① 單片機晶振電路的部分,電容在電路里的工作原理,是原理!!!
復位電路中的電容,是為了在加電時獲得一個高電平輸出,然後電容充電使得這個電平逐漸下降為低電平;
晶體振盪器電路中的電容,為了容易起振,這是個典型的晶振電路結構,死記吧
② 單片機的晶振的工作原理是什麼
晶振本身的工作原理
不必管它,知道咋用就得了。
好像是石英晶體會對特定的頻率產生諧振
以此來選頻,從而得到穩定的精確頻率。
③ 關於單片機內部振盪問題,下面是一個振盪電路圖,請幫我解釋解釋下,電容,晶振是怎麼工作的
內部就是一個反相器,是並聯諧振,屬於電容三點式振盪器,下面鏈接有詳細介紹:
http://www.docin.com/p-187276260.html
第2頁。
④ 如圖的AT89C52上的晶振電路和復位電路 寫一些工作原理和介紹(論文用)
晶振是石英振盪器的簡稱,英文名為Crystal,晶振分為有源晶振和無源晶振兩種,其作用是在電路產生震盪電流,發出時鍾信號。它是時鍾電路中最重要的部件,它的作用是向IC等部件提供基準頻率,它就像個標尺,工作頻率不穩定會造成相關設備工作頻率不穩定,自然容易出現問題。由於製造工藝不斷提高,現在晶振的頻率偏差、溫度穩定性、老化率、密封性等重要技術指標都很好,已不容易出現故障,但在選用時仍可留意一下晶振的質量。
復位電路是為確保微機系統中電路穩定可靠工作必不可少的一部分,復位電路的第一功能是上電復位。一般微機電路正常工作需要供電電源為5V±5%,即4.75~5.25V。由於微機電路是時序數字電路,它需要穩定的時鍾信號,因此在電源上電時,只有當VCC超過4.75V低於5.25V以及晶體振盪器穩定工作時,復位信號才被撤除,微機電路開始正常工作。目前為止,單片機復位電路主要有兩種類型:一種是上電復位,一種是手動復位。其中復位的原理如圖1所示:
圖1:單片機復位電路
上電復位原理:VCC上電時,C充電,在10K電阻上出現電壓,使得單片機復位;幾個毫秒後,C充滿,10K電阻上電流降為0,電壓也為0,使得單片機進入工作狀態。
手動復位原理:工作期間,按下S,C放電。S鬆手,C又充電,在10K電阻上出現電壓,使得單片機復位。幾個毫秒後,單片機進入工作狀態。
我的論文上是這么寫的,不知對你可有幫助
⑤ 單片機晶振起振原理
晶振,就是二氧化硅晶體切片,等效於一個R、L、C串並聯電路,與單片機內部的反相電路連接在一起,就很容易形成正反饋而起振。
⑥ 單片機的外部晶振電路是怎麼回事,如何計算所選電容的
晶振是晶體振盪器的簡稱,在電氣上它可以等效成一個電容和一個電阻並聯再串聯一個電容的二端網路。電工學上這個網路有兩個諧振點,以頻率的高低分,其中較低的頻率是串聯諧振;較高的頻率是並聯諧振。由於晶體自身的特性致使這兩個頻率的距離相當的接近,在這個極窄的頻率范圍內,晶振等效為一個電感,所以只要晶振的兩端並聯上合適的電容它就會組成並聯諧振電路。這個並聯諧振電路加到一個負反饋電路中就可以構成正弦波振盪電路,由於晶振等效為電感的頻率范圍很窄,所以即使其他元件的參數變化很大,這個振盪器的頻率也不會有很大的變化。
晶振有一個重要的參數——負載電容值,選擇與負載電容值相等的並聯電容,就可以得到晶振標稱的諧振頻率。一般的晶振振盪電路都是在一個反相放大器(注意是放大器不是反相器)的兩端接入晶振,再有兩個電容分別接到晶振的兩端,每個電容的另一端再接到地,這兩個電容串聯的容量值就應該等於負載電容。請注意一般IC的引腳都有等效輸入電容,這個不能忽略。一般的晶振的負載電容為15pF或12.5pF,如果再考慮元件引腳的等效輸入電容,則兩個22pF的電容構成晶振的振盪電路就是比較好的選擇。
如上圖:晶振是給單片機提供工作信號脈沖的 這個脈沖就是單片機的工作速度 比如 12M晶振 單片機工作速度就是每秒12M 當然 單片機的工作頻率是有范圍的不能太大 一般24M就不上去了 不然不穩定。
晶振與單片機的腳XTAL0和腳XTAL1構成的振盪電路中會產生偕波(也就是不希望存在的其他頻率的波) 這個波對電路的影響不大 但會降低電路的時鍾振盪器的穩定性 為了電路的穩定性起見ATMEL公司只是建議在晶振的兩引腳處接入兩個10pf-50pf的瓷片電容接地來削減偕波對電路的穩定性的影響 所以晶振所配的電容在10pf-50pf之間都可以的 沒有什麼計算公式。
晶振電路中如何選擇電容C1,C2?
(1)因為每一種晶振都有各自的特性,所以最好按製造廠商所提供的數值選擇外部元器件。
(2)在許可范圍內,C1,C2值越低越好。C值偏大雖有利於振盪器的穩定,但將會增加起振時間。
(3)應使C2值大於C1值,這樣可使上電時,加快晶振起振。
在石英晶體諧振器和陶瓷諧振器的應用中,需要注意負載電容的選擇。不同廠家生產的石英晶體諧振器和陶瓷諧振器的特性和品質都存在較大差異,在選用,要了解該型號振盪器的關鍵指標,如等效電阻,廠家建議負載電容,頻率偏差等。在實際電路中,也可以通過示波器觀察振盪波形來判斷振盪器是否工作在最佳狀態。示波器在觀察振盪波形時,觀察OSCO管腳(Oscillator output),應選擇100MHz帶寬以上的示波器探頭,這種探頭的輸入阻抗高,容抗小,對振盪波形相對影響小。(由於探頭上一般存在10~20pF的電容,所以觀測時,適當減小在OSCO管腳的電容可以獲得更接近實際的振盪波形)。工作良好的振盪波形應該是一個漂亮的正弦波,峰峰值應該大於電源電壓的70%。若峰峰值小於70%,可適當減小OSCI及OSCO管腳上的外接負載電容。反之,若峰峰值接近電源電壓且振盪波形發生畸變,則可適當增加負載電容。
用示波器檢測OSCI(Oscillator input)管腳,如何解決容易導致振盪器停振的問題?
部分的探頭阻抗小不可以直接測試,可以用串電容的方法來進行測試。如常用的4MHz石英晶體諧振器,通常廠家建議的外接負載電容為10~30pF左右。若取中心值15pF,則C1,C2各取30pF可得到其串聯等效電容值15pF。同時考慮到還另外存在的電路板分布電容,晶元管腳電容,晶體自身寄生電容等都會影響總電容值,故實際配置C1,C2時,可各取20~15pF左右。並且C1,C2使用瓷片電容為佳。硬之城
⑦ 51單片機最小系統原理圖,求通俗易懂的講解
我是一名電子信息大專畢業的學生,下面51單片機最小系統的講解,你參考一下
51單片機共有40隻引腳.
下面這個就是最小系統原理圖,就是靠這四個部分,這個單片機就可以運行起來了.
一,一講解:
第一部分:電源組(上圖標記為1的部分)
40腳接電源5V,20腳接電源負極,在單片機裡面,負極也可以叫GND或者」地」,我們在單片機的應用中,習慣說負極為」地」,上面GND就是英文ground的縮寫,翻譯過來就是"地"的意思.
第二部分:晶振組(上圖標記為2的部分)
11.0592M晶振Y1與單片機的18,19腳並聯,因為這兩只腳,就是晶振工作的引腳.
22p電容C2一端接18腳,一端接地.
22p電容C3一端接19腳,一端接地.
這兩個電容,我們在10~30P之間選擇都是可以的,主要作用是,過濾掉晶振部分的高頻信號,讓晶振工作的時候更加穩定.
第三部分:復位組(上圖標記為2的部分)
10u電容C1正極接電源5V,C1負極接單片機的復位腳,第9腳.
1K電阻R17一端接單片機的復位腳,第9腳,一端接地.
就是通過這個10u和1k,就可以讓單片機一供電時,單片機自動復位,從零開始執行程序,這個就是復位的概念.
第四部分:其它功能組(上圖標記為4的部分)
這個腳是存儲器使用選擇腳,當這個腳接"地"時,那麼告訴單片機選擇外部存儲器,當這個腳接"5V"時,說明單片機使用內部存儲器.
因為選擇外部存儲器,太浪費單片機僅有的資源,所以這一腳永遠接電源5V(如上圖所示),使用單片機的內部存儲器,如果內部存儲器不夠容量,最多選擇更高級容量的單片機型號,就可以解決問題了.
詳細看下面的帖子,單片機最小系統的通俗易懂講解:
網頁鏈接
滿意請採納,謝謝!
⑧ 單片機晶振起振原理
晶振即石英晶體振盪器,它是將二氧化硅切成薄片,利用了它的壓變效應(就是電壓會讓它變形,而它的變形同樣會影響電壓),但是為了方便它的起振,一般在單片機的晶振處都會加上二個小點的電容來幫它起振!
⑨ 新手學習C51單片機(AT89C51),不懂晶振 能不能解釋下下圖的晶振電路
1、這是51系列單片機的晶振和復位電路。
2、C1,C2,X1構成晶振電路,X1是晶振,兩個電容為負載電容,作用是容易啟震和減小頻率的溫漂。
3、R1,C3組成復位電路,跟晶振沒有關系。
⑩ 單片機中石英晶振的有什麼作用和原理
以51系列單片機為例:
單片機的引腳XTAL1、XTAL2與MCU內部反相放大器U1及反饋電阻R1連接(如下圖),
又與與外部的石英晶體及電容C1C2連接,組成諧振電路,為MCU提供頻率穩定的工作時鍾。
C1與C1(加上元件引腳的輸入電容)組成諧振電路的負載電容,C1,C1一般取22pF~30pF。