⑴ linux內核有沒有hook機制
有啊,一切順序邏輯,都有被hook的可能。 下面是一個linux上的hook的實例
截獲write系統調用:
#ifndefMODULE
#defineMODULE
#endif
#ifndef__KERNEL__
#define__KERNEL__
#endif
#include<linux/init.h>
#include<linux/mole.h>
#include<linux/version.h>
#include<linux/kernel.h>
#include<asm/unistd.h>
#include<linux/slab.h>
/*
#include<sys/types.h>
#include<asm/fcntl.h>
#include<linux/malloc.h>
#include<linux/types.h>
#include<linux/string.h>
#include<linux/fs.h>
#include<asm/errno.h>
#include<sys/syscall.h>
*/
MODULE_LICENSE("GPL");
structdescriptor_idt
{
unsignedshortoffset_low;
unsignedshortignore1;
unsignedshortignore2;
unsignedshortoffset_high;
};
staticstruct{
unsignedshortlimit;
unsignedlongbase;
}__attribute__((packed))idt48;
staticunsignedintSYS_CALL_TABLE_ADDR;
void**sys_call_table;
intbase_system_call;
int(*orig_write)(unsignedintfd,char*buf,unsignedintcount);
unsignedcharopcode_call[3]={0xff,0x14,0x85};
intmatch(unsignedchar*source)
{
inti;
for(i=0;i<3;i++){
if(source[i]!=opcode_call[i])
return0;
}
return1;
}
intget_sys_call_table(void)
{
inti,j;
unsignedchar*ins=(unsignedchar*)base_system_call;
unsignedintsct;
for(i=0;i<100;i++){
if(ins[i]==opcode_call[0]){
if(match(ins+i)){
sct=*((unsignedint*)(ins+3+i));
printk(KERN_ALERT"sys_call_tabl'saddressis
0x%X ",sct);
returnsct;
}
}
}
printk(KERN_ALERT"can'tfindtheaddressofsys_call_table ");
return-1;
}
inthacked_write(unsignedintfd,char*buf,unsignedintcount)
{
char*hide="hello";
if(strstr(buf,hide)!=NULL){
printk(KERN_ALERT"findname. ");
returncount;
}
else{
returnorig_write(fd,buf,count);
}
}
intinit_mole(void)
{
__asm__volatile("sidt%0":"=m"(idt48));
structdescriptor_idt*pIdt80=(structdescriptor_idt*)(idt48.base+8*0x80);
base_system_call=(pIdt80->offset_high<<16|pIdt80->offset_low);
printk(KERN_ALERT"system_calladdressat0x%x ",base_system_call);
SYS_CALL_TABLE_ADDR=get_sys_call_table();
sys_call_table=(void**)SYS_CALL_TABLE_ADDR;
orig_write=sys_call_table[__NR_write];
sys_call_table[__NR_write]=hacked_write;
return0;
}
voidcleanup_mole()
{
sys_call_table[__NR_write]=orig_write;
}
⑵ linux slab 佔用過多
linux slab 佔用過多話可以進行刪除就可以了 ,如果不是很多的話 那你先可以保留一下
⑶ 如何將lcd驅動移植到linux內核中
本移植主要參考友善之臂移植手冊完成,做個筆記以備不時之需
Linux-2.6.32 內核LCD驅動移植
使用環境:fedora9
交叉編譯工具鏈:arm-linux-gcc-4.4.3
內核源碼來源:https://www.kernel.org/pub/linux/kernel/v2.6/
內核存放目錄:/opt/mymini2440/linux-2.6.32
一、LCD背光碟機動移植
在、opt/mymini2440/linux-2.6.32/drivers/video/目錄下添加背光碟機動程序mini2440_backlight.c,內容如下:
//以下頭文件可能並不是每一個都必須的,但多餘的並不會影響驅動程序的內容
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mole.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/init.h>
#include <linux/serio.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/miscdevice.h>
#include <linux/gpio.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <mach/regs-clock.h>
#include <plat/regs-timer.h>
#include <mach/regs-gpio.h>
#include <linux/cdev.h>
#undef DEBUG
//#define DEBUG
#ifdef DEBUG
#define DPRINTK(x...) {printk(__FUNCTION__"(%d): ",__LINE__);printk(##x);}
#else
#define DPRINTK(x...) (void)(0)
#endif
//定義背光碟機動的名稱為backligh,將會出現在/dev/backlight
#define DEVICE_NAME "backlight"
//定義背光變數bl_state,以記錄背光的開關狀態
static unsigned int bl_state;
//設置背光開關的函數,主要是翻轉背光變數bl_state
static inline void set_bl(int state)
{
bl_state = !!state; //翻轉bl_state 變數
s3c2410_gpio_setpin(S3C2410_GPG(4), bl_state); //把結果寫入背光所用的寄存器GPG4
}
//獲取背光狀態
static inline unsigned int get_bl(void)
{
return bl_state;
}
//從應用程序讀取參數,並傳遞到內核中
static ssize_t dev_write(struct file *file, const char *buffer, size_t count, loff_t * ppos)
{
unsigned char ch;
int ret;
if (count == 0) {
return count;
}
//使用_from_user 函數從用戶層/應用層讀取參數
ret = _from_user(&ch, buffer, sizeof ch) ? -EFAULT : 0;
if (ret) {
return ret;
}
ch &= 0x01; //判斷奇數還是偶數
set_bl(ch); //設置背光狀態
return count;
}
//把內核參數傳遞給用戶層/應用層的讀函數
static ssize_t dev_read(struct file *filp, char *buffer, size_t count, loff_t *ppos)
{
int ret;
unsigned char str[] = {'0', '1' };
if (count == 0) {
return 0;
}
//使用_to_user 函數把內核參數傳遞到用戶層/應用層
ret = _to_user(buffer, str + get_bl(), sizeof(unsigned char) ) ? -EFAULT : 0;
if (ret) {
return ret;
}
return sizeof(unsigned char);
}
//設備操作集
static struct file_operations dev_fops = {
owner: THIS_MODULE,
read:dev_read,
write: dev_write,
};
static struct miscdevice misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = DEVICE_NAME,
.fops = &dev_fops,
};
//設備初始化,內核啟動時就有效
static int __init dev_init(void)
{
int ret;
ret = misc_register(&misc);
printk (DEVICE_NAME"\tinitialized\n");
//初始化背光所用的埠GPG4 為輸出
s3c2410_gpio_cfgpin(S3C2410_GPG(4), S3C2410_GPIO_OUTPUT);
//啟動內核時打開背光
set_bl(1);
return ret;
}
static void __exit dev_exit(void)
{
misc_deregister(&misc);
}
mole_init(dev_init); //注冊背光碟機動模塊
mole_exit(dev_exit); //卸載背光碟機動模塊
MODULE_LICENSE("GPL");
MODULE_AUTHOR("FriendlyARM Inc.");
在/opt/mymini2440/linux-2.6.32/drivers/video/目錄項的菜單文件Kconfig中添加LCD背光碟機動配置菜單如下:
config FB_S3C2410_DEBUG
bool "S3C2410 lcd debug messages"
depends on FB_S3C2410
help
Turn on debugging messages. Note that you can set/unset at run time
through sysfs
config BACKLIGHT_MINI2440
tristate "Backlight support for mini2440 from FriendlyARM"
depends on MACH_MINI2440 && FB_S3C2410
help
backlight driver for MINI2440 from FriendlyARM
config FB_SM501
tristate "Silicon Motion SM501 framebuffer support"
在/opt/mymini2440/linux-2.6.32/drivers/video/Makefile中添加背光碟機動目標文件
# the test framebuffer is last
obj-$(CONFIG_FB_VIRTUAL) += vfb.o
#video output switch sysfs driver
obj-$(CONFIG_VIDEO_OUTPUT_CONTROL) += output.o
obj-$(CONFIG_BACKLIGHT_MINI2440) += mini2440_backlight.o
配置內核:
Device Drivers ---> Graphics support ---> <*> Support for frame buffer devices
---> <*> Backlight support for mini2440 from FriendlyARM
背光碟機動移植完畢!
二、LCD驅動移植
在內核中添加各種LCD 類型的支持(我是X35的屏,也是我只需關注的部分,不過還是都添加了,X35有紅色標出)
刪除mach-mini2440.c原有代碼(本人115行-158行)
162
163 //LCD2VGA(解析度為1024x768)模塊的配置和參數設置
164 #elif defined(CONFIG_FB_S3C2410_VGA1024768)
165 #define LCD_WIDTH 1024
166 #define LCD_HEIGHT 768
167 #define LCD_PIXCLOCK 80000
168 #define LCD_RIGHT_MARGIN 15
169 #define LCD_LEFT_MARGIN 199
170 #define LCD_HSYNC_LEN 15
171 #define LCD_UPPER_MARGIN 1
172 #define LCD_LOWER_MARGIN 1
173 #define LCD_VSYNC_LEN 1
174 #define LCD_CON5 (S3C2410_LCDCON5_FRM565 | S3C2410_LCDCON5_HWSWP)
175
176 #elif defined(CONFIG_FB_S3C2410_X240320)
177 #define LCD_WIDTH 240
178 #define LCD_HEIGHT 320
179 #define LCD_PIXCLOCK 170000
180 #define LCD_RIGHT_MARGIN 25
181 #define LCD_LEFT_MARGIN 0
182 #define LCD_HSYNC_LEN 4
183 #define LCD_UPPER_MARGIN 0
184 #define LCD_LOWER_MARGIN 4
185 #define LCD_VSYNC_LEN 9
186 #define LCD_CON5 (S3C2410_LCDCON5_FRM565 | S3C2410_LCDCON5_INVVDEN | S3C2410_LCDCON5_INVVFRAME | S3C2410_LCDCON5_INVVLINE | S3C2410_LCDCON5_INVVCLK | S3C2410_LCDCON5_HWSWP )
187 #endif
188
189 #if defined (LCD_WIDTH)
190
191 static struct s3c2410fb_display mini2440_lcd_cfg __initdata = {
192 #if !defined (LCD_CON5)
193 .lcdcon5 = S3C2410_LCDCON5_FRM565 |
194 S3C2410_LCDCON5_INVVLINE |
195 S3C2410_LCDCON5_INVVFRAME |
196 S3C2410_LCDCON5_PWREN |
197 S3C2410_LCDCON5_HWSWP,
198 #else
199 .lcdcon5 = LCD_CON5,
200 #endif
201 .type = S3C2410_LCDCON1_TFT,
202 .width = LCD_WIDTH,
203 .height = LCD_HEIGHT,
204 .pixclock = LCD_PIXCLOCK,
205 .xres = LCD_WIDTH,
206 .yres = LCD_HEIGHT,
207 .bpp = 16,
208 .left_margin = LCD_LEFT_MARGIN + 1,
209 .right_margin = LCD_RIGHT_MARGIN + 1,
210 .hsync_len = LCD_HSYNC_LEN + 1,
211 .upper_margin = LCD_UPPER_MARGIN + 1,
212 .lower_margin = LCD_LOWER_MARGIN + 1,
213 .vsync_len = LCD_VSYNC_LEN + 1,
214 };
215
216 static struct s3c2410fb_mach_info mini2440_fb_info __initdata = {
217 .displays = &mini2440_lcd_cfg,
218 .num_displays = 1,
219 .default_display = 0,
220 .gpccon = 0xaa955699,
221 .gpccon_mask = 0xffc003cc,
222 .gpcup = 0x0000ffff,
223 .gpcup_mask = 0xffffffff,
224 .gpdcon = 0xaa95aaa1,
225 .gpdcon_mask = 0xffc0fff0,
226 .gpp = 0x0000faff,
227 .gpp_mask = 0xffffffff,
228 .lpcsel = 0xf82,
229 };
230
231 #endif
232
然後打開drivers/video/Kconfig,在大概1935 行加入以下配置信息:
1923 config FB_S3C2410_DEBUG
1924 bool "S3C2410 lcd debug messages"
1925 depends on FB_S3C2410
1926 help
1927 Turn on debugging messages. Note that you can set/unset at run time
1928 through sysfs
1929
1930 choice
1931 prompt "LCD select"
1932 depends on FB_S3C2410
1933 help
1934 S3C24x0 LCD size select
1935
1936 config FB_S3C2410_T240320
1937 boolean "3.5 inch 240X320 Toppoly LCD"
1938 depends on FB_S3C2410
1939 help
1940 3.5 inch 240X320 Toppoly LCD
1941
1942 config FB_S3C2410_N240320
1943 boolean "3.5 inch 240X320 NEC LCD"
1944 depends on FB_S3C2410
1945 help
1946 3.5 inch 240x320 NEC LCD
1947
1948 config FB_S3C2410_TFT640480
1949 boolean "8 inch 640X480 L80 LCD"
1950 depends on FB_S3C2410
1951 help
1952 8 inch 640X480 LCD
1953
1954 config FB_S3C2410_TFT800480
1955 boolean "7 inch 800x480 TFT LCD"
1956 depends on FB_S3C2410
1957 help
1958 7 inch 800x480 TFT LCD
1959
1960 config FB_S3C2410_VGA1024768
1961 boolean "VGA 1024x768"
1962 depends on FB_S3C2410
1963 help
1964 VGA 1024x768
1965
1966 config FB_S3C2410_X240320
1967 boolean "3.5 inch 240X320 LCD(ACX502BMU)"
1968 depends on FB_S3C2410
1969 help
1970 3.5 inch 240X320 LCD(ACX502BMU)
1971
1972 endchoice
1973
1974 config BACKLIGHT_MINI2440
配置內核
Device Drivers ---> Graphics support ---> <*> Support for frame buffer devices ---> LCD select (3.5 inch 240X320 LCD(ACX502BMU)) ---> (X) 3.5 inch 240X320 LCD(ACX502BMU)
LCD驅動移植完成!!!
三、開機logo和開機信息顯示
Device Drivers ---> Graphics support ---> <*> Support for frame buffer devices ---> [*] Bootup logo ---> [*] Standard 16-color Linux logo (本人的24位死活不能顯示,先改成16位吧)
在文件系統rootfs/etc/inittab下作如下修改(為了在LCD上顯示列印信息):
1 ::sysinit:/etc/init.d/rcS
2 tty1::askfirst:-/bin/sh //添加
3 s3c2410_serial0::askfirst:-/bin/sh
4 ::ctrlaltdel:/sbin/reboot
5 ::shutdown:/bin/umount -a -r
6
四,編譯測試
#make zImage
#cd arch/arm/boot/
#mkimage -n 'mini2440_linux' -A arm -O linux -T kernel -C none -a 0x31000000 -e 0x31000040 -d zImage uImage
#chmod a+x uImage
#cp uImage /tftp/boot
設置U-BOOT參數如下:
⑷ usbkbd.c:3:61: 致命錯誤: linux/slab.h:沒有那個文件或目錄 編譯中斷。 怎麼辦,求解救,謝謝
找不到頭文件,這個頭文件一般應該是在內核目錄里,如果找不到就下載內核頭文件來使用
查看當前內核版本 uname -r
我在ubuntu 系統里可以 用這個命令下載內核頭文件 sudo apt-get install linux-heaer2-$(uname -r)
⑸ linux內核物理內存管理有哪些常用演算法 lru slab
採用夥伴演算法分配內存時,每次至少分配一個頁面。但當請求分配的內存大小為幾十個位元組或幾百個位元組時應該如何處理?如何在一個頁面中分配小的內存區,小內存區的分配所產生的內碎片又如何解決?
Linux2.0採用的解決辦法是建立了13個空閑區鏈表,它們的大小從32位元組到132056位元組。從Linux2.2開始,MM的開發者採用了一種叫做slab的分配模式,該模式早在1994年就被開發出來,用於Sun Microsystem Solaris 2.4操作系統中。Slab的提出主要是基於以下考慮:
· 內核對內存區的分配取決於所存放數據的類型。例如,當給用戶態進程分配頁面時,內核調用get_free_page()函數,並用0填充這個頁面。 而給內核的數據結構分配頁面時,事情沒有這么簡單,例如,要對數據結構所在的內存進行初始化、在不用時要收回它們所佔用的內存。因此,Slab中引入了對象這個概念,所謂對象就是存放一組數據結構的內存區,其方法就是構造或析構函數,構造函數用於初始化數據結構所在的內存區,而析構函數收回相應的內存區。但為了便於理解,你也可以把對象直接看作內核的數據結構。為了避免重復初始化對象,Slab分配模式並不丟棄已分配的對象,而是釋放但把它們依然保留在內存中。當以後又要請求分配同一對象時,就可以從內存獲取而不用進行初始化,這是在Solaris 中引入Slab的基本思想。
實際上,Linux中對Slab分配模式有所改進,它對內存區的處理並不需要進行初始化或回收。出於效率的考慮,Linux並不調用對象的構造或析構函數,而是把指向這兩個函數的指針都置為空。Linux中引入Slab的主要目的是為了減少對夥伴演算法的調用次數。
· 實際上,內核經常反復使用某一內存區。例如,只要內核創建一個新的進程,就要為該進程相關的數據結構(task_struct、打開文件對象等)分配內存區。當進程結束時,收回這些內存區。因為進程的創建和撤銷非常頻繁,因此,Linux的早期版本把大量的時間花費在反復分配或回收這些內存區上。從Linux2.2開始,把那些頻繁使用的頁面保存在高速緩存中並重新使用。
· 可以根據對內存區的使用頻率來對它分類。對於預期頻繁使用的內存區,可以創建一組特定大小的專用緩沖區進行處理,以避免內碎片的產生。對於較少使用的內存區,可以創建一組通用緩沖區(如Linux2.0中所使用的2的冪次方)來處理,即使這種處理模式產生碎片,也對整個系統的性能影響不大。
· 硬體高速緩存的使用,又為盡量減少對夥伴演算法的調用提供了另一個理由,因為對夥伴演算法的每次調用都會「弄臟」硬體高速緩存,因此,這就增加了對內存的平均訪問次數。
Slab分配模式把對象分組放進緩沖區(盡管英文中使用了Cache這個詞,但實際上指的是內存中的區域,而不是指硬體高速緩存)。因為緩沖區的組織和管理與硬體高速緩存的命中率密切相關,因此,Slab緩沖區並非由各個對象直接構成,而是由一連串的「大塊(Slab)」構成,而每個大塊中則包含了若干個同種類型的對象,這些對象或已被分配,或空閑,如圖6.12所示。一般而言,對象分兩種,一種是大對象,一種是小對象。所謂小對象,是指在一個頁面中可以容納下好幾個對象的那種。例如,一個inode結構大約佔300多個位元組,因此,一個頁面中可以容納8個以上的inode結構,因此,inode結構就為小對象。Linux內核中把小於512位元組的對象叫做小對象。
⑹ linux內存池能分配連續物理內存嗎
處理器通過地址訪問內存單元,程序中用到的基址加偏移地址是線性地址,需要通過MMU將虛擬地址映射成物理地址。這給分配和釋放內存帶來方便:1)物理地址不連續的空間可以映射為邏輯上連續的虛擬地址。2)進程可以獲得比實際內存大的"空間",虛擬內存使得進程在這種情況下仍可正常運行。
linux內核為驅動程序提供了一致的內存管理介面,因此不用考慮不同體系結構如何管理內存的。
在linux內核中分配內存用kmalloc和kfree。
kmalloc分配時可以被阻塞,且不對所獲得的區域清零。它分配的區域在物理內存中也是連續的。
原型:
#include<linux/slab.h>
void *kmalloc(size_t size,int flags); //參數為分配大小及分配標志
flags參數:
GFP_KERNEL:內核內存通用分配方法,表示內存分配是由運行在內核空間的進程執行的。可休眠,所以使用GFP_KERNEL分配內存的函數必須是可重入的。
GFP_ATOMIC:用於在中斷處理常式或者運行在進程上下文之外的代碼中分配內存,不可休眠。內核通常會為原子性的分配預留一些空閑頁面。
所有標志定義在 <linux/gfp.h>中。
size參數:
內核是基於頁技術分配內存,以最佳的利用系統的RAM。
linux處理內存分配的方法是:創建一系列的內存對象池,每個池的內存大小事固定的,處理分配請求時,就直接在包含足夠大的內存塊中傳遞一個整款給請求者。內核只能分配一些預定義的固定大小的位元組數組。kmalloc能處理的的最小內存塊是32或者64,不大於128KB。
內存區段:
linux內核把內存分為3個區段:可用於DMA的內存,常規內存以及高端內存。kmalloc不能分配高端內存。內存區段在mm/page_alloc.c中實現。區段的初始化在對應的arch樹下的mm/init.c中。
後備高速緩存 (lookaside cache)
內核中普通對象進行初始化所需的時間超過了對其進行分配和釋放所需的時間,因此不應該將內存釋放回一個全局的內存池,而是將內存保持為針對特定目而初始化的狀態。例如,如果內存被分配給了一個互斥鎖,那麼只需在為互斥鎖首次分配內存時執行一次互斥鎖初始化函數(mutex_init)即可。後續的內存分配不需要執行這個初始化函數,因為從上次釋放和調用析構之後,它已經處於所需的狀態中了。
linux2.6中USB和SCSI驅動程序使用了這種高速緩存,是為一些反復使用的塊增加某些特殊的內存池。後背高速緩存管理也叫slab分配器,相關函數和類型在<linux/slab.h>中申明。
slab分配器實現高速緩存具有kmem_cache_t類型。
kmem_cache_t * kmem_cache_create( const char *name, size_t size, size_t align,
unsigned long flags;
void (*constructor)(void*,kmem_cache_t *, unsigned long),
void (*destructor)(void*, kmem_cache_t *, unsigned long));
用於創建一個新的高速緩存對象。
constructor用於初始化新分配的對象,destructor用於清除對象。
一旦某個對象的高速緩存被創建以後,就可以調用kmem_cache_alloc從中分配內存對象。
void * kmem_cache_alloc(kmem_cache_t *cache,int flags);
釋放內存對象使用kmem_cache_free
void kmem_cache_free(kmem_cache_t *cache,const void *obj);
在內存空間都被釋放後,模塊被卸載前,驅動程序應當釋放他的高速緩存。
int kmem_cache_destory(kmem_cache_t *cache);
要檢查其返回狀態,如果失敗,表明莫塊中發生了內存泄露。
基於slab的高速緩存scullc
kmem_cache_t *scullc_cache;
scullc_cache=kmem_cache_creat("scullc",scullc_quantum,0,SLAB_HWCACHE_ALIGN,NULL,NULL);
if(!scullc_cache)
{
scullc_cleanup();
return -ENOMEM;
}
if(!dpte->data[s_pos])
{
dptr->data[s_pos]=kmem_cache_alloc(scullc_cache,GFP_KERNEL);
if(!dptr->data[s_pos])
goto nomem;
memset(dptr->data[s_pos],0,scullc_quantum);
}
for(i=0;i<qset;i++)
{
if(dptr->data[i])
kmem_cache_free(scullc_cache,dptr->data[i]);
}
if(scullc_cache)
kmem_cache_destory(scullc_cache);
內存池:
內核中有些地方的內存分配是不允許失敗的,為確保能分配成功,內核建立一種稱為內存池的抽象,他試圖始終保持空閑狀態,以便緊急情況使用。
mempool_t * mempool_creat(int min_nr,
mempool_alloc_t *alloc_fn, //對象分分配 mempool_alloc_slab
mempool_free_t *free_fn, //釋放 mempool_free_slab
void *pool_data);
可以用如下代碼來構造內存池
cache=kmem_cache_creat(...); //創建一個高速緩存
pool=mempool_creat(MY_POOL_MINIMUM,mempool_alloc_slab,mempool_free_slab,cache);//建立內存池對象
void *mempool_alloc(mempool_t *poll,int gfp_mask);//分配對象
void *mempool_free(void *element,mempool_t *poll);//釋放對象
void mempool_destroy(mempool_t *poll);//銷毀內存池
注意:mempool會分配一些內存塊,空閑且不會被用到,造成內存的大量浪費。所以一般情況不要用內存池。
⑺ Linux Kernel 2.4 和 2.6 的區別
1、 使用新的入口
必須包含 <linux/init.h>
mole_init(your_init_func);
mole_exit(your_exit_func);
老版本:int init_mole(void);
void cleanup_mole(voi);
2.4中兩種都可以用,對如後面的入口函數不必要顯示包含任何頭文件。
2、 GPL
MODULE_LICENSE("Dual BSD/GPL");
老版本:MODULE_LICENSE("GPL");
3、 模塊參數
必須顯式包含<linux/moleparam.h>
mole_param(name, type, perm);
mole_param_named(name, value, type, perm);
參數定義
mole_param_string(name, string, len, perm);
mole_param_array(name, type, num, perm);
老版本:MODULE_PARM(variable,type);
MODULE_PARM_DESC(variable,type);
4、 模塊別名
MODULE_ALIAS("alias-name");
這是新增的,在老版本中需在/etc/moles.conf配置,現在在代碼中就可以實現。
5、 模塊計數
int try_mole_get(&mole);
mole_put();
老版本:MOD_INC_USE_COUNT 和 MOD_DEC_USE_COUNT
6、 符號導出
只有顯示的導出符號才能被其他 模塊使用,默認不導出所有的符號,不必使用EXPORT_NO
_SYMBOLS
老闆本:默認導出所有的符號,除非使用EXPORT_NO_SYMBOLS
7、 內核版本檢查
需要在多個文件中包含<linux/mole.h>時,不必定義__NO_VERSION__
老版本:在多個文件中包含<linux/mole.h>時,除在主文件外的其他文件中必須定義_
_NO_VERSION__,防止版本重復定義。
8、 設備號
kdev_t被廢除不可用,新的dev_t拓展到了32位,12位主設備號,20位次設備號。
unsigned int iminor(struct inode *inode);
unsigned int imajor(struct inode *inode);
老版本:8位主設備號,8位次設備號
int MAJOR(kdev_t dev);
int MINOR(kdev_t dev);
9、 內存分配頭文件變更
所有的內存分配函數包含在頭文件<linux/slab.h>,而原來的<linux/malloc.h>不存在
老版本:內存分配函數包含在頭文件<linux/malloc.h>
10、 結構體的初試化
gcc開始採用ANSI C的struct結構體的初始化形式:
static struct some_structure = {
.field1 = value,
.field2 = value,
..
};
老版本:非標準的初試化形式
static struct some_structure = {
field1: value,
field2: value,
..
};
11、 用戶模式幫助器
int call_usermodehelper(char *path, char **argv, char **envp,
int wait);
新增wait參數
12、 request_mole()
request_mole("foo-device-%d", number);
老版本:
char mole_name[32];
printf(mole_name, "foo-device-%d", number);
request_mole(mole_name);
13、 dev_t引發的字元設備的變化
1、取主次設備號為
unsigned iminor(struct inode *inode);
unsigned imajor(struct inode *inode);
2、老的register_chrdev()用法沒變,保持向後兼容,但不能訪問設備號大於256的設備
。
3、新的介面為
a)注冊字元設備范圍
int register_chrdev_region(dev_t from, unsigned count, char *name);
b)動態申請主設備號
int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, char
*name);
看了這兩個函數郁悶吧^_^!怎麼和file_operations結構聯系起來啊?別急!
c)包含 <linux/cdev.h>,利用struct cdev和file_operations連接
struct cdev *cdev_alloc(void);
void cdev_init(struct cdev *cdev, struct file_operations *fops);
int cdev_add(struct cdev *cdev, dev_t dev, unsigned count);
(分別為,申請cdev結構,和fops連接,將設備加入到系統中!好復雜啊!)
d)void cdev_del(struct cdev *cdev);
只有在cdev_add執行成功才可運行。
e)輔助函數
kobject_put(&cdev->kobj);
struct kobject *cdev_get(struct cdev *cdev);
void cdev_put(struct cdev *cdev);
這一部分變化和新增的/sys/dev有一定的關聯。
14、 新增對/proc的訪問操作
<linux/seq_file.h>
以前的/proc中只能得到string, seq_file操作能得到如long等多種數據。
相關函數:
static struct seq_operations 必須實現這個類似file_operations得數據中得各個成
員函數。
seq_printf();
int seq_putc(struct seq_file *m, char c);
int seq_puts(struct seq_file *m, const char *s);
int seq_escape(struct seq_file *m, const char *s, const char *esc);
int seq_path(struct seq_file *m, struct vfsmount *mnt,
struct dentry *dentry, char *esc);
seq_open(file, &ct_seq_ops);
等等
15、 底層內存分配
1、<linux/malloc.h>頭文件改為<linux/slab.h>
2、分配標志GFP_BUFFER被取消,取而代之的是GFP_NOIO 和 GFP_NOFS
3、新增__GFP_REPEAT,__GFP_NOFAIL,__GFP_NORETRY分配標志
4、頁面分配函數alloc_pages(),get_free_page()被包含在<linux/gfp.h>中
5、對NUMA系統新增了幾個函數:
a) struct page *alloc_pages_node(int node_id,
unsigned int gfp_mask,
unsigned int order);
b) void free_hot_page(struct page *page);
c) void free_cold_page(struct page *page);
6、 新增Memory pools
<linux/mempool.h>
mempool_t *mempool_create(int min_nr,
mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn,
void *pool_data);
void *mempool_alloc(mempool_t *pool, int gfp_mask);
void mempool_free(void *element, mempool_t *pool);
int mempool_resize(mempool_t *pool, int new_min_nr, int gfp_mask);
16、 per-CPU變數
get_cpu_var();
put_cpu_var();
void *alloc_percpu(type);
void free_percpu(const void *);
per_cpu_ptr(void *ptr, int cpu)
get_cpu_ptr(ptr)
put_cpu_ptr(ptr)
老版本使用
DEFINE_PER_CPU(type, name);
EXPORT_PER_CPU_SYMBOL(name);
EXPORT_PER_CPU_SYMBOL_GPL(name);
DECLARE_PER_CPU(type, name);
DEFINE_PER_CPU(int, mypcint);
2.6內核採用了可剝奪得調度方式這些宏都不安全。
17、 內核時間變化
1、現在的各個平台的HZ為
Alpha: 1024/1200; ARM : 100/128/200/1000; CRIS: 100; i386: 1000; IA-64:
1024; M68K: 100; M68K-nommu: 50-1000; MIPS: 100/128/1000; MIPS64: 100;
PA-RISC: 100/1000; PowerPC32: 100; PowerPC64: 1000; S/390: 100; SPARC32:
100; SPARC64: 100; SuperH: 100/1000; UML: 100; v850: 24-100; x86-64: 1000.
2、由於HZ的變化,原來的jiffies計數器很快就溢出了,引入了新的計數器jiffies_64
3、#include <linux/jiffies.h>
u64 my_time = get_jiffies_64();
4、新的時間結構增加了納秒成員變數
struct timespec current_kernel_time(void);
5、他的timer函數沒變,新增
void add_timer_on(struct timer_list *timer, int cpu);
6、新增納秒級延時函數
ndelay();
7、POSIX clocks 參考kernel/posix-timers.c
18、 工作隊列(workqueue)
1、任務隊列(task queue )介面函數都被取消,新增了workqueue介面函數
struct workqueue_struct *create_workqueue(const char *name);
DECLARE_WORK(name, void (*function)(void *), void *data);
INIT_WORK(struct work_struct *work,
void (*function)(void *), void *data);
PREPARE_WORK(struct work_struct *work,
void (*function)(void *), void *data);
2、申明struct work_struct結構
int queue_work(struct workqueue_struct *queue,
struct work_struct *work);
int queue_delayed_work(struct workqueue_struct *queue,
struct work_struct *work,
unsigned long delay);
int cancel_delayed_work(struct work_struct *work);
void flush_workqueue(struct workqueue_struct *queue);
void destroy_workqueue(struct workqueue_struct *queue);
int schele_work(struct work_struct *work);
int schele_delayed_work(struct work_struct *work, unsigned long
delay);
19、 新增創建VFS的"libfs"
libfs給創建一個新的文件系統提供了大量的API.
主要是對struct file_system_type的實現。
參考源代碼:
drivers/hotplug/pci_hotplug_core.c
drivers/usb/core/inode.c
drivers/oprofile/oprofilefs.c
fs/ramfs/inode.c
fs/nfsd/nfsctl.c (simple_fill_super() example)
⑻ linux 如何釋放內存中slab佔有空間,,內存被它佔了一大半,,,求高手指點
可以看看/proc/sys/vm/drop_caches,
這個文件中記錄了緩存釋放的參數,默認值為0,也就是不釋放緩存。
他的值可以為0~3之間的任意數字,代表著不同的含義:
0 – 不釋放
1 – 釋放頁緩存
2 – 釋放dentries和inodes
3 – 釋放所有緩存
需要釋放所有緩存,就輸入下面的命令:
#echo 3 > /proc/sys/vm/drop_caches
此指令輸入後會立即生效,可以查詢現在的可用內存明顯的變多了。
要查詢當前緩存釋放的參數,可以輸入下面的指令:
#cat /proc/sys/vm/drop_caches
⑼ linux中使用了什麼內存管理方法,為什麼
「事實勝於雄辯」,我們用一個小例子(原形取自《User-Level Memory Management》)來展示上面所講的各種內存區的差別與位置。
進程的地址空間對應的描述結構是「內存描述符結構」,它表示進程的全部地址空間,——包含了和進程地址空間有關的全部信息,其中當然包含進程的內存區域。
進程內存的分配與回收
創建進程fork()、程序載入execve()、映射文件mmap()、動態內存分配malloc()/brk()等進程相關操作都需要分配內存給進程。不過這時進程申請和獲得的還不是實際內存,而是虛擬內存,准確的說是「內存區域」。進程對內存區域的分配最終都會歸結到do_mmap()函數上來(brk調用被單獨以系統調用實現,不用do_mmap()),
內核使用do_mmap()函數創建一個新的線性地址區間。但是說該函數創建了一個新VMA並不非常准確,因為如果創建的地址區間和一個已經存在的地址區間相鄰,並且它們具有相同的訪問許可權的話,那麼兩個區間將合並為一個。如果不能合並,那麼就確實需要創建一個新的VMA了。但無論哪種情況,do_mmap()函數都會將一個地址區間加入到進程的地址空間中--無論是擴展已存在的內存區域還是創建一個新的區域。
同樣,釋放一個內存區域應使用函數do_ummap(),它會銷毀對應的內存區域。
如何由虛變實!
從上面已經看到進程所能直接操作的地址都為虛擬地址。當進程需要內存時,從內核獲得的僅僅是虛擬的內存區域,而不是實際的物理地址,進程並沒有獲得物理內存(物理頁面——頁的概念請大家參考硬體基礎一章),獲得的僅僅是對一個新的線性地址區間的使用權。實際的物理內存只有當進程真的去訪問新獲取的虛擬地址時,才會由「請求頁機制」產生「缺頁」異常,從而進入分配實際頁面的常式。
該異常是虛擬內存機制賴以存在的基本保證——它會告訴內核去真正為進程分配物理頁,並建立對應的頁表,這之後虛擬地址才實實在在地映射到了系統的物理內存上。(當然,如果頁被換出到磁碟,也會產生缺頁異常,不過這時不用再建立頁表了)
這種請求頁機制把頁面的分配推遲到不能再推遲為止,並不急於把所有的事情都一次做完(這種思想有點像設計模式中的代理模式(proxy))。之所以能這么做是利用了內存訪問的「局部性原理」,請求頁帶來的好處是節約了空閑內存,提高了系統的吞吐率。要想更清楚地了解請求頁機制,可以看看《深入理解linux內核》一書。
這里我們需要說明在內存區域結構上的nopage操作。當訪問的進程虛擬內存並未真正分配頁面時,該操作便被調用來分配實際的物理頁,並為該頁建立頁表項。在最後的例子中我們會演示如何使用該方法。
系統物理內存管理
雖然應用程序操作的對象是映射到物理內存之上的虛擬內存,但是處理器直接操作的卻是物理內存。所以當應用程序訪問一個虛擬地址時,首先必須將虛擬地址轉化成物理地址,然後處理器才能解析地址訪問請求。地址的轉換工作需要通過查詢頁表才能完成,概括地講,地址轉換需要將虛擬地址分段,使每段虛地址都作為一個索引指向頁表,而頁表項則指向下一級別的頁表或者指向最終的物理頁面。
每個進程都有自己的頁表。進程描述符的pgd域指向的就是進程的頁全局目錄。下面我們借用《linux設備驅動程序》中的一幅圖大致看看進程地址空間到物理頁之間的轉換關系。
上面的過程說起來簡單,做起來難呀。因為在虛擬地址映射到頁之前必須先分配物理頁——也就是說必須先從內核中獲取空閑頁,並建立頁表。下面我們介紹一下內核管理物理內存的機制。
物理內存管理(頁管理)
Linux內核管理物理內存是通過分頁機制實現的,它將整個內存劃分成無數個4k(在i386體系結構中)大小的頁,從而分配和回收內存的基本單位便是內存頁了。利用分頁管理有助於靈活分配內存地址,因為分配時不必要求必須有大塊的連續內存[3],系統可以東一頁、西一頁的湊出所需要的內存供進程使用。雖然如此,但是實際上系統使用內存時還是傾向於分配連續的內存塊,因為分配連續內存時,頁表不需要更改,因此能降低TLB的刷新率(頻繁刷新會在很大程度上降低訪問速度)。
鑒於上述需求,內核分配物理頁面時為了盡量減少不連續情況,採用了「夥伴」關系來管理空閑頁面。夥伴關系分配演算法大家應該不陌生——幾乎所有操作系統方面的書都會提到,我們不去詳細說它了,如果不明白可以參看有關資料。這里只需要大家明白Linux中空閑頁面的組織和管理利用了夥伴關系,因此空閑頁面分配時也需要遵循夥伴關系,最小單位只能是2的冪倍頁面大小。內核中分配空閑頁面的基本函數是get_free_page/get_free_pages,它們或是分配單頁或是分配指定的頁面(2、4、8…512頁)。
注意:get_free_page是在內核中分配內存,不同於malloc在用戶空間中分配,malloc利用堆動態分配,實際上是調用brk()系統調用,該調用的作用是擴大或縮小進程堆空間(它會修改進程的brk域)。如果現有的內存區域不夠容納堆空間,則會以頁面大小的倍數為單位,擴張或收縮對應的內存區域,但brk值並非以頁面大小為倍數修改,而是按實際請求修改。因此Malloc在用戶空間分配內存可以以位元組為單位分配,但內核在內部仍然會是以頁為單位分配的。
另外,需要提及的是,物理頁在系統中由頁結構structpage描述,系統中所有的頁面都存儲在數組mem_map[]中,可以通過該數組找到系統中的每一頁(空閑或非空閑)。而其中的空閑頁面則可由上述提到的以夥伴關系組織的空閑頁鏈表(free_area[MAX_ORDER])來索引。
內核內存使用
Slab
所謂尺有所長,寸有所短。以頁為最小單位分配內存對於內核管理系統中的物理內存來說的確比較方便,但內核自身最常使用的內存卻往往是很小(遠遠小於一頁)的內存塊——比如存放文件描述符、進程描述符、虛擬內存區域描述符等行為所需的內存都不足一頁。這些用來存放描述符的內存相比頁面而言,就好比是麵包屑與麵包。一個整頁中可以聚集多個這些小塊內存;而且這些小塊內存塊也和麵包屑一樣頻繁地生成/銷毀。
為了滿足內核對這種小內存塊的需要,Linux系統採用了一種被稱為slab分配器的技術。Slab分配器的實現相當復雜,但原理不難,其核心思想就是「存儲池[4]」的運用。內存片段(小塊內存)被看作對象,當被使用完後,並不直接釋放而是被緩存到「存儲池」里,留做下次使用,這無疑避免了頻繁創建與銷毀對象所帶來的額外負載。
Slab技術不但避免了內存內部分片(下文將解釋)帶來的不便(引入Slab分配器的主要目的是為了減少對夥伴系統分配演算法的調用次數——頻繁分配和回收必然會導致內存碎片——難以找到大塊連續的可用內存),而且可以很好地利用硬體緩存提高訪問速度。
Slab並非是脫離夥伴關系而獨立存在的一種內存分配方式,slab仍然是建立在頁面基礎之上,換句話說,Slab將頁面(來自於夥伴關系管理的空閑頁面鏈表)撕碎成眾多小內存塊以供分配,slab中的對象分配和銷毀使用kmem_cache_alloc與kmem_cache_free。
Kmalloc
Slab分配器不僅僅只用來存放內核專用的結構體,它還被用來處理內核對小塊內存的請求。當然鑒於Slab分配器的特點,一般來說內核程序中對小於一頁的小塊內存的請求才通過Slab分配器提供的介面Kmalloc來完成(雖然它可分配32到131072位元組的內存)。從內核內存分配的角度來講,kmalloc可被看成是get_free_page(s)的一個有效補充,內存分配粒度更靈活了。
有興趣的話,可以到/proc/slabinfo中找到內核執行現場使用的各種slab信息統計,其中你會看到系統中所有slab的使用信息。從信息中可以看到系統中除了專用結構體使用的slab外,還存在大量為Kmalloc而准備的Slab(其中有些為dma准備的)。
內核非連續內存分配(Vmalloc)
夥伴關系也好、slab技術也好,從內存管理理論角度而言目的基本是一致的,它們都是為了防止「分片」,不過分片又分為外部分片和內部分片之說,所謂內部分片是說系統為了滿足一小段內存區(連續)的需要,不得不分配了一大區域連續內存給它,從而造成了空間浪費;外部分片是指系統雖有足夠的內存,但卻是分散的碎片,無法滿足對大塊「連續內存」的需求。無論何種分片都是系統有效利用內存的障礙。slab分配器使得一個頁面內包含的眾多小塊內存可獨立被分配使用,避免了內部分片,節約了空閑內存。夥伴關系把內存塊按大小分組管理,一定程度上減輕了外部分片的危害,因為頁框分配不在盲目,而是按照大小依次有序進行,不過夥伴關系只是減輕了外部分片,但並未徹底消除。你自己比劃一下多次分配頁面後,空閑內存的剩餘情況吧。
所以避免外部分片的最終思路還是落到了如何利用不連續的內存塊組合成「看起來很大的內存塊」——這里的情況很類似於用戶空間分配虛擬內存,內存邏輯上連續,其實映射到並不一定連續的物理內存上。Linux內核借用了這個技術,允許內核程序在內核地址空間中分配虛擬地址,同樣也利用頁表(內核頁表)將虛擬地址映射到分散的內存頁上。以此完美地解決了內核內存使用中的外部分片問題。內核提供vmalloc函數分配內核虛擬內存,該函數不同於kmalloc,它可以分配較Kmalloc大得多的內存空間(可遠大於128K,但必須是頁大小的倍數),但相比Kmalloc來說,Vmalloc需要對內核虛擬地址進行重映射,必須更新內核頁表,因此分配效率上要低一些(用空間換時間)
與用戶進程相似,內核也有一個名為init_mm的mm_strcut結構來描述內核地址空間,其中頁表項pdg=swapper_pg_dir包含了系統內核空間(3G-4G)的映射關系。因此vmalloc分配內核虛擬地址必須更新內核頁表,而kmalloc或get_free_page由於分配的連續內存,所以不需要更新內核頁表。
vmalloc分配的內核虛擬內存與kmalloc/get_free_page分配的內核虛擬內存位於不同的區間,不會重疊。因為內核虛擬空間被分區管理,各司其職。進程空間地址分布從0到3G(其實是到PAGE_OFFSET,在0x86中它等於0xC0000000),從3G到vmalloc_start這段地址是物理內存映射區域(該區域中包含了內核鏡像、物理頁面表mem_map等等)比如我使用的系統內存是64M(可以用free看到),那麼(3G——3G+64M)這片內存就應該映射到物理內存,而vmalloc_start位置應在3G+64M附近(說"附近"因為是在物理內存映射區與vmalloc_start期間還會存在一個8M大小的gap來防止躍界),vmalloc_end的位置接近4G(說"接近"是因為最後位置系統會保留一片128k大小的區域用於專用頁面映射,還有可能會有高端內存映射區,這些都是細節,這里我們不做糾纏)。
上圖是內存分布的模糊輪廓
由get_free_page或Kmalloc函數所分配的連續內存都陷於物理映射區域,所以它們返回的內核虛擬地址和實際物理地址僅僅是相差一個偏移量(PAGE_OFFSET),你可以很方便的將其轉化為物理內存地址,同時內核也提供了virt_to_phys()函數將內核虛擬空間中的物理映射區地址轉化為物理地址。要知道,物理內存映射區中的地址與內核頁表是有序對應的,系統中的每個物理頁面都可以找到它對應的內核虛擬地址(在物理內存映射區中的)。
而vmalloc分配的地址則限於vmalloc_start與vmalloc_end之間。每一塊vmalloc分配的內核虛擬內存都對應一個vm_struct結構體(可別和vm_area_struct搞混,那可是進程虛擬內存區域的結構),不同的內核虛擬地址被4k大小的空閑區間隔,以防止越界——見下圖)。與進程虛擬地址的特性一樣,這些虛擬地址與物理內存沒有簡單的位移關系,必須通過內核頁表才可轉換為物理地址或物理頁。它們有可能尚未被映射,在發生缺頁時才真正分配物理頁面。
這里給出一個小程序幫助大家認清上面幾種分配函數所對應的區域。
#include<linux/mole.h>
#include<linux/slab.h>
#include<linux/vmalloc.h>
unsignedchar*pagemem;
unsignedchar*kmallocmem;
unsignedchar*vmallocmem;
intinit_mole(void)
{
pagemem = get_free_page(0);
printk("<1>pagemem=%s",pagemem);
kmallocmem = kmalloc(100,0);
printk("<1>kmallocmem=%s",kmallocmem);
vmallocmem = vmalloc(1000000);
printk("<1>vmallocmem=%s",vmallocmem);
}
voidcleanup_mole(void)
{
free_page(pagemem);
kfree(kmallocmem);
vfree(vmallocmem);
}
實例
內存映射(mmap)是Linux操作系統的一個很大特色,它可以將系統內存映射到一個文件(設備)上,以便可以通過訪問文件內容來達到訪問內存的目的。這樣做的最大好處是提高了內存訪問速度,並且可以利用文件系統的介面編程(設備在Linux中作為特殊文件處理)訪問內存,降低了開發難度。許多設備驅動程序便是利用內存映射功能將用戶空間的一段地址關聯到設備內存上,無論何時,只要內存在分配的地址范圍內進行讀寫,實際上就是對設備內存的訪問。同時對設備文件的訪問也等同於對內存區域的訪問,也就是說,通過文件操作介面可以訪問內存。Linux中的X伺服器就是一個利用內存映射達到直接高速訪問視頻卡內存的例子。
熟悉文件操作的朋友一定會知道file_operations結構中有mmap方法,在用戶執行mmap系統調用時,便會調用該方法來通過文件訪問內存——不過在調用文件系統mmap方法前,內核還需要處理分配內存區域(vma_struct)、建立頁表等工作。對於具體映射細節不作介紹了,需要強調的是,建立頁表可以採用remap_page_range方法一次建立起所有映射區的頁表,或利用vma_struct的nopage方法在缺頁時現場一頁一頁的建立頁表。第一種方法相比第二種方法簡單方便、速度快,但是靈活性不高。一次調用所有頁表便定型了,不適用於那些需要現場建立頁表的場合——比如映射區需要擴展或下面我們例子中的情況。
我們這里的實例希望利用內存映射,將系統內核中的一部分虛擬內存映射到用戶空間,以供應用程序讀取——你可利用它進行內核空間到用戶空間的大規模信息傳輸。因此我們將試圖寫一個虛擬字元設備驅動程序,通過它將系統內核空間映射到用戶空間——將內核虛擬內存映射到用戶虛擬地址。從上一節已經看到Linux內核空間中包含兩種虛擬地址:一種是物理和邏輯都連續的物理內存映射虛擬地址;另一種是邏輯連續但非物理連續的vmalloc分配的內存虛擬地址。我們的例子程序將演示把vmalloc分配的內核虛擬地址映射到用戶地址空間的全過程。
程序里主要應解決兩個問題:
第一是如何將vmalloc分配的內核虛擬內存正確地轉化成物理地址?
因為內存映射先要獲得被映射的物理地址,然後才能將其映射到要求的用戶虛擬地址上。我們已經看到內核物理內存映射區域中的地址可以被內核函數virt_to_phys轉換成實際的物理內存地址,但對於vmalloc分配的內核虛擬地址無法直接轉化成物理地址,所以我們必須對這部分虛擬內存格外「照顧」——先將其轉化成內核物理內存映射區域中的地址,然後在用virt_to_phys變為物理地址。
轉化工作需要進行如下步驟:
找到vmalloc虛擬內存對應的頁表,並尋找到對應的頁表項。
獲取頁表項對應的頁面指針
通過頁面得到對應的內核物理內存映射區域地址。
如下圖所示:
第二是當訪問vmalloc分配區時,如果發現虛擬內存尚未被映射到物理頁,則需要處理「缺頁異常」。因此需要我們實現內存區域中的nopaga操作,以能返回被映射的物理頁面指針,在我們的實例中就是返回上面過程中的內核物理內存映射區域中的地址。由於vmalloc分配的虛擬地址與物理地址的對應關系並非分配時就可確定,必須在缺頁現場建立頁表,因此這里不能使用remap_page_range方法,只能用vma的nopage方法一頁一頁的建立。
程序組成
map_driver.c,它是以模塊形式載入的虛擬字元驅動程序。該驅動負責將一定長的內核虛擬地址(vmalloc分配的)映射到設備文件上。其中主要的函數有——vaddress_to_kaddress()負責對vmalloc分配的地址進行頁表解析,以找到對應的內核物理映射地址(kmalloc分配的地址);map_nopage()負責在進程訪問一個當前並不存在的VMA頁時,尋找該地址對應的物理頁,並返回該頁的指針。
test.c它利用上述驅動模塊對應的設備文件在用戶空間讀取讀取內核內存。結果可以看到內核虛擬地址的內容(ok!),被顯示在了屏幕上。
執行步驟
編譯map_driver.c為map_driver.o模塊,具體參數見Makefile
載入模塊:insmodmap_driver.o
生成對應的設備文件
1在/proc/devices下找到map_driver對應的設備命和設備號:grepmapdrv/proc/devices
2建立設備文件mknodmapfilec 254 0(在我的系統里設備號為254)
利用maptest讀取mapfile文件,將取自內核的信息列印到屏幕上。
⑽ Linux系統入門-Bash
Shell 是一種命令行解釋器, 其讀取用戶輸入的字元串命令, 解釋並且執行命令;它是一種特殊的應用程序, 介於系統調用/庫與應用程序之間, 其提供了運行其他程序的的介面;它可以是互動式的, 即讀取用戶輸入的字元串;也可以是非互動式的, 即讀取腳本文件並解釋執行, 直至文件結束. 無論是在類 UNIX, Linux 系統, 還是 Windows, 有很多不同種類的 Shell: 如類 UNIX, Linux 系統上的 Bash, Zsh 等; Windows 系統上的 cmd, PowerShell 等.
Bash 是 Bourne Again SHell 的縮寫, 是 GNU 計劃中的 Shell, 也是一些類 UNIX 系統與多數 Linux 發行版的默認 Shell
使用Shell可以實現對Linux系統實現絕大部分的管理,例如:
#獲取當前時間
[root@CentOS7 ~]# date
Mon Mar 15 22:59:47 CST 2021
#創建文件
[root@CentOS7 opt]# touch xcz
[root@CentOS7 opt]# ll
-rw-r--r--. 1 root root 0 Mar 15 23:01 xcz
#創建一百個文件,我們一般就會使用shell script進行創建
[root@CentOS7 opt]# cat touch.sh
#!/bin/bash
for n in `seq 100`;do
touch xcz$n &&
echo "文件xcz$n創建成功哦!"
done
[root@CentOS7 opt]# sh touch.sh
命令行輸入方式:效率較低,適用於工作量不大的工作;
shell script 腳本方式:效率高,適用於工作量大且復雜的工作。
[root@CentOS7 opt]# bash --version
GNU bash, version 4.2.46(2)-release (x86_64-redhat-linux-gnu)
Copyright (C) 2011 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
This is free software; you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
'#39; = 普通用戶
'#' = root用戶(超級管理員)
#查看當前用戶
[root@CentOS7 ~]# whoami
root
#查看當前命令提示符
[root@CentOS7 ~]# echo $PS1
[u@h W]$
root:當前系統的用戶
CentOS7:當前系統的主機名
~:當前所在的位置
#:超級管理員身份(root用戶)
$:普通用戶
提示符參數及含義
d :代表日期;
H :完整的主機名稱
h :僅取主機名中的第一個名字
:顯示時間為24小時格式,如:HH:MM:SS
T :顯示時間為12小時格式
A :顯示時間為24小時格式:HH:MM
u :當前用戶的賬號名稱
v :BASH的版本信息
w :完整的工作目錄名稱
W :利用basename取得工作目錄名稱,只顯示最後一個目錄名
# :下達的第幾個命令
$ :提示字元,如果是root用戶,提示符為 "#" ,普通用戶則為 "#34;
#顏色
30 40 黑色
31 41 紅色
32 42 綠色
33 43 黃色
34 44 藍色
35 45 紫紅色
36 46 青藍色
37 47 白色
PS1='[e[32;40m] [[u@h w ]$ [e[0m]'
PS1="[e[37;40m][[e[32;40m]u[e[37;40m]@h [e[36;40m]w[e[0m]]$ "
PS1="[e[37;40m][[e[32;40m]u[e[37;40m]@[e[35;40m]h[e[0m] [e[36;40m]w[e[0m]]$ "
#提示符的應用
[root@CentOS7 ~]# vi .bashrc
#最後一行下面添加
PS1="[e[37;40m][[e[32;40m]u[e[37;40m]@[e[35;40m]h[e[0m] [e[36;40m]w[e[0m]]$ "
#使用source生效
[root@CentOS7 ~]# source .bashrc
#命令 選項 參數
command [-options] [arguments]
[root@CentOS7 ~]# ls -l /opt/
#命令:整條shell命令的主體
#選項:用於調節命令的具體功能
#以'-'引導段個事選項(單個字元),例如」-l「
#以'--'引導長格式選項(多個字元),例如」--list「
#多個短格式選項可以卸載一起,只用一個」-「引導,例如」-la「
#參數:命令操作與偶的對象,如文件、目錄名等
#命令必須開頭,選項和參數位置可以發生變化
我們在使用Linux系統進行查找一個多層級的文件時,我們可以使用鍵盤上的Tab鍵進行快速補全
補全的形式有:
#如果我們忘記網路配置文件具體路徑,那麼我們就可以使用補全的形式進行配置
[root@CentOS7 ~]# vi /etc/sysconfig/
anaconda cpupower grub irqbalance moles/ rdisc selinux
authconfig crond init kmp netconsole readonly-root sshd
cbq/ ebtables-config ip6tables-config kernel network rsyslog wpa_supplicant
console/ firewalld iptables-config man-db network-scripts/ run-parts
[root@CentOS7 ~]# vi /etc/sysconfig/network
network network-scripts/
[root@CentOS7 ~]# vi /etc/sysconfig/network-scripts/if
ifcfg-ens33 ifdown-eth ifdown-post ifdown-Team ifup-aliases ifup-ipv6 ifup-post ifup-Team
ifcfg-lo ifdown-ippp ifdown-ppp ifdown-TeamPort ifup-bnep ifup-isdn ifup-ppp ifup-TeamPort
ifdown ifdown-ipv6 ifdown-routes ifdown-tunnel ifup-eth ifup-plip ifup-routes ifup-tunnel
ifdown-bnep ifdown-isdn ifdown-sit ifup ifup-ippp ifup-plusb ifup-sit ifup-wireless
[root@CentOS7 ~]# vi /etc/sysconfig/network-scripts/ifcfg-
ifcfg-ens33 ifcfg-lo
[root@CentOS7 ~]# vi /etc/sysconfig/network-scripts/ifcfg-ens33
#如果你的Linux系統無法進行補全,那麼咱們可以安裝一個擴展包即可
[root@CentOS7 ~]# yum install -y bash-completion
clear #或者用快捷鍵 ctrl + l
ctrl+c #有些程序也可以用q鍵退出
ctrl+z # 進程會掛起到後台
bg jobid # 讓進程在後台繼續執行
fg jobid # 讓進程回到前台
Ctrl鍵+a #將當前游標移動到命令行的行首
Ctrl鍵+e #將當前游標移動到命令行的行尾
Ctrl鍵+u #將當前游標之前的所有字元剪切
Ctrl鍵+k #將當前游標之後的所有字元剪切
Ctrl鍵+w #將當前游標之前的字元剪切,以空格為結尾
Ctrl鍵+d #退出當前會話窗口
Ctrl鍵+z #將當前前台運行的程序,放到後台運行
Ctrl鍵+r #搜索 歷史 命令
Ctrl鍵+y #粘貼剪切板上的內容
Ctrl鍵+左右方向鍵 #向指定的方向鍵移動一組字元,以空格為分隔符
ESC鍵+. #使用上一條命令的最後的參數或者路徑,以空格為分隔符,空格之後的內容,delete鍵 從前往後刪除一個字元
!命令 #執行最近的一次以該命令為開頭的命令
!! #執行上一條命令
#使用格式:
[命令] + [--help] 或者[man] + [命令] 即可
#例如touch命令幫助
[root@CentOS7 ~]# touch --help
Usage: touch [OPTION]... FILE...
Update the access and modification times of each FILE to the current time.
A FILE argument that does not exist is created empty, unless -c or -h
is supplied.
A FILE argument string of - is handled specially and causes touch to
change the times of the file associated with standard output.
Mandatory arguments to long options are mandatory for short options too.
-a change only the access time
-c, --no-create do not create any files
-d, --date=STRING parse STRING and use it instead of current time
-f (ignored)
-h, --no-dereference affect each symbolic link instead of any referenced
file (useful only on systems that can change the
timestamps of a symlink)
-m change only the modification time
-r, --reference=FILE use this file's times instead of current time
-t STAMP use [[CC]YY]MMDDhhmm[.ss] instead of current time
--time=WORD change the specified time:
WORD is access, atime, or use: equivalent to -a
WORD is modify or mtime: equivalent to -m
--help display this help and exit
--version output version information and exit
Note that the -d and -t options accept different time-date formats.
GNU coreutils online help:
For complete documentation, run: info coreutils 'touch invocation'