導航:首頁 > 操作系統 > linux設備驅動架構

linux設備驅動架構

發布時間:2022-11-08 06:24:22

『壹』 linux網路設備驅動的結構

Linux網路設備驅動程序的體系結構從上到下可以劃分為4層,依次為網路協議介面層、網路設備介面層、提供實際功能的設備驅動功能層以及網路設備與媒介層,這4層的作用如下所示。
1)網路協議介面層向網路層協議提供統一的數據包收發介面,不論上層協議是ARP,還是IP,都通過dev_queue_xmit() 函數發送數據,並通過netif rx ()函數接收數據。這一層的存在使得上層協議獨立於具體的設備。
2)網路設備介面層向協議介面層提供統一的用於描述具體網路設備屬性和操作的結構體net device,該結構體是設備驅動功能層中各函數的容器。實際上,網路設備介面層從宏觀上規劃了具體操作硬體的設備驅動功能層的結構。
3)設備驅動功能層的各函數是網路設備介面層net_device數據結構的具體成員,是驅使網路設備硬體完成相應動作的程序,它通過hard_start_ xmit ()函數啟動發送操作,並通過網路設備上的中斷觸發接收操作。
4)網路設備與媒介層是完成數據包發送和接收的物理實體,包括網路適配器和具體的傳輸媒介,網路適配器被設備驅動功能層中的函數在物理上驅動。對於Linux系統而言,網路設備和媒介都可以是虛擬的。

『貳』 Linux USB主機控制器驅動的整體結構

USB主機控制器有這些規格:OHCI (Open Host Controller Interface)、UHCI (Universal HostController Interface)、EHCI (Enhanced Host Controller Interface)和xHCI (eXtensible Host ControllerInterface)。OHCI驅動程序用來為非PC系統上以及帶有SiS和ALi晶元組的PC主板上的USB晶元提供支持。UHCI驅動程序多用來為大多數其他PC主板(包括Intel和Via)上的USB晶元提供支持。EHCI由USB2.0規范所提出,它兼容於OHCI和UHCI。由於UHCI的硬體線路比OHCI簡單,所以成本較低,但需要較復雜的驅動程序,CPU負荷稍重。xHCI,即可擴展的主機控制器介面是Intel公司開發的一個USB主機控制器介面,它目前主要是面向USB 3.0的,同時它也支持USB 2.0及以下的設備。
1.主機控制器驅動
在Linux內核中,用usb hed結構體描述USB主機控制器驅動,它包含USB主機控制器的「家務」信息、硬體資源、狀態描述和用於操作主機控制器的hc_driver。
2.EHCI主機控制器驅動
EHCI HCD驅動屬於HCD驅動的實例,它定義了一個ehci_hed結構體,通常作為代碼清單16.6定義的usb_hed結構體的私有數據(hed_priv),這個結構體的定義位於rivers/usb/host/ehci.h中。

『叄』 《Linux內核探秘深入解析文件系統和設備驅動的架構與設計》epub下載在線閱讀,求百度網盤雲資源

《Linux內核探秘》(高劍林)電子書網盤下載免費在線閱讀

資源鏈接:

鏈接:https://pan..com/s/1X0FBrzSSo0dOW1ZL0dGxqg

提取碼:t247

書名:Linux內核探秘

作者:高劍林

豆瓣評分:6.7

出版社:機械工業出版社

出版年份:2013-12-1

頁數:232

內容簡介:

《Linux內核探秘:深入解析文件系統和設備驅動的架構與設計》從工業需求角度出發,注重效率和實用性,是幫助內核研發及調試、驅動開發等領域工程師正確認識並高效利用Linux內核的難得佳作!作者是騰訊公司資深的Linux內核專家和存儲系統專家,在該領域工作和研究的10餘年間,面試了數百位Linux內核工程師,深知學習Linux內核過程中經常遇到的困惑,以及在工作中容易犯的錯誤。基於這些原因作者撰寫了本書。本書出發點和寫作方式可謂獨辟蹊徑,將Linux內核分為兩個維度,一是基礎部分和應用部分,二是內核架構和內核實現,將兩個維有機統一,深入分析了Linux內核的文件系統、設備驅動的架構設計與實現原理。

《Linux內核探秘:深入解析文件系統和設備驅動的架構與設計》在邏輯上分為三部分:第一部分(第1~2章)首先將內核層劃分為基礎層和應用層,講解了基礎層包含的服務和數據結構,以及應用層包含的各種功能,然後對文件系統的架構進行了提綱挈領的介紹,為讀者學習後面的知識打下基礎;第二部分(第3~9章)從設備到匯流排到驅動,逐步深入,剖析了設備的總體架構、為設備服務的特殊文件系統sysfs、字元設備和input設備、platform匯流排、serio匯流排、PCI匯流排、塊設備的實現原理和工作機制;第三部分(第10~13章)對文件系統的讀寫機制進行了深入分析,最後通過一個真實文件系統ext2,復習本書所有知識點。

作者簡介:

高劍林,資深Linux內核專家、存儲系統專家、嵌入式系統專家。先後就職於華為、UT斯達康、賽門鐵克等公司,從事路由器設備研發、軟體開發和存儲系統研究相關的工作10餘年,經驗非常豐富。現就職於騰訊,負責存儲系統的開發和研究。

『肆』 Linux驅動的軟體架構

Linux不是為了某單一電路板而設計的操作系統,它可以支持約30種體系結構下一定數量的硬體,因此,它的驅動架構很顯然不能像RTOS下或者無操作系統下那麼小兒科的做法。Linux設備驅動非常重視軟體的可重用和跨平台能力。譬如,如果我們寫下一個DM9000網卡的驅動,Linux的想法是這個驅動應該最好一行都不要改就可以在任何一個平台上跑起來。
#ifdef BOARD_Xxx
#define DM9000_BASE 0x100oo#define DM900o_IRQ 8
#elif defined(BOARD_YYY)#define DM9000_BASEox200oo#define DM90oo_IRo 7
#elif defined (BOARD_Z2Z)#define DM9000_BASEox3000o#define DM9o0o_IRQ9...
#endif
上述代碼主要有如下問題:
1)此段代碼看起來面目可憎,如果有100個板子,就要iflelse 100次,到了第101個板子,又得重新加ifelse。代碼進行著簡單的「復制—粘貼」,「復制—粘貼」式的簡單重復通常意味著代碼編寫者的水平很差。
2)非常難做到一個驅動支持多個設備,如果某個電路板上有兩個DM9000網卡,則DM9000_BASE這個宏就不夠用了,此時勢必要定義出來DM9000_BASE 1、DM9000_BASE 2、DM9000_IRQ 1、DM9000_IRQ 2類的宏;定義了DM9000_BASE 1、DM9000_BASE2後,如果又有第3個DM9000網卡加到板子上,前面的代碼就又不適用了。
3)依賴於make menuconfig選擇的項目來編譯內核,因此,在不同的硬體平台下要依賴於所選擇的BOARD_XXX、BOARD_YYY選項來決定代碼邏輯。這不符合ARM Linux 3.x一個映像適用於多個硬體的目標。實際上,我們可能同時選擇了BOARD_XXX、BOARD_YYY、BOARD_ZZZ。
我們按照上面的方法編寫代碼的時候,相信自己編著編著也會覺得奇怪,代碼不好。這個時候,我們有沒有辦法把設備端的信息從驅動裡面剝離出來,讓驅動以某種標准方法拿到這些平台信息呢Linux匯流排、設備和驅動模型實際上可以做到這一點,驅動就可以放之四海而皆準了。

『伍』 Linux字元設備驅動的組成

在Linux中,字元設備驅動由如下幾個部分組成。
1.字元設備驅動模塊載入與卸載函數
在字元設備驅動模塊載入函數中應該實現設備號的申請和cdev的注冊,而在卸載函數中應實現設備號
的釋放和cdev的注銷。
Linux內核的編碼習慣是為設備定義一個設備相關的結構體,該結構體包含設備所涉及的cdev、私有
數據及鎖等信息。2.字元設備驅動的file_operations結構體中的成員函數
file_operations結構體中的成員函數是字元設備驅動與內核虛擬文件系統的介面,是用戶空間對Linux
進行系統調用最終的落實者。設備驅動的讀函數中,filp是文件結構體指針,buf是用戶空間內存的地址,該地址在內核空間不宜直
接讀寫,count是要讀的位元組數,f_pos是讀的位置相對於文件開頭的偏移。
設備驅動的寫函數中,filp是文件結構體指針,buf是用戶空間內存的地址,該地址在內核空間不宜直
接讀寫,count是要寫的位元組數,f_pos是寫的位置相對於文件開頭的偏移。
由於用戶空間不能直接訪問內核空間的內存,因此藉助了函數_from_user()完成用戶空間緩沖
區到內核空間的復制,以及_to_user()完成內核空間到用戶空間緩沖區的復制,見代碼第6行和第14
行。
完成內核空間和用戶空間內存復制的_from_user()和_to_user()的原型分別為:
unsigned long _from_user(void *to, const void _ _user *from, unsigned long count);
unsigned long _to_user(void _ _user *to, const void *from, unsigned long count);
上述函數均返回不能被復制的位元組數,因此,如果完全復製成功,返回值為0。如果復制失敗,則返
回負值。如果要復制的內存是簡單類型,如char、int、long等,則可以使用簡單的put_user()和
get_user()讀和寫函數中的_user是一個宏,表明其後的指針指向用戶空間,實際上更多地充當了代碼自注釋的
功能。內核空間雖然可以訪問用戶空間的緩沖區,但是在訪問之前,一般需要先檢查其合法性,通過
access_ok(type,addr,size)進行判斷,以確定傳入的緩沖區的確屬於用戶空間。

『陸』 LINUX 終端設備驅動

在Linux系統中,終端是一種字元型設備,它有多種類型,通常使用tty (Teletype)來簡稱各種類型的終端設備。對於嵌入式系統而言,最普遍採用的是UART (Universal Asynchronous Receiver/Transmitter)串列埠,日常生活中簡稱串口。
Linux內核中tty的層次結構它包含tty核心tty_10.c、tty或路規在n_tty.C(頭現N_11Y線路規程)和tty驅動實例xxx_tty.c,tty線路規程的工作是以特殊的方式格式化從一個用戶或者硬體收到的數據,這種格式化常常採用一個協議轉換的形式tty _io.c本身是一個標準的字元設備驅動,它對上有字元改備的職貢,買現tle_operatIonS雙貝圖效。但是tty核心層對下又定義了tty_driver的架構,這樣tty設備驅動的主體工作就變成了琪允tty_driVeT依構體中的成員,實現其中的tty_operations的成員函數,而不再是去實現file_operations這一級的工作。tty設備發送數據的流程為:tty核心從一個用戶獲取將要發送給一個tty設備的數據,tty核心將數據傳遞給tty線路規程驅動,接著數據被傳遞到tty驅動,tty驅動將數據轉換為可以發送給硬體的格式。接收數據的流程為:從tty硬體接收到的數據向上交給tty驅動,接著進入tty線路規程驅動,再進入tty核心,在這里它被一個用戶獲取。盡管一個特定的底層UART設備驅動完全可以遵循上述tty_driver的方法來設計,即定義tty_driver並實現tty_operations中的成員函數,但是鑒於串口之間的共性,Linux考慮在文件drivers'ttyliserial'serial_core.c中實現了UART設備的通用tty驅動層(我們可以稱其為串口核心層)。這樣,UART驅動的主要任務就進一步演變成了實現serial-core.c中定義的一組uart_xxx介面而不是tty_xxx介面。因此,按照面向對象的思想,可以認為tty_driver是字元設備的泛化、serial-core是tty_driver的泛化,而具體的串口驅動又是serial-core的泛化。

『柒』 linux驅動程序結構框架及工作原理分別是什麼

一、Linux device driver 的概念

系統調用是操作系統內核和應用程序之間的介面,設備驅動程序是操作系統內核和機器硬體之間的介面。設備驅動程序為應用程序屏蔽了硬體的細節,這樣在應用程序看來,硬體設備只是一個設備文件,應用程序可以象操作普通文件一樣對硬體設備進行操作。設備驅動程序是內核的一部分,它完成以下的功能:

1、對設備初始化和釋放;

2、把數據從內核傳送到硬體和從硬體讀取數據;

3、讀取應用程序傳送給設備文件的數據和回送應用程序請求的數據;

4、檢測和處理設備出現的錯誤。

在Linux操作系統下有三類主要的設備文件類型,一是字元設備,二是塊設備,三是網路設備。字元設備和塊設備的主要區別是:在對字元設備發出讀/寫請求時,實際的硬體I/O一般就緊接著發生了,塊設備則不然,它利用一塊系統內存作緩沖區,當用戶進程對設備請求能滿足用戶的要求,就返回請求的數據,如果不能,就調用請求函數來進行實際的I/O操作。塊設備是主要針對磁碟等慢速設備設計的,以免耗費過多的CPU時間來等待。

已經提到,用戶進程是通過設備文件來與實際的硬體打交道。每個設備文件都都有其文件屬性(c/b),表示是字元設備還是塊設備?另外每個文件都有兩個設備號,第一個是主設備號,標識驅動程序,第二個是從設備號,標識使用同一個設備驅動程序的不同的硬體設備,比如有兩個軟盤,就可以用從設備號來區分他們。設備文件的的主設備號必須與設備驅動程序在登記時申請的主設備號一致,否則用戶進程將無法訪問到驅動程序。

最後必須提到的是,在用戶進程調用驅動程序時,系統進入核心態,這時不再是搶先式調度。也就是說,系統必須在你的驅動程序的子函數返回後才能進行其他的工作。如果你的驅動程序陷入死循環,不幸的是你只有重新啟動機器了,然後就是漫長的fsck。

二、實例剖析

我們來寫一個最簡單的字元設備驅動程序。雖然它什麼也不做,但是通過它可以了解Linux的設備驅動程序的工作原理。把下面的C代碼輸入機器,你就會獲得一個真正的設備驅動程序。

由於用戶進程是通過設備文件同硬體打交道,對設備文件的操作方式不外乎就是一些系統調用,如 open,read,write,close…, 注意,不是fopen, fread,但是如何把系統調用和驅動程序關聯起來呢?這需要了解一個非常關鍵的數據結構:

STruct file_operatiONs {

int (*seek) (struct inode * ,struct file *, off_t ,int);

int (*read) (struct inode * ,struct file *, char ,int);

int (*write) (struct inode * ,struct file *, off_t ,int);

int (*readdir) (struct inode * ,struct file *, struct dirent * ,int);

int (*select) (struct inode * ,struct file *, int ,select_table *);

int (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long);

int (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);

int (*open) (struct inode * ,struct file *);

int (*release) (struct inode * ,struct file *);

int (*fsync) (struct inode * ,struct file *);

int (*fasync) (struct inode * ,struct file *,int);

int (*check_media_change) (struct inode * ,struct file *);

int (*revalidate) (dev_t dev);

}

這個結構的每一個成員的名字都對應著一個系統調用。用戶進程利用系統調用在對設備文件進行諸如read/write操作時,系統調用通過設備文件的主設備號找到相應的設備驅動程序,然後讀取這個數據結構相應的函數指針,接著把控制權交給該函數。這是linux的設備驅動程序工作的基本原理。既然是這樣,則編寫設備驅動程序的主要工作就是編寫子函數,並填充file_operations的各個域。

下面就開始寫子程序。

#include <linux/types.h> 基本的類型定義

#include <linux/fs.h> 文件系統使用相關的頭文件

#include <linux/mm.h>

#include <linux/errno.h>

#include <asm/segment.h>

unsigned int test_major = 0;

static int read_test(struct inode *inode,struct file *file,char *buf,int count)

{

int left; 用戶空間和內核空間

if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )

return -EFAULT;

for(left = count ; left > 0 ; left--)

{

__put_user(1,buf,1);

buf++;

}

return count;

}

這個函數是為read調用准備的。當調用read時,read_test()被調用,它把用戶的緩沖區全部寫1。buf 是read調用的一個參數。它是用戶進程空間的一個地址。但是在read_test被調用時,系統進入核心態。所以不能使用buf這個地址,必須用__put_user(),這是kernel提供的一個函數,用於向用戶傳送數據。另外還有很多類似功能的函數。請參考,在向用戶空間拷貝數據之前,必須驗證buf是否可用。這就用到函數verify_area。為了驗證BUF是否可以用。

static int write_test(struct inode *inode,struct file *file,const char *buf,int count)

{

return count;

}

static int open_test(struct inode *inode,struct file *file )

{

MOD_INC_USE_COUNT; 模塊計數加以,表示當前內核有個設備載入內核當中去

return 0;

}

static void release_test(struct inode *inode,struct file *file )

{

MOD_DEC_USE_COUNT;

}

這幾個函數都是空操作。實際調用發生時什麼也不做,他們僅僅為下面的結構提供函數指針。

struct file_operations test_fops = {?

read_test,

write_test,

open_test,

release_test,

};

設備驅動程序的主體可以說是寫好了。現在要把驅動程序嵌入內核。驅動程序可以按照兩種方式編譯。一種是編譯進kernel,另一種是編譯成模塊(moles),如果編譯進內核的話,會增加內核的大小,還要改動內核的源文件,而且不能動態的卸載,不利於調試,所以推薦使用模塊方式。

int init_mole(void)

{

int result;

result = register_chrdev(0, "test", &test_fops); 對設備操作的整個介面

if (result < 0) {

printk(KERN_INFO "test: can't get major number\n");

return result;

}

if (test_major == 0) test_major = result; /* dynamic */

return 0;

}

在用insmod命令將編譯好的模塊調入內存時,init_mole 函數被調用。在這里,init_mole只做了一件事,就是向系統的字元設備表登記了一個字元設備。register_chrdev需要三個參數,參數一是希望獲得的設備號,如果是零的話,系統將選擇一個沒有被佔用的設備號返回。參數二是設備文件名,參數三用來登記驅動程序實際執行操作的函數的指針。

如果登記成功,返回設備的主設備號,不成功,返回一個負值。

void cleanup_mole(void)

{

unregister_chrdev(test_major,"test");

}

在用rmmod卸載模塊時,cleanup_mole函數被調用,它釋放字元設備test在系統字元設備表中佔有的表項。

一個極其簡單的字元設備可以說寫好了,文件名就叫test.c吧。

下面編譯 :

$ gcc -O2 -DMODULE -D__KERNEL__ -c test.c –c表示輸出制定名,自動生成.o文件

得到文件test.o就是一個設備驅動程序。

如果設備驅動程序有多個文件,把每個文件按上面的命令行編譯,然後

ld ?-r ?file1.o ?file2.o ?-o ?molename。

驅動程序已經編譯好了,現在把它安裝到系統中去。

$ insmod ?–f ?test.o

如果安裝成功,在/proc/devices文件中就可以看到設備test,並可以看到它的主設備號。要卸載的話,運行 :

$ rmmod test

下一步要創建設備文件。

mknod /dev/test c major minor

c 是指字元設備,major是主設備號,就是在/proc/devices里看到的。

用shell命令

$ cat /proc/devices

就可以獲得主設備號,可以把上面的命令行加入你的shell script中去。

minor是從設備號,設置成0就可以了。

我們現在可以通過設備文件來訪問我們的驅動程序。寫一個小小的測試程序。

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

main()

{

int testdev;

int i;

char buf[10];

testdev = open("/dev/test",O_RDWR);

if ( testdev == -1 )

{

printf("Cann't open file \n");

exit(0);

}

read(testdev,buf,10);

for (i = 0; i < 10;i++)

printf("%d\n",buf[i]);

close(testdev);

}

編譯運行,看看是不是列印出全1

以上只是一個簡單的演示。真正實用的驅動程序要復雜的多,要處理如中斷,DMA,I/O port等問題。這些才是真正的難點。上述給出了一個簡單的字元設備驅動編寫的框架和原理,更為復雜的編寫需要去認真研究LINUX內核的運行機制和具體的設備運行的機制等等。希望大家好好掌握LINUX設備驅動程序編寫的方法。

『捌』 解釋一下linux驅動程序結構框架及工作原理

一、Linux device driver 的概念

系統調用是操作系統內核和應用程序之間的介面,設備驅動程序是操作系統內核和機器硬體之間的介面。設備驅動程序為應用程序屏蔽了硬體的細節,這樣在應用程序看來,硬體設備只是一個設備文件,應用程序可以象操作普通文件一樣對硬體設備進行操作。設備驅動程序是內核的一部分,它完成以下的功能:

1、對設備初始化和釋放;

2、把數據從內核傳送到硬體和從硬體讀取數據;

3、讀取應用程序傳送給設備文件的數據和回送應用程序請求的數據;

4、檢測和處理設備出現的錯誤。

在Linux操作系統下有三類主要的設備文件類型,一是字元設備,二是塊設備,三是網路設備。字元設備和塊設備的主要區別是:在對字元設備發出讀/寫請求時,實際的硬體I/O一般就緊接著發生了,塊設備則不然,它利用一塊系統內存作緩沖區,當用戶進程對設備請求能滿足用戶的要求,就返回請求的數據,如果不能,就調用請求函數來進行實際的I/O操作。塊設備是主要針對磁碟等慢速設備設計的,以免耗費過多的CPU時間來等待。

已經提到,用戶進程是通過設備文件來與實際的硬體打交道。每個設備文件都都有其文件屬性(c/b),表示是字元設備還是塊設備?另外每個文件都有兩個設備號,第一個是主設備號,標識驅動程序,第二個是從設備號,標識使用同一個設備驅動程序的不同的硬體設備,比如有兩個軟盤,就可以用從設備號來區分他們。設備文件的的主設備號必須與設備驅動程序在登記時申請的主設備號一致,否則用戶進程將無法訪問到驅動程序。

最後必須提到的是,在用戶進程調用驅動程序時,系統進入核心態,這時不再是搶先式調度。也就是說,系統必須在你的驅動程序的子函數返回後才能進行其他的工作。如果你的驅動程序陷入死循環,不幸的是你只有重新啟動機器了,然後就是漫長的fsck。

二、實例剖析

我們來寫一個最簡單的字元設備驅動程序。雖然它什麼也不做,但是通過它可以了解Linux的設備驅動程序的工作原理。把下面的C代碼輸入機器,你就會獲得一個真正的設備驅動程序。

由於用戶進程是通過設備文件同硬體打交道,對設備文件的操作方式不外乎就是一些系統調用,如 open,read,write,close…, 注意,不是fopen, fread,但是如何把系統調用和驅動程序關聯起來呢?這需要了解一個非常關鍵的數據結構:

STruct file_operatiONs {

int (*seek) (struct inode * ,struct file *, off_t ,int);

int (*read) (struct inode * ,struct file *, char ,int);

int (*write) (struct inode * ,struct file *, off_t ,int);

int (*readdir) (struct inode * ,struct file *, struct dirent * ,int);

int (*select) (struct inode * ,struct file *, int ,select_table *);

int (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long);

int (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);

int (*open) (struct inode * ,struct file *);

int (*release) (struct inode * ,struct file *);

int (*fsync) (struct inode * ,struct file *);

int (*fasync) (struct inode * ,struct file *,int);

int (*check_media_change) (struct inode * ,struct file *);

int (*revalidate) (dev_t dev);

}

這個結構的每一個成員的名字都對應著一個系統調用。用戶進程利用系統調用在對設備文件進行諸如read/write操作時,系統調用通過設備文件的主設備號找到相應的設備驅動程序,然後讀取這個數據結構相應的函數指針,接著把控制權交給該函數。這是linux的設備驅動程序工作的基本原理。既然是這樣,則編寫設備驅動程序的主要工作就是編寫子函數,並填充file_operations的各個域。

下面就開始寫子程序。

#include <linux/types.h> 基本的類型定義

#include <linux/fs.h> 文件系統使用相關的頭文件

#include <linux/mm.h>

#include <linux/errno.h>

#include <asm/segment.h>

unsigned int test_major = 0;

static int read_test(struct inode *inode,struct file *file,char *buf,int count)

{

int left; 用戶空間和內核空間

if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )

return -EFAULT;

for(left = count ; left > 0 ; left--)

{

__put_user(1,buf,1);

buf++;

}

return count;

}

這個函數是為read調用准備的。當調用read時,read_test()被調用,它把用戶的緩沖區全部寫1。buf 是read調用的一個參數。它是用戶進程空間的一個地址。但是在read_test被調用時,系統進入核心態。所以不能使用buf這個地址,必須用__put_user(),這是kernel提供的一個函數,用於向用戶傳送數據。另外還有很多類似功能的函數。請參考,在向用戶空間拷貝數據之前,必須驗證buf是否可用。這就用到函數verify_area。為了驗證BUF是否可以用。

static int write_test(struct inode *inode,struct file *file,const char *buf,int count)

{

return count;

}

static int open_test(struct inode *inode,struct file *file )

{

MOD_INC_USE_COUNT; 模塊計數加以,表示當前內核有個設備載入內核當中去

return 0;

}

static void release_test(struct inode *inode,struct file *file )

{

MOD_DEC_USE_COUNT;

}

這幾個函數都是空操作。實際調用發生時什麼也不做,他們僅僅為下面的結構提供函數指針。

struct file_operations test_fops = {?

read_test,

write_test,

open_test,

release_test,

};

設備驅動程序的主體可以說是寫好了。現在要把驅動程序嵌入內核。驅動程序可以按照兩種方式編譯。一種是編譯進kernel,另一種是編譯成模塊(moles),如果編譯進內核的話,會增加內核的大小,還要改動內核的源文件,而且不能動態的卸載,不利於調試,所以推薦使用模塊方式。

int init_mole(void)

{

int result;

result = register_chrdev(0, "test", &test_fops); 對設備操作的整個介面

if (result < 0) {

printk(KERN_INFO "test: can't get major number\n");

return result;

}

if (test_major == 0) test_major = result; /* dynamic */

return 0;

}

在用insmod命令將編譯好的模塊調入內存時,init_mole 函數被調用。在這里,init_mole只做了一件事,就是向系統的字元設備表登記了一個字元設備。register_chrdev需要三個參數,參數一是希望獲得的設備號,如果是零的話,系統將選擇一個沒有被佔用的設備號返回。參數二是設備文件名,參數三用來登記驅動程序實際執行操作的函數的指針。

如果登記成功,返回設備的主設備號,不成功,返回一個負值。

void cleanup_mole(void)

{

unregister_chrdev(test_major,"test");

}

在用rmmod卸載模塊時,cleanup_mole函數被調用,它釋放字元設備test在系統字元設備表中佔有的表項。

一個極其簡單的字元設備可以說寫好了,文件名就叫test.c吧。

下面編譯 :

$ gcc -O2 -DMODULE -D__KERNEL__ -c test.c –c表示輸出制定名,自動生成.o文件

得到文件test.o就是一個設備驅動程序。

如果設備驅動程序有多個文件,把每個文件按上面的命令行編譯,然後

ld ?-r ?file1.o ?file2.o ?-o ?molename。

驅動程序已經編譯好了,現在把它安裝到系統中去。

$ insmod ?–f ?test.o

如果安裝成功,在/proc/devices文件中就可以看到設備test,並可以看到它的主設備號。要卸載的話,運行 :

$ rmmod test

下一步要創建設備文件。

mknod /dev/test c major minor

c 是指字元設備,major是主設備號,就是在/proc/devices里看到的。

用shell命令

$ cat /proc/devices

就可以獲得主設備號,可以把上面的命令行加入你的shell script中去。

minor是從設備號,設置成0就可以了。

我們現在可以通過設備文件來訪問我們的驅動程序。寫一個小小的測試程序。

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

main()

{

int testdev;

int i;

char buf[10];

testdev = open("/dev/test",O_RDWR);

if ( testdev == -1 )

{

printf("Cann't open file \n");

exit(0);

}

read(testdev,buf,10);

for (i = 0; i < 10;i++)

printf("%d\n",buf[i]);

close(testdev);

}

編譯運行,看看是不是列印出全1

以上只是一個簡單的演示。真正實用的驅動程序要復雜的多,要處理如中斷,DMA,I/O port等問題。這些才是真正的難點。上述給出了一個簡單的字元設備驅動編寫的框架和原理,更為復雜的編寫需要去認真研究LINUX內核的運行機制和具體的設備運行的機制等等。希望大家好好掌握LINUX設備驅動程序編寫的方法。

『玖』 《Linux設備驅動開發詳解4.0》pdf下載在線閱讀全文,求百度網盤雲資源

《Linux設備驅動開發詳解4.0》網路網盤pdf最新全集下載:
鏈接: https://pan..com/s/1wxaYK87l11FDur15aS6FTQ

?pwd=kn9d 提取碼: kn9d
簡介:Linux設備驅動開發詳解介紹了Linux設備驅動開發理論、框架與實例,詳細說明了自旋鎖、信號量、完成量、中斷頂/底半部、定時器、內存和I/O映射以及非同步通知、阻塞I/O、非阻塞I/O等Linux設備驅動理論,以及字元設備、塊設備、tty設備、I2c設備、LCD設備、音頻設備、USB設備、網路設備、PCI設備等Linux設備驅動架構中各個復雜數據結構和函數的關系,並講解了Linux驅動開發的大量實例,使讀者能夠獨立開發各類Linux設備驅動。

閱讀全文

與linux設備驅動架構相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:758
蘋果郵件無法連接伺服器地址 瀏覽:963
phpffmpeg轉碼 瀏覽:672
長沙好玩的解壓項目 瀏覽:145
專屬學情分析報告是什麼app 瀏覽:564
php工程部署 瀏覽:833
android全屏透明 瀏覽:737
阿里雲伺服器已開通怎麼辦 瀏覽:803
光遇為什麼登錄時伺服器已滿 瀏覽:302
PDF分析 瀏覽:486
h3c光纖全工半全工設置命令 瀏覽:143
公司法pdf下載 瀏覽:383
linuxmarkdown 瀏覽:350
華為手機怎麼多選文件夾 瀏覽:683
如何取消命令方塊指令 瀏覽:350
風翼app為什麼進不去了 瀏覽:779
im4java壓縮圖片 瀏覽:362
數據查詢網站源碼 瀏覽:151
伊克塞爾文檔怎麼進行加密 瀏覽:893
app轉賬是什麼 瀏覽:163