講單片機上串口的工作原理和如何通過程序來對串口進行設置,以及根據所給出的實例實現與PC 機通信。
一、原理簡介
51 單片機內部有一個全雙工串列介面。什麼叫全雙工串口呢?一般來說,只能接受或只能發送的稱為單工串列;既可接收又可發送,但不能同時進行的稱為半雙工;能同時接收和發送的串列口稱為全雙工串列口。串列通信是指數據一位一位地按順序傳送的通信方式,其突出優點是只需一根傳輸線,可大大降低硬體成本,適合遠距離通信。其缺點是傳輸速度較低。
與之前一樣,首先我們來了解單片機串口相關的寄存器。
SBUF 寄存器:它是兩個在物理上獨立的接收、發送緩沖器,可同時發送、接收數據,可通過指令對SBUF 的讀寫來區別是對接收緩沖器的操作還是對發送緩沖器的操作。從而控制外部兩條獨立的收發信號線RXD(P3.0)、TXD(P3.1),同時發送、接收數據,實現全雙工。
串列口控制寄存器SCON(見表1) 。
表1 SCON寄存器
表中各位(從左至右為從高位到低位)含義如下。
SM0 和SM1 :串列口工作方式控制位,其定義如表2 所示。
表2 串列口工作方式控制位
其中,fOSC 為單片機的時鍾頻率;波特率指串列口每秒鍾發送(或接收)的位數。
SM2 :多機通信控制位。 該僅用於方式2 和方式3 的多機通信。其中發送機SM2 = 1(需要程序控制設置)。接收機的串列口工作於方式2 或3,SM2=1 時,只有當接收到第9 位數據(RB8)為1 時,才把接收到的前8 位數據送入SBUF,且置位RI 發出中斷申請引發串列接收中斷,否則會將接受到的數據放棄。當SM2=0 時,就不管第位數據是0 還是1,都將數據送入SBUF,並置位RI 發出中斷申請。工作於方式0 時,SM2 必須為0。
REN :串列接收允許位:REN =0 時,禁止接收;REN =1 時,允許接收。
TB8 :在方式2、3 中,TB8 是發送機要發送的第9 位數據。在多機通信中它代表傳輸的地址或數據,TB8=0 為數據,TB8=1 時為地址。
RB8 :在方式2、3 中,RB8 是接收機接收到的第9 位數據,該數據正好來自發送機的TB8,從而識別接收到的數據特徵。
TI :串列口發送中斷請求標志。當CPU 發送完一串列數據後,此時SBUF 寄存器為空,硬體使TI 置1,請求中斷。CPU 響應中斷後,由軟體對TI 清零。
RI :串列口接收中斷請求標志。當串列口接收完一幀串列數據時,此時SBUF 寄存器為滿,硬體使RI 置1,請求中斷。CPU 響應中斷後,用軟體對RI 清零。
電源控制寄存器PCON(見表3) 。
表3 PCON寄存器
表中各位(從左至右為從高位到低位)含義如下。
SMOD :波特率加倍位。SMOD=1,當串列口工作於方式1、2、3 時,波特率加倍。SMOD=0,波特率不變。
GF1、GF0 :通用標志位。
PD(PCON.1) :掉電方式位。當PD=1 時,進入掉電方式。
IDL(PCON.0) :待機方式位。當IDL=1 時,進入待機方式。
另外與串列口相關的寄存器有前面文章敘述的定時器相關寄存器和中斷寄存器。定時器寄存器用來設定波特率。中斷允許寄存器IE 中的ES 位也用來作為串列I/O 中斷允許位。當ES = 1,允許 串列I/O 中斷;當ES = 0,禁止串列I/O 中斷。中斷優先順序寄存器IP的PS 位則用作串列I/O 中斷優先順序控制位。當PS=1,設定為高優先順序;當PS =0,設定為低優先順序。
波特率計算:在了解了串列口相關的寄存器之後,我們可得出其通信波特率的一些結論:
① 方式0 和方式2 的波特率是固定的。
在方式0 中, 波特率為時鍾頻率的1/12, 即fOSC/12,固定不變。
在方式2 中,波特率取決於PCON 中的SMOD 值,即波特率為:
當SMOD=0 時,波特率為fosc/64 ;當SMOD=1 時,波特率為fosc/32。
② 方式1 和方式3 的波特率可變,由定時器1 的溢出率決定。
當定時器T1 用作波特率發生器時,通常選用定時初值自動重裝的工作方式2( 注意:不要把定時器的工作方式與串列口的工作方式搞混淆了)。其計數結構為8 位,假定計數初值為Count,單片機的機器周期為T,則定時時間為(256 ?Count)×T 。從而在1s內發生溢出的次數(即溢出率)可由公式(1)所示:
從而波特率的計算公式由公式(2)所示:
在實際應用時,通常是先確定波特率,後根據波特率求T1 定時初值,因此式(2)又可寫為:
51單片機串口通訊
二、電路詳解
下面就對圖1 所示電路進行詳細說明。
圖1 串列通信實驗電路圖
最小系統部分(時鍾電路、復位電路等)第一講已經講過,在此不再敘述。我們重點來了解下與計算機通信的RS-232 介面電路。可以看到,在電路圖中,有TXD 和RXD 兩個接收和發送指示狀態燈,此外用了一個叫MAX3232 的晶元,那它是用來實現什麼的呢?首先我們要知道計算機上的串口是具有RS-232 標準的串列介面,而RS-232 的標准中定義了其電氣特性:高電平「1」信號電壓的范圍為-15V~-3V,低電平「0」
信號電壓的范圍為+3V~+15V。可能有些讀者會問,它為什麼要以這樣的電氣特性呢?這是因為高低電平用相反的電壓表示,至少有6V 的壓差,非常好的提高了數據傳輸的可靠性。由於單片機的管腳電平為TTL,單片機與RS-232 標準的串列口進行通信時,首先要解決的便是電平轉換的問題。一般來說,可以選擇一些專業的集成電路晶元,如圖中的MAX3232。MAX3232 晶元內部集成了電壓倍增電路,單電源供電即可完成電平轉換,而且工作電壓寬,3V~5.5V 間均能正常工作。其典型應用如圖中所示,其外圍所接的電容對傳輸速率有影響,在試驗套件中採用的是0.1μF。
值得一提的是MAX3232 晶元擁有兩對電平轉換線路,圖中只用了一路,因此浪費了另一路,在一些場合可以將兩路並聯以獲得較強的驅動抗干擾能力。此外,我們有必要了解圖中與計算機相連的DB-9 型RS-232的引腳結構(見圖2)。
圖2 DB-9連接器介面圖
其各管腳定義如下(見表4)。
表4 DB-9型介面管腳定義
三、程序設計
本講設計實常式序如下:
#include "AT89X52.h" (1)
void Init_Com(void) ( 2)
{
TMOD = 0x20; ( 3)
PCON = 0x00; ( 4)
SCON = 0x50; ( 5)
TH1 = 0xE8; ( 6)
TL1 = 0xE8; ( 7)
TR1 = 1; ( 8)
}
void main(void) ( 9)
{
unsigned char dat; ( 10)
Init_Com(); ( 11)
while(1) ( 12)
程序詳細說明:
(1)頭文件包含。
(2)聲明串口初始化程序。
(3)設置定時器1 工作在模式2,自動裝載初值(詳見第二講)。
(4)SMOD 位清0,波特率不加倍。
(5)串列口工作在方式1,並允許接收。
(6)定時器1 高8 位賦初值。波特率為1200b/s(7)定時器1 低8 位賦初值。
(8)啟動定時器。
(9)主函數。
(10)定義一個字元型變數。
(11)初始化串口。
(12)死循環。
(13)如果接收到數據。
(14)將接收到的數據賦給之前定義的變數。
(15)將接收到的值輸出到P0 口。
(16)對接收標志位清0,准備再次接收。
(17)將接收到的數據又發送出去。
(18)查詢是否發送完畢。
(19)對發送標志位清0。
四、調試要點與實驗現象
接好硬體,通過冷啟動方式將程序所生成的。hex文件下載到單片機運行後,打開串口調試助手軟體,設置好波特率1200,復位單片機,然後在通過串口調試助手往單片機發送數據(見圖3),可以觀察到在接收窗口有發送的數據顯示,此外電路板上的串列通信指示燈也會閃爍,P0 口所接到LED 燈會閃爍所接收到的數據。
圖3 串口軟體調試界面
另外串口調試助手軟體使用時應注意的是,如果單片機開發板採用串口下載而且和串口調試助手是使用同一串口,則在打開串口軟體的同時不能給單片機下載程序,如需要下載,請首先點擊「關閉串口」,做發送實驗的時候,注意如果選中16 進制發送的就是數字或者字母的16 進制數值,比如發送「0」,實際接收的就應該是0x00,如果不選中,默認發送的是ASCII 碼值,此時發送「0」,實際接收的就應該是0x30,這點可以通過觀察板子P0 口上的對應的LED 指示出來。
五、總結
本講介紹了單片機串口通信的原理並給出了實例,通過該講,讀者可以了解和掌握51 單片機串口通信的原理與應用流程,利用串口通信,單片機可以與計算機相連,也可以單片機互聯或者多個單片機相互通信組網等,在實際的工程應用中非常廣泛。從學習的角度來說,熟練的利用串口將單片機系統中的相關信息顯示在計算機上可以很直觀方便的進行調試和開發。
③ 51單片機多串口同時通信
51單片機是通過sbuf這個串口專用寄存器和串口模塊來收發數據的。發送時,只要將數據送入到sbuf,等等ti狀態到1就發送完畢。同樣接收時,ri為1,那麼說明sbuf接收完畢一幀數據,可以直接從sbuf讀取數據了。
④ 51單片機與計算機串口通信無法讀出數據
答:
1 判斷你的硬體有沒有問題;方法是 用跳線講串口的pin2 和pin3短接,用串口調試助手發送數據看調試助手能不 能自己收到,能就說明是單片機程序有問題
2 你檢查你的波特率是生成程序是否正確, 中斷和主程序用 1樓給你程序,我看了 沒問題。
這樣就可以實現串口通信了
⑤ 簡述MCS-51單片機串口通信的四種方式及其特點
方式 0 :這種工作方式比較特殊,與常見的微型計算機的串列口不同,它又叫同步移位寄存器輸出方式。在這種方式下,數據從 RXD 端串列輸出或輸入,同步信號從 TXD 端輸出,波特率固定不變,為振盪率的 1/12 。該方式是以 8 位數據為一幀,沒有起始位和停止位,先發送或接收最低位。
方式 2 :採用這種方式可接收或發送 11 位數據,以 11 位為一幀,比方式 1 增加了一個數據位,其餘相同。第 9 個數據即 D8 位具有特別的用途,可以通過軟體摟控制它,再加特殊功能寄存器 SCON 中的 SM2 位的配合,可使 MCS-51 單片機串列口適用於多機通信。方式 2 的波特率固定,只有兩種選擇,為振盪率的 1/64 或 1/32 ,可由 PCON 的最高位選擇。
方式 3 :方式 3 與方式 2 完全類似,唯一的區別是方式 3 的波特率是可變的。而幀格式與方式 2- 樣為 11 位一幀。所以方式 3 也適合於多機通信。
⑥ 51單片機如何連接多個器件
當然是通過引腳了,但是如果器件設備是有介面的也可以使用各種匯流排連接(特定的引腳)。如:RS232介面
⑦ 用多塊51單片機用485進行串列通信
很明顯,第一個程序是發送程序,通過定時器控制發送的內容;第二個程序時接受程序,使用串口中斷接收。Rs485晶元有控制管腳,接收使能是低電平,一般只有在需要發送時方將其轉為發送狀態(高電平),發送完畢後即轉為接收狀態。
⑧ C51單片機多機通信C語言
單片機a,b,c.a為主機,bc為從機。a上有一個外部中斷0輸入,按第一次a的兩個LED亮500ms,再按一下,b機的兩個LED燈亮500ms,第三次按下c機的兩個LED燈亮500ms,然後周而復始。兩個數碼管分別顯示0/1/2,和abc(bc由從機反饋)
/*
主從通信基本步驟:
1.主機從機初始化為方式2或者3,從機都置SM2=1,允許中斷
2.主機置TB8=1,發送從機地址
3.所有從機均接收主機發送要定址的從機地址
4.被定址的從機確認地址後,置本機SM2=0,向主機返回地址,供主機核對
5.核對無誤後,主機向被定址的從機發送命令,通知從機接受或者發送數據。
6.本次通信結束後,主從機重置SM2=1,主機可再對其他從機定址
*/
******************************************************************
主機a:
******************************************************************
#include<reg51.h>
#defineucharunsignedchar
#defineuintunsignedint
ucharleddata[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7C,0x39,0x5E,0x79,0x71,0x40,0x00};
ucharMode;
sbitP10=P1^0;
sbitP13=P1^3;
sbitP17=P1^7;
sbitP20=P2^0;
sbitP21=P2^1;
voidUART_init()
{
TMOD=0x20;
TH1=0xfd;
TL1=0xfd;
TR1=1;
SCON=0xd0;
ES=1;
EX0=1;
IT0=1;//INT0下跳觸發
EA=1;
TI=0;
}
voidDelayMs(intms)
{
uchari;
while(ms--)
for(i=0;i<120;i++);
}
voidputc_to_SerialPort(ucharc)
{
SBUF=c;
while(TI==0);
TI=0;
}
voidMasterControl(unsignedcharAddr,unsignedcharComd)
{
TB8=1;
putc_to_SerialPort(Addr);
DelayMs(50);
TB8=0;
putc_to_SerialPort(Comd);
DelayMs(50);
}
Ex0_int(void)interrupt0
{
P0=leddata[Mode];
P20=0;
if(Mode==0)
{
P2=leddata[10];
P10=0;
P13=0;
DelayMs(500);
P10=1;
P13=1;
//MasterControl('b','C');
//MasterControl('c','C');
}
elseif(Mode==1)
{
P10=1;
P13=1;
MasterControl('b','O');
//MasterControl('c','C');
}
elseif(Mode==2)
{
P10=1;
P13=1;
//MasterControl('b','C');
MasterControl('c','O');
}
Mode=(Mode+1)%3;
}
com_int(void)interrupt4
{
if(RI)
{
RI=0;
if(SBUF=='b')
{
P2=leddata[11];
}
if(SBUF=='c')
{
P2=leddata[12];
}
}
}
voidmain(void)
{
P0=0x00;
P1=0xff;
P2=0x00;
UART_init();
Mode=0;
while(1);
}
******************************************************************
從機b:
******************************************************************
#include<reg51.h>
#defineucharunsignedchar
ucharRecData;
sbitP10=P1^0;
sbitP13=P1^3;
voidUART_init()
{
TMOD=0x21;
TH1=0xfd;
TL1=0xfd;
TR1=1;
SCON=0xf0;
ES=1;
PS=1;
EA=1;
}
voidDelayMs(intms)
{
uchari;
while(ms--)
for(i=0;i<120;i++);
}
voidputc_to_SerialPort(ucharc)
{
SBUF=c;
while(TI==0);
TI=0;
}
com_int(void)interrupt4
{
if(RI)
{
RecData=SBUF;
RI=0;
if(RB8==1)//地址
{
if(RecData=='b')//是自己的地址,置SM2=0,准備接受數據
{
SM2=0;
putc_to_SerialPort('b');
}
else//不是自己的地址
{
SM2=1;
}
}
if(RB8==0)//數據
{
if(RecData=='O')
{
P10=0;
P13=0;
DelayMs(500);
P10=1;
P13=1;
}
if(RecData=='C')
{
P10=1;
P13=1;
}
SM2=1;
}
}
}
voidmain(void)
{
P0=0xff;
P1=0xff;
UART_init();
while(1);
}
******************************************************************
從機c:
******************************************************************
#include<reg51.h>
#defineucharunsignedchar
ucharRecData;
sbitP10=P1^0;
sbitP13=P1^3;
voidUART_init()
{
TMOD=0x21;
TH1=0xfd;
TL1=0xfd;
TR1=1;
SCON=0xf0;
ES=1;
PS=1;
EA=1;
}
voidDelayMs(intms)
{
uchari;
while(ms--)
for(i=0;i<120;i++);
}
voidputc_to_SerialPort(ucharc)
{
SBUF=c;
while(TI==0);
TI=0;
}
com_int(void)interrupt4
{
if(RI)
{
RecData=SBUF;
RI=0;
if(RB8==1)//地址
{
if(RecData=='c')//是自己的地址,置SM2=0,准備接受數據
{
SM2=0;
putc_to_SerialPort('c');
}
else//不是自己的地址
{
SM2=1;
}
}
if(RB8==0)//數據
{
if(RecData=='O')
{
P10=0;
P13=0;
DelayMs(500);
P10=1;
P13=1;
SM2=1;
}
if(RecData=='C')
{
P10=1;
P13=1;
SM2=1;
}
}
}
}
voidmain(void)
{
P0=0xff;
P1=0xff;
UART_init();
while(1);
}
⑨ 兩個51單片機串口通信程序
串列發送程序 Tx.asm :
PCON, #00H ;; 波特率不倍增
SETB TR1 ;; 啟動定時器T1
MOV IE, #0 ;; 禁止任何中斷
CALL DLY125 ;; 延時125ms
;;--------------------------------------------
T_X: ;; 透傳發送字串
ACALL DSPLED ;; P2.0控制LED閃亮
MOV R3, #4 ;; 待發送字元個數
MOV DPTR, #TAB_TX ;; 數據表首址
TX_LP1: CLR A
MOVC A, @A+DPTR ;; A←數據表的1個字元
CLR TI ;; TI清零,允許發送
MOV SBUF,A ;; 發送1個字元
JNB TI, $ ;; 等待1個字元幀發送結束
DJNZ R3, TX_next
CALL DLY500 ;; 延時500ms
SJMP T_X ;; 重復發送
TX_next: ;; 發送另一字元
INC DPTR ;; 數據表指針移動
SJMP TX_LP1
;;--------------------------------------------
DSPLED: ;;開機或復位,P2.0控制LED閃亮6遍
MOV R2, #6 ;; 循環次數
LEDLP1: CLR P2.0 ;; LED亮
CALL DLY125 ;; 延時125ms
SETB P2.0 ;; LED滅
CALL DLY125
DJNZ R2,LEDLP1 ;; 循環
RET
;;----------------------------------------------
DLY125: ;; 延時125ms
DLY125A: MOV R5,#250
DLY125B: MOV R6,#250
DJNZ R6,$
DJNZ R5,DLY125B
RET
;; 250*250*2μs=125 000μs =125ms
;;----------------------------------------------
DLY500: ;; 延時500ms
MOV R7,#4
DLY500A: MOV R6,#250
DLY500B: MOV R5,#250
DJNZ R5,$
DJNZ R6,DLY500B
DJNZ R7,DLY500A
RET
;; 4*250*250*2μs=500 000μs =500ms
;;-------------------------------------------------
TAB_TX: DB 38H,30H,35H,31H, ...
;; 8 0 5 1 ...
;;----------------------------------------------
END
⑩ C51單片機能與3個串口設備通訊嗎
當然可以啦,三個串口通信設備要連在同一條匯流排上,如USART;SPI;I2C匯流排上,51單片機發送的每一串信號都帶有地址信息,當發出的地址信息與這三個串口通信設備的某一個地址相同時,單片機就可以這個通信設備通信了,其他的就處於休眠狀態。