導航:首頁 > 操作系統 > linux修改內核參數

linux修改內核參數

發布時間:2022-11-02 11:39:10

A. 一般優化linux的內核,需要優化什麼參數

方法只對擁有大量TIME_WAIT狀態的連接導致系統資源消耗有效,如果不是這種情況下,效果可能不明顯。可以使用netstat命令去查TIME_WAIT狀態的連接狀態,輸入下面的組合命令,查看當前TCP連接的狀態和對應的連接數量:
#netstat -n | awk 『/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}』
這個命令會輸出類似下面的結果:
LAST_ACK 16
SYN_RECV 348
ESTABLISHED 70
FIN_WAIT1 229
FIN_WAIT2 30
CLOSING 33
TIME_WAIT 18098
我們只用關心TIME_WAIT的個數,在這里可以看到,有18000多個TIME_WAIT,這樣就佔用了18000多個埠。要知道埠的數量只有65535個,佔用一個少一個,會嚴重的影響到後繼的新連接。這種情況下,我們就有必要調整下Linux的TCP內核參數,讓系統更快的釋放TIME_WAIT連接。

用vim打開配置文件:#vim /etc/sysctl.conf
在這個文件中,加入下面的幾行內容:
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_fin_timeout = 30
輸入下面的命令,讓內核參數生效:#sysctl -p
簡單的說明上面的參數的含義:
net.ipv4.tcp_syncookies = 1
#表示開啟SYN Cookies。當出現SYN等待隊列溢出時,啟用cookies來處理,可防範少量SYN攻擊,默認為0,表示關閉;
net.ipv4.tcp_tw_reuse = 1
#表示開啟重用。允許將TIME-WAIT sockets重新用於新的TCP連接,默認為0,表示關閉;
net.ipv4.tcp_tw_recycle = 1
#表示開啟TCP連接中TIME-WAIT sockets的快速回收,默認為0,表示關閉;
net.ipv4.tcp_fin_timeout
#修改系統默認的 TIMEOUT 時間。
在經過這樣的調整之後,除了會進一步提升伺服器的負載能力之外,還能夠防禦小流量程度的DoS、CC和SYN攻擊。
此外,如果你的連接數本身就很多,我們可以再優化一下TCP的可使用埠范圍,進一步提升伺服器的並發能力。依然是往上面的參數文件中,加入下面這些配置:
net.ipv4.tcp_keepalive_time = 1200
net.ipv4.ip_local_port_range = 10000 65000
net.ipv4.tcp_max_syn_backlog = 8192
net.ipv4.tcp_max_tw_buckets = 5000
#這幾個參數,建議只在流量非常大的伺服器上開啟,會有顯著的效果。一般的流量小的伺服器上,沒有必要去設置這幾個參數。
net.ipv4.tcp_keepalive_time = 1200
#表示當keepalive起用的時候,TCP發送keepalive消息的頻度。預設是2小時,改為20分鍾。
net.ipv4.ip_local_port_range = 10000 65000
#表示用於向外連接的埠范圍。預設情況下很小:32768到61000,改為10000到65000。(注意:這里不要將最低值設的太低,否則可能會佔用掉正常的埠!)
net.ipv4.tcp_max_syn_backlog = 8192
#表示SYN隊列的長度,默認為1024,加大隊列長度為8192,可以容納更多等待連接的網路連接數。
net.ipv4.tcp_max_tw_buckets = 6000
#表示系統同時保持TIME_WAIT的最大數量,如果超過這個數字,TIME_WAIT將立刻被清除並列印警告信息。默 認為180000,改為6000。對於Apache、Nginx等伺服器,上幾行的參數可以很好地減少TIME_WAIT套接字數量,但是對於Squid,效果卻不大。此項參數可以控制TIME_WAIT的最大數量,避免Squid伺服器被大量的TIME_WAIT拖死。
內核其他TCP參數說明:
net.ipv4.tcp_max_syn_backlog = 65536
#記錄的那些尚未收到客戶端確認信息的連接請求的最大值。對於有128M內存的系統而言,預設值是1024,小內存的系統則是128。
net.core.netdev_max_backlog = 32768
#每個網路介面接收數據包的速率比內核處理這些包的速率快時,允許送到隊列的數據包的最大數目。
net.core.somaxconn = 32768
#web應用中listen函數的backlog默認會給我們內核參數的net.core.somaxconn限制到128,而nginx定義的NGX_LISTEN_BACKLOG默認為511,所以有必要調整這個值。
net.core.wmem_default = 8388608
net.core.rmem_default = 8388608
net.core.rmem_max = 16777216 #最大socket讀buffer,可參考的優化值:873200
net.core.wmem_max = 16777216 #最大socket寫buffer,可參考的優化值:873200
net.ipv4.tcp_timestsmps = 0
#時間戳可以避免序列號的卷繞。一個1Gbps的鏈路肯定會遇到以前用過的序列號。時間戳能夠讓內核接受這種「異常」的數據包。這里需要將其關掉。
net.ipv4.tcp_synack_retries = 2
#為了打開對端的連接,內核需要發送一個SYN並附帶一個回應前面一個SYN的ACK。也就是所謂三次握手中的第二次握手。這個設置決定了內核放棄連接之前發送SYN+ACK包的數量。
net.ipv4.tcp_syn_retries = 2
#在內核放棄建立連接之前發送SYN包的數量。
#net.ipv4.tcp_tw_len = 1
net.ipv4.tcp_tw_reuse = 1
# 開啟重用。允許將TIME-WAIT sockets重新用於新的TCP連接。
net.ipv4.tcp_wmem = 8192 436600 873200
# TCP寫buffer,可參考的優化值: 8192 436600 873200
net.ipv4.tcp_rmem = 32768 436600 873200
# TCP讀buffer,可參考的優化值: 32768 436600 873200
net.ipv4.tcp_mem = 94500000 91500000 92700000
# 同樣有3個值,意思是:
net.ipv4.tcp_mem[0]:低於此值,TCP沒有內存壓力。
net.ipv4.tcp_mem[1]:在此值下,進入內存壓力階段。
net.ipv4.tcp_mem[2]:高於此值,TCP拒絕分配socket。
上述內存單位是頁,而不是位元組。可參考的優化值是:786432 1048576 1572864
net.ipv4.tcp_max_orphans = 3276800
#系統中最多有多少個TCP套接字不被關聯到任何一個用戶文件句柄上。
如果超過這個數字,連接將即刻被復位並列印出警告信息。
這個限制僅僅是為了防止簡單的DoS攻擊,不能過分依靠它或者人為地減小這個值,
更應該增加這個值(如果增加了內存之後)。
net.ipv4.tcp_fin_timeout = 30
#如果套接字由本端要求關閉,這個參數決定了它保持在FIN-WAIT-2狀態的時間。對端可以出錯並永遠不關閉連接,甚至意外當機。預設值是60秒。2.2 內核的通常值是180秒,你可以按這個設置,但要記住的是,即使你的機器是一個輕載的WEB伺服器,也有因為大量的死套接字而內存溢出的風險,FIN- WAIT-2的危險性比FIN-WAIT-1要小,因為它最多隻能吃掉1.5K內存,但是它們的生存期長些。

B. linux里oracle11g內核參數怎麼配置

修改 /etc/sysctl.conf 文件之後,執行命令 # sysctl -p 立刻生效
1、kernel.shmmax
用於定義單個共享內存段的最大值
shmmax 設置應該足夠大,能在一個共享內存段下容納下整個的SGA ,設置的過低可能會
導致需要創建多個共享內存段,這樣可能導致系統性能的下降。

2、kernel.shmall
控制共享內存頁數。Linux 共享內存頁大小為4KB, 共享內存段的大小都是共享內存頁大小的整數倍。
例如:一個共享內存段的最大大小是16G,那麼需要共享內存頁數是 16GB/4KB=16777216KB/4KB=4194304 (頁),也就是64Bit 系統下16GB 物理內存,設置 kernel.shmall = 4194304 才符合要求(幾乎是原來設置2097152
的兩倍)。這時可以將shmmax 參數調整到 16G 了,同時可以修改SGA_MAX_SIZE 和SGA_TARGET 為 12G(您想設置的SGA 最大大小,當然也可以是2G~14G 等,還要協調PGA參數及OS等其他內存使用,不能設置太滿,比如16G)。

3、kernel.shmmni
是共享內存段的最大數量(注意這個參數不是 shmmin,是shmmni, shmmin 表示內存段最小大小 ) 。shmmni 預設值4096 ,一般肯定是夠用了。

C. linux 內核參數優化

一、Sysctl命令用來配置與顯示在/proc/sys目錄中的內核參數.如果想使參數長期保存,可以通過編輯/etc/sysctl.conf文件來實現。

命令格式:
sysctl [-n] [-e] -w variable=value
sysctl [-n] [-e] -p (default /etc/sysctl.conf)
sysctl [-n] [-e] –a

常用參數的意義:
-w 臨時改變某個指定參數的值,如
# sysctl -w net.ipv4.ip_forward=1
-a 顯示所有的系統參數
-p從指定的文件載入系統參數,默認從/etc/sysctl.conf 文件中載入,如:

以上兩種方法都可能立即開啟路由功能,但如果系統重啟,或執行了
# service network restart
命令,所設置的值即會丟失,如果想永久保留配置,可以修改/etc/sysctl.conf文件,將 net.ipv4.ip_forward=0改為net.ipv4.ip_forward=1

二、linux內核參數調整:linux 內核參數調整有兩種方式

方法一:修改/proc下內核參數文件內容,不能使用編輯器來修改內核參數文件,理由是由於內核隨時可能更改這些文件中的任意一個,另外,這些內核參數文件都是虛擬文件,實際中不存在,因此不能使用編輯器進行編輯,而是使用echo命令,然後從命令行將輸出重定向至 /proc 下所選定的文件中。如:將 timeout_timewait 參數設置為30秒:

參數修改後立即生效,但是重啟系統後,該參數又恢復成默認值。因此,想永久更改內核參數,需要修改/etc/sysctl.conf文件

方法二.修改/etc/sysctl.conf文件。檢查sysctl.conf文件,如果已經包含需要修改的參數,則修改該參數的值,如果沒有需要修改的參數,在sysctl.conf文件中添加參數。如:
net.ipv4.tcp_fin_timeout=30
保存退出後,可以重啟機器使參數生效,如果想使參數馬上生效,也可以執行如下命令:

三、sysctl.conf 文件中參數設置及說明
proc/sys/net/core/wmem_max
最大socket寫buffer,可參考的優化值:873200

/proc/sys/net/core/rmem_max
最大socket讀buffer,可參考的優化值:873200
/proc/sys/net/ipv4/tcp_wmem
TCP寫buffer,可參考的優化值: 8192 436600 873200

/proc/sys/net/ipv4/tcp_rmem
TCP讀buffer,可參考的優化值: 32768 436600 873200

/proc/sys/net/ipv4/tcp_mem
同樣有3個值,意思是:
net.ipv4.tcp_mem[0]:低於此值,TCP沒有內存壓力.
net.ipv4.tcp_mem[1]:在此值下,進入內存壓力階段.
net.ipv4.tcp_mem[2]:高於此值,TCP拒絕分配socket.
上述內存單位是頁,而不是位元組.可參考的優化值是:786432 1048576 1572864

/proc/sys/net/core/netdev_max_backlog
進入包的最大設備隊列.默認是300,對重負載伺服器而言,該值太低,可調整到1000

/proc/sys/net/core/somaxconn
listen()的默認參數,掛起請求的最大數量.默認是128.對繁忙的伺服器,增加該值有助於網路性能.可調整到256.

/proc/sys/net/core/optmem_max
socket buffer的最大初始化值,默認10K

/proc/sys/net/ipv4/tcp_max_syn_backlog
進入SYN包的最大請求隊列.默認1024.對重負載伺服器,可調整到2048

/proc/sys/net/ipv4/tcp_retries2
TCP失敗重傳次數,默認值15,意味著重傳15次才徹底放棄.可減少到5,盡早釋放內核資源.

/proc/sys/net/ipv4/tcp_keepalive_time
/proc/sys/net/ipv4/tcp_keepalive_intvl
/proc/sys/net/ipv4/tcp_keepalive_probes
這3個參數與TCP KeepAlive有關.默認值是:
tcp_keepalive_time = 7200 seconds (2 hours)
tcp_keepalive_probes = 9
tcp_keepalive_intvl = 75 seconds
意思是如果某個TCP連接在idle 2個小時後,內核才發起probe.如果probe 9次(每次75秒)不成功,內核才徹底放棄,認為該連接已失效.對伺服器而言,顯然上述值太大. 可調整到:
/proc/sys/net/ipv4/tcp_keepalive_time 1800
/proc/sys/net/ipv4/tcp_keepalive_intvl 30
/proc/sys/net/ipv4/tcp_keepalive_probes 3

/proc/sys/net/ipv4/ip_local_port_range
指定埠范圍的一個配置,默認是32768 61000,已夠大.
net.ipv4.tcp_syncookies = 1
表示開啟SYN Cookies。當出現SYN等待隊列溢出時,啟用cookies來處理,可防範少量SYN攻擊,默認為0,表示關閉;

net.ipv4.tcp_tw_reuse = 1
表示開啟重用。允許將TIME-WAIT sockets重新用於新的TCP連接,默認為0,表示關閉;

net.ipv4.tcp_tw_recycle = 1
表示開啟TCP連接中TIME-WAIT sockets的快速回收,默認為0,表示關閉。

net.ipv4.tcp_fin_timeout = 30
表示如果套接字由本端要求關閉,這個參數決定了它保持在FIN-WAIT-2狀態的時間。

net.ipv4.tcp_keepalive_time = 1200
表示當keepalive起用的時候,TCP發送keepalive消息的頻度。預設是2小時,改為20分鍾。

net.ipv4.ip_local_port_range = 1024 65000
表示用於向外連接的埠范圍。預設情況下很小:32768到61000,改為1024到65000。

net.ipv4.tcp_max_syn_backlog = 8192
表示SYN隊列的長度,默認為1024,加大隊列長度為8192,可以容納更多等待連接的網路連接數。

net.ipv4.tcp_max_tw_buckets = 5000
表示系統同時保持TIME_WAIT套接字的最大數量,如果超過這個數字,TIME_WAIT套接字將立刻被清除並列印警告信息。默認為 180000,改為 5000。對於Apache、Nginx等伺服器,上幾行的參數可以很好地減少TIME_WAIT套接字數量,但是對於Squid,效果卻不大。此項參數可以控制TIME_WAIT套接字的最大數量,避免Squid伺服器被大量的TIME_WAIT套接字拖死。

Linux上的NAT與iptables
談起Linux上的NAT,大多數人會跟你提到iptables。原因是因為iptables是目前在linux上實現NAT的一個非常好的介面。它通過和內核級直接操作網路包,效率和穩定性都非常高。這里簡單列舉一些NAT相關的iptables實例命令,可能對於大多數實現有多幫助。
這里說明一下,為了節省篇幅,這里把准備工作的命令略去了,僅僅列出核心步驟命令,所以如果你單單執行這些沒有實現功能的話,很可能由於准備工作沒有做好。如果你對整個命令細節感興趣的話,可以直接訪問我的《如何讓你的Linux網關更強大》系列文章,其中對於各個腳本有詳細的說明和描述。

EXTERNAL="eth0"
INTERNAL="eth1"

echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -A POSTROUTING -o $EXTERNAL -j MASQUERADE

LOCAL_EX_IP=11.22.33.44 #設定網關的外網卡ip,對於多ip情況,參考《如何讓你的Linux網關更強大》系列文章
LOCAL_IN_IP=192.168.1.1 #設定網關的內網卡ip
INTERNAL="eth1" #設定內網卡

echo 1 > /proc/sys/net/ipv4/ip_forward

modprobe ip_conntrack_ftp
modprobe ip_nat_ftp

iptables -t nat -A PREROUTING -d $LOCAL_EX_IP -p tcp --dport 80 -j DNAT --to 192.168.1.10

iptables -t nat -A POSTROUTING -d 192.168.1.10 -p tcp --dport 80 -j SNAT --to $LOCAL_IN_IP

iptables -A FORWARD -o $INTERNAL -d 192.168.1.10 -p tcp --dport 80 -j ACCEPT

iptables -t nat -A OUTPUT -d $LOCAL_EX_IP -p tcp --dport 80 -j DNAT --to 192.168.1.10
獲取系統中的NAT信息和診斷錯誤
了解/proc目錄的意義
在Linux系統中,/proc是一個特殊的目錄,proc文件系統是一個偽文件系統,它只存在內存當中,而不佔用外存空間。它包含當前系統的一些參數(variables)和狀態(status)情況。它以文件系統的方式為訪問系統內核數據的操作提供介面
通過/proc可以了解到系統當前的一些重要信息,包括磁碟使用情況,內存使用狀況,硬體信息,網路使用情況等等,很多系統監控工具(如HotSaNIC)都通過/proc目錄獲取系統數據。
另一方面通過直接操作/proc中的參數可以實現系統內核參數的調節,比如是否允許ip轉發,syn-cookie是否打開,tcp超時時間等。
獲得參數的方式:
第一種:cat /proc/xxx/xxx,如 cat /proc/sys/net/ipv4/conf/all/rp_filter
第二種:sysctl xxx.xxx.xxx,如 sysctl net.ipv4.conf.all.rp_filter
改變參數的方式:
第一種:echo value > /proc/xxx/xxx,如 echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter
第二種:sysctl [-w] variable=value,如 sysctl [-w] net.ipv4.conf.all.rp_filter=1
以上設定系統參數的方式只對當前系統有效,重起系統就沒了,想要保存下來,需要寫入/etc/sysctl.conf文件中
通過執行 man 5 proc可以獲得一些關於proc目錄的介紹
查看系統中的NAT情況
和NAT相關的系統變數
/proc/slabinfo:內核緩存使用情況統計信息(Kernel slab allocator statistics)
/proc/sys/net/ipv4/ip_conntrack_max:系統支持的最大ipv4連接數,默認65536(事實上這也是理論最大值)
/proc/sys/net/ipv4/netfilter/ip_conntrack_tcp_timeout_established 已建立的tcp連接的超時時間,默認432000,也就是5天
和NAT相關的狀態值
/proc/net/ip_conntrack:當前的前被跟蹤的連接狀況,nat翻譯表就在這里體現(對於一個網關為主要功能的Linux主機,裡面大部分信息是NAT翻譯表)
/proc/sys/net/ipv4/ip_local_port_range:本地開放埠范圍,這個范圍同樣會間接限制NAT表規模

cat /proc/sys/net/ipv4/ip_conntrack_max

cat /proc/sys/net/ipv4/netfilter/ip_conntrack_tcp_timeout_established

cat /proc/net/ip_conntrack

cat /proc/sys/net/ipv4/ip_local_port_range

wc -l /proc/net/ip_conntrack

grep ip_conntrack /proc/slabinfo | grep -v expect | awk '{print 2;}'

grep ip_conntrack /proc/slabinfo | grep -v expect | awk '{print 3;}'

cat /proc/net/ip_conntrack | cut -d ' ' -f 10 | cut -d '=' -f 2 | sort | uniq -c | sort -nr | head -n 10

cat /proc/net/ip_conntrack | perl -pe s/^(.*?)src/src/g | cut -d ' ' -f1 | cut -d '=' -f2 | sort | uniq -c | sort -nr | head -n 10

D. Linux如何在系統運行過程中修改內核參數

RedHat向管理員提供了非常好的方法,使我們可以在系統運行時更改內核參數,而不需要重新引導系統。這是通過/PRoc虛擬文件系統實現的。/proc/sys目錄下存放著大多數的內核參數,並且設計成可以在系統運行的同時進行更改。下面我們以打開內核的 ip轉發功能為例說明在系統運行時修改內核參數的兩種方法。IP轉發是指允許系統對來源和目的地都不是本機的數據包通過網路,RedHat默認屏蔽此功能,在 需要用本機作為路由器、NAT等情況下需要開啟此功能。 方法一:修改/proc下內核參數文件內容 直接修改內核參數ip_forward對應在/proc下的文件/proc/sys/net/ipv4/ip_forward。用下面命令查看ip_forward文件內容: # cat /proc/sys/net/ipv4/ip_forward 該文件默認值0是禁止ip轉發,修改為1即開啟ip轉發功能。修改命令如下: # echo 1 >/proc/sys/net/ipv4/ip_forward 修改過後就馬上生效,即內核已經打開ip轉發功能。但如果系統重啟後則又恢復為默認值0,如果想永久打開需要通過修改/etc/sysctl.conf文件的內容來實現。 方法二.修改/etc/sysctl.conf文件 默認sysctl.conf文件中有一個變數是 net.ipv4.ip_forward = 0 將後面值改為1,然後保存文件。因為每次系統啟動時初始化腳本/etc/rc.d/rc.sysinit會讀取/etc/sysctl.conf文件的內容,所以修改後每次系統啟動時都會開啟ip轉發功能。但只是修改sysctl文件不會馬上生效,如果想使修改馬上生效可以執行下面的命令: # sysctl –p 在修改其他內核參數時可以向/etc/sysctl.conf文件中添加相應變數即可,下面介紹/proc/sys下內核文件與配置文件 sysctl.conf中變數的對應關系,由於可以修改的內核參數都在/proc/sys目錄下,所以sysctl.conf的變數名省略了目錄的前面部 分(/proc/sys)。 將/proc/sys中的文件轉換成sysctl中的變數依據下面兩個簡單的規則: 1.去掉前面部分/proc/sys 2.將文件名中的斜杠變為點 這兩條規則可以將/proc/sys中的任一文件名轉換成sysctl中的變數名。 例如: /proc/sys/net/ipv4/ip_forward =》 net.ipv4.ip_forward /proc/sys/kernel/hostname =》 kernel.hostname 可以使用下面命令查詢所有可修改的變數名 # sysctl –a 下面例舉幾個簡單的內核參數: 1./proc/sys/kernel/shmmax 該文件指定內核所允許的最大共享內存段的大小。 2./proc/sys/kernel/threads-max 該文件指定內核所能使用的線程的最大數目。 3./proc/sys/kernel/hostname 該文件允許您配置網路主機名。

E. 如何在Linux上通過GRUB添加內核參數

如果你在使用GRUB引導裝載程序,想修改或添加內核參數,你可以編輯GRUB配置文件。下面是針對特定發行版在GRUB的配置文件中添加內核啟動參數的方法。
在Debian或Ubuntu上添加內核啟動參數在基於Debian的系統上,如果你想在系統啟動時添加內核參數,你可以編輯 /etc/default/grub 目錄下的GRUB配置模板。在 GRUB_CMDLINE_LINUX_DEFAULT 變數中以 「name=value」 的格式添加內核參數。
$ sudo -e /etc/default/grub GRUB_CMDLINE_LINUX_DEFAULT="...... name=value"
然後運行下面的命令來生成一個GRUB的配置文件。
$ sudo update-grub 如果無法找到 update-grub 命令,你可以通過下面的命令安裝它。
$ sudo apt-get install grub2-common 在Fedora上添加內核啟動參數在Fedora上,想要在啟動時添加內核參數,你可以編輯 /etc/default/grub目錄下的 GRUB 配置模板。在 GRUB_CMDLINE_LINUX 變數中以 「name=value」 的格式添加內核參數。
$ sudo -e /etc/default/grub GRUB_CMDLINE_LINUX="...... name=value"
然後運行下面的命令生成 GRUB2 配置文件。
$ sudo grub2-mkconfig -o /boot/grub2/grub.cfg 在CentOS上添加內核啟動參數在CentOS上,想要在啟動時添加內核參數,你可以直接編輯GRUB配置文件 /boot/grub/grub.conf。在配置文件中,找到描述默認使用的Linux映像的條目。文件中最頂行的字元串 「default=N」會指示哪一個條目是默認的映像。
找到默認的映像條目後,在以 「kernel /vmlinuz-」 開頭的那一段的結尾附加上內核參數。參數的格式為 「name=value」 。

F. 如何修改 Linux 內核配置

由於Linux的內核參數信息都存在內存中,因此可以通過命令直接修改,並且修改後直接生效。但是,當系統重新啟動後,原來設置的參數值就會丟失,而系統每次啟動時都會自動去/etc/sysctl.conf文件中讀取內核參數,因此將內核的參數配置寫入這個文件中,是一個比較好的選擇。
首先打開/etc/sysctl.conf文件,查看如下兩行的設置值,這里是:
kernel.shmall
=
2097152
kernel.shmmax
=
4294967295
如果系統默認的配置比這里給出的值大,就不要修改原有配置。同時在/etc/sysctl.conf文件最後,添加以下內容:
fs.file-max
=
6553600
kernel.shmmni
=
4096
kernel.sem
=
250
32000
100
128
net.ipv4.ip_local_port_range
=
1024
65000
net.core.rmem_default
=
4194304
net.core.rmem_max
=
4194304
net.core.wmem_default
=
262144
net.core.wmem_max
=
262144
這里的「fs.file-max
=
6553600」其實是由「fs.file-max
=
512
*
PROCESSES」得到的,我們指定PROCESSES的值為12800,即為「fs.file-max
=512
*12800」。
sysctl.conf文件修改完畢後,接著執行「sysctl
-p」使設置生效。
[root@localhost
~]#
sysctl
-p
常用的內核參數的含義如下。
kernel.shmmax:表示單個共享內存段的最大值,以位元組為單位,此值一般為物理內存的一半,不過大一點也沒關系,這里設定的為4GB,即「4294967295/1024/1024/1024=4G」。
kernel.shmmni:表示單個共享內存段的最小值,一般為4kB,即4096bit.
kernel.shmall:表示可用共享內存的總量,單位是頁,在32位系統上一頁等於4kB,也就是4096位元組。
fs.file-max:表示文件句柄的最大數量。文件句柄表示在Linux系統中可以打開的文件數量。
ip_local_port_range:表示埠的范圍,為指定的內容。
kernel.sem:表示設置的信號量,這4個參數內容大小固定。
net.core.rmem_default:表示接收套接字緩沖區大小的預設值(以位元組為單位)。
net.core.rmem_max
:表示接收套接字緩沖區大小的最大值(以位元組為單位)
net.core.wmem_default:表示發送套接字緩沖區大小的預設值(以位元組為單位)。
net.core.wmem_max:表示發送套接字緩沖區大小的最大值(以位元組為單位)。

G. 如何修改linux系統內核參數msgmni

RedHat向管理員提供了非常好的方法,使我們可以在系統運行時更改內核參數,而不需要重新引導系統。這是通過/PRoc虛擬文件系統實現的。/proc/sys目錄下存放著大多數的內核參數,並且設計成可以在系統運行的同時進行更改。下面我們以打開內核的
ip...

H. Linux內核參數之arp_ignore和arp_announce

arp_ignore和arp_announce參數都和ARP協議相關,主要用於控制系統返回arp響應和發送arp請求時的動作。這兩個參數很重要,特別是在LVS的DR場景下,它們的配置直接影響到DR轉發是否正常。

首先看一下Linux內核文檔中對於它們的描述:

arp_ignore - INTEGER

Define different modes for sending replies in response to

received ARP requests that resolve local target IP addresses:

0 - (default): reply for any local target IP address, configured

on any interface

1 - reply only if the target IP address is local address

configured on the incoming interface

2 - reply only if the target IP address is local address

configured on the incoming interface and both with the

sender's IP address are part from same subnet on this interface

3 - do not reply for local addresses configured with scope host,

only resolutions for global and link addresses are replied

4-7 - reserved

8 - do not reply for all local addresses

The max value from conf/{all,interface}/arp_ignore is used

when ARP request is received on the {interface}

arp_ignore參數的作用是控制系統在收到外部的arp請求時,是否要返回arp響應。

arp_ignore參數常用的取值主要有0,1,2,3~8較少用到:

0:響應任意網卡上接收到的對本機IP地址的arp請求(包括環回網卡上的地址),而不管該目的IP是否在接收網卡上。

1:只響應目的IP地址為接收網卡上的本地地址的arp請求。

2:只響應目的IP地址為接收網卡上的本地地址的arp請求,並且arp請求的源IP必須和接收網卡同網段。

3:如果ARP請求數據包所請求的IP地址對應的本地地址其作用域(scope)為主機(host),則不回應ARP響應數據包,如果作用域為全局(global)或鏈路(link),則回應ARP響應數據包。

4~7:保留未使用

8:不回應所有的arp請求

sysctl.conf中包含all和eth/lo(具體網卡)的arp_ignore參數,取其中較大的值生效。

arp_announce - INTEGER

Define different restriction levels for announcing the local

source IP address from IP packets in ARP requests sent on

interface:

0 - (default) Use any local address, configured on any interface

1 - Try to avoid local addresses that are not in the target's

subnet for this interface. This mode is useful when target

hosts reachable via this interface require the source IP

address in ARP requests to be part of their logical network

configured on the receiving interface. When we generate the

request we will check all our subnets that include the

target IP and will preserve the source address if it is from

such subnet. If there is no such subnet we select source

address according to the rules for level 2.

2 - Always use the best local address for this target.

In this mode we ignore the source address in the IP packet

and try to select local address that we prefer for talks with

the target host. Such local address is selected by looking

for primary IP addresses on all our subnets on the outgoing

interface that include the target IP address. If no suitable

local address is found we select the first local address

we have on the outgoing interface or on all other interfaces,

with the hope we will receive reply for our request and

even sometimes no matter the source IP address we announce.

The max value from conf/{all,interface}/arp_announce is used.

arp_announce的作用是控制系統在對外發送arp請求時,如何選擇arp請求數據包的源IP地址。(比如系統准備通過網卡發送一個數據包a,這時數據包a的源IP和目的IP一般都是知道的,而根據目的IP查詢路由表,發送網卡也是確定的,故源MAC地址也是知道的,這時就差確定目的MAC地址了。而想要獲取目的IP對應的目的MAC地址,就需要發送arp請求。arp請求的目的IP自然就是想要獲取其MAC地址的IP,而arp請求的源IP是什麼呢? 可能第一反應會以為肯定是數據包a的源IP地址,但是這個也不是一定的,arp請求的源IP是可以選擇的,控制這個地址如何選擇就是arp_announce的作用)

arp_announce參數常用的取值有0,1,2。

0:允許使用任意網卡上的IP地址作為arp請求的源IP,通常就是使用數據包a的源IP。

1:盡量避免使用不屬於該發送網卡子網的本地地址作為發送arp請求的源IP地址。

2:忽略IP數據包的源IP地址,選擇該發送網卡上最合適的本地地址作為arp請求的源IP地址。

sysctl.conf中包含all和eth/lo(具體網卡)的arp_ignore參數,取其中較大的值生效。

(1)當arp_ignore參數配置為0時,eth1網卡上收到目的IP為環回網卡IP的arp請求,但是eth1也會返回arp響應,把自己的mac地址告訴對端。

(2)當arp_ignore參數配置為1時,eth1網卡上收到目的IP為環回網卡IP的arp請求,發現請求的IP不是自己網卡上的IP,不會回arp響應。

(3)當arp_announce參數配置為0時,系統要發送的IP包源地址為eth1的地址,IP包目的地址根據路由表查詢判斷需要從eth2網卡發出,這時會先從eth2網卡發起一個arp請求,用於獲取目的IP地址的MAC地址。該arp請求的源MAC自然是eth2網卡的MAC地址,但是源IP地址會選擇eth1網卡的地址。

(4)當arp_announce參數配置為2時,eth2網卡發起arp請求時,源IP地址會選擇eth2網卡自身的IP地址。

因為DR模式下,每個真實伺服器節點都要在環回網卡上綁定虛擬服務IP。這時候,如果客戶端對於虛擬服務IP的arp請求廣播到了各個真實伺服器節點,如果arp_ignore參數配置為0,則各個真實伺服器節點都會響應該arp請求,此時客戶端就無法正確獲取LVS節點上正確的虛擬服務IP所在網卡的MAC地址。假如某個真實伺服器節點A的網卡eth1響應了該arp請求,客戶端把A節點的eth1網卡的MAC地址誤認為是LVS節點的虛擬服務IP所在網卡的MAC,從而將業務請求消息直接發到了A節點的eth1網卡。這時候雖然因為A節點在環回網卡上也綁定了虛擬服務IP,所以A節點也能正常處理請求,業務暫時不會受到影響。但時此時由於客戶端請求沒有發到LVS的虛擬服務IP上,所以LVS的負載均衡能力沒有生效。造成的後果就是,A節點一直在單節點運行,業務量過大時可能會出現性能瓶頸。

所以DR模式下要求arp_ignore參數要求配置為1。

每個機器或者交換機中都有一張arp表,該表用於存儲對端通信節點IP地址和MAC地址的對應關系。當收到一個未知IP地址的arp請求,就會再本機的arp表中新增對端的IP和MAC記錄;當收到一個已知IP地址(arp表中已有記錄的地址)的arp請求,則會根據arp請求中的源MAC刷新自己的arp表。

如果arp_announce參數配置為0,則網卡在發送arp請求時,可能選擇的源IP地址並不是該網卡自身的IP地址,這時候收到該arp請求的其他節點或者交換機上的arp表中記錄的該網卡IP和MAC的對應關系就不正確,可能會引發一些未知的網路問題,存在安全隱患。

所以DR模式下要求arp_announce參數要求配置為2。

arp_ignore和arp_announce參數分別有all,default,lo,eth1,eth2...等對應不同網卡的具體參數。當all和具體網卡的參數值不一致時,取較大值生效。

一般只需修改all和某個具體網卡的參數即可(取決於你需要修改哪個網卡)。下面以修改lo網卡為例:

net.ipv4.conf.all.arp_ignore=1

net.ipv4.conf.lo.arp_ignore=1

net.ipv4.conf.all.arp_announce=2

net.ipv4.conf.lo.arp_announce=2

sysctl -w net.ipv4.conf.all.arp_ignore=1

sysctl -w net.ipv4.conf.lo.arp_ignore=1

sysctl -w net.ipv4.conf.all.arp_announce=2

sysctl -w net.ipv4.conf.lo.arp_announce=2

echo "1">/proc/sys/net/ipv4/conf/all/arp_ignore

echo "1">/proc/sys/net/ipv4/conf/lo/arp_ignore

echo "2">/proc/sys/net/ipv4/conf/all/arp_announce

echo "2">/proc/sys/net/ipv4/conf/lo/arp_announce

I. 怎麼修改linux 內核主頻 csdn

修改/etc/sysctl.conf,可參考如下參數:

net.ipv4.ip_local_port_range=102465000
net.core.rmem_max=16777216
net.core.wmem_max=16777216
net.ipv4.tcp_rmem=40968738016777216
net.ipv4.tcp_wmem=40966553616777216
net.ipv4.tcp_fin_timeout=10
net.ipv4.tcp_tw_recycle=1
net.ipv4.tcp_timestamps=0
net.ipv4.tcp_window_scaling=0
net.ipv4.tcp_sack=0
net.core.netdev_max_backlog=50000
net.ipv4.tcp_no_metrics_save=1
net.core.somaxconn=262144
net.ipv4.tcp_syncookies=0
net.ipv4.tcp_max_orphans=262144
net.ipv4.tcp_max_syn_backlog=262144
net.ipv4.tcp_synack_retries=2
net.ipv4.tcp_syn_retries=2
#net.ipv4.ip_conntrack_max=10240

J. RedHatLinux修改內核參數,不是很懂,求指點,謝謝

/proc 裡面的文件都不是真的,他是一個特殊的文件系統。
修改這些設置我記得是在 /etc/ 裡面有一個配置,設置好後用一個軟體來刷新這個內核配置。
如果自己直接修改的話,最好是 echo xxxxx > /proc/xxx/xxx/xxx 的方式修改。

閱讀全文

與linux修改內核參數相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:758
蘋果郵件無法連接伺服器地址 瀏覽:963
phpffmpeg轉碼 瀏覽:672
長沙好玩的解壓項目 瀏覽:145
專屬學情分析報告是什麼app 瀏覽:564
php工程部署 瀏覽:833
android全屏透明 瀏覽:737
阿里雲伺服器已開通怎麼辦 瀏覽:803
光遇為什麼登錄時伺服器已滿 瀏覽:302
PDF分析 瀏覽:486
h3c光纖全工半全工設置命令 瀏覽:143
公司法pdf下載 瀏覽:383
linuxmarkdown 瀏覽:350
華為手機怎麼多選文件夾 瀏覽:683
如何取消命令方塊指令 瀏覽:350
風翼app為什麼進不去了 瀏覽:779
im4java壓縮圖片 瀏覽:362
數據查詢網站源碼 瀏覽:151
伊克塞爾文檔怎麼進行加密 瀏覽:893
app轉賬是什麼 瀏覽:163