『壹』 linux內核線程死鎖或死循環之後如何讓系統宕機重啟
在開發內核模塊或驅動時,如果處理失誤,導致內核線程中出現死鎖或者死循環,你會發現,除了重啟之外,你沒有任何可以做的。這時你的輸入不起任何作用,終端(不是指遠程的ssh工具)只會在那重復的輸出類似「BUG: soft lockup - CPU#0 stuck for 67s! [fclustertool:2043]」,更無奈的是你重啟之後導致系統掛起的堆棧信息也看不到,你所能做的就是一遍遍的加調試信息,一遍遍的重啟機器(這是我的經歷,現在想想很傻)。 這種情況你肯定不是第一個遇到的,所以內核肯定會提供處理這種情況的一些機制。但是如何來找到這些機制在哪個地方,或者說根據什麼信息去google呢?最有用的就是這句話「BUG: soft lockup - CPU#0 stuck for 67s! [fclustertool:2043]」,因為這句話提供你的信息量很大。首先,這條信息可以輸出,說明即使發生死鎖或者死循環,還是有代碼可以執行。第二,可以通過這個日誌信息,找到對應的處理函數,這個函數所在的模塊就是用來處理CPU被過度使用時用到的。所以通過這個事情,可以看到內核列印出的只言片語都有可能成為你解決問題的關鍵,一定要從重視這些信息,從中找出有用的東西。 我經常看的內核版本是官方的2.6.32內核,這個版本中我找到的函數是softlockup_tick(),這個函數在時鍾中斷的處理函數run_local_timers()中調用。這個函數會首先檢查watchdog線程是否被掛起,如果不是watchdog線程,會檢查當前佔有CPU的線程佔有的時間是否超過系統配置的閾值,即softlockup_thresh。如果當前佔有CPU的時間過長,則會在系統日誌中輸出我們上面看到的那條日誌。接下來才是最關鍵的,就是輸出模塊信息、寄存器信息和堆棧信息,檢查softlockup_panic的值是否為1。如果softlockup_panic為1,則調用panic()讓內核掛起,輸出OOPS信息。代碼如下所示:/** This callback runs from the timer interrupt, and checks * whether the watchdog thread has hung or not:*/void softlockup_tick(void){int this_cpu = smp_processor_id(); unsigned long touch_timestamp = per_cpu(touch_timestamp, this_cpu); unsigned long print_timestamp; struct pt_regs *regs = get_irq_regs(); unsigned long now; /* Warn about unreasonable delays: */ if (now <= (touch_timestamp + softlockup_thresh))return; per_cpu(print_timestamp, this_cpu) = touch_timestamp; spin_lock(&print_lock); printk(KERN_ERR BUG: soft lockup - CPU#%d stuck for %lus! [%s:%d]\n, this_cpu, now - touch_timestamp, current-comm, task_pid_nr(current)); print_moles(); print_irqtrace_events(current);if (regs)show_regs(regs);elsemp_stack(); spin_unlock(&print_lock); if (softlockup_panic) panic(softlockup: hung tasks);} 但是softlockup_panic的值默認竟然是0,所以在出現死鎖或者死循環的時候,會一直只輸出日誌信息,而不會宕機,這個真是好坑啊!所以你得手動修改/proc/sys/kernel/softlockup_panic的值,讓內核可以在死鎖或者死循環的時候可以宕機。如果你的機器中安裝了kmp,在重啟之後,你會得到一份內核的core文件,這時從core文件中查找問題就方便很多了,而且再也不用手動重啟機器了。如果你的內核是標准內核的話,可以通過修改/proc/sys/kernel/softlockup_thresh來修改超時的閾值,如果是CentOS內核的話,對應的文件是/proc/sys/kernel/watchdog_thresh。CentOS內核和標准內核還有一個地方不一樣,就是處理CPU佔用時間過長的函數,CentOS下是watchdog_timer_fn()函數。 這里介紹下lockup的概念。lockup分為soft lockup和hard lockup。 soft lockup是指內核中有BUG導致在內核模式下一直循環的時間超過10s(根據實現和配置有所不同),而其他進程得不到運行的機會。hard softlockup是指內核已經掛起,可以通過watchdog這樣的機制來獲取詳細信息。這兩個概念比較類似。如果你想了解更多關於lockup的信息,可以參考這篇文檔: 注意上面說的這些,都是在內核線程中有效,對用戶態的死循環沒用。如果要監視用戶態的死循環,或者內存不足等資源的情況,強烈推薦軟體層面的watchdog。具體的操作可以參考下面的文章,都寫的非常好,非常實用:
『貳』 centos linux中httpd出現死鎖問題
我也遇到過同樣的問題。只不過我是編譯安裝的httpd2.4,而且問題也並非總是出現,有時候編譯ok,有時候編譯後就是有這種問題,盡管配置文件和服務管理腳本可以說是完全相同的。我發現不管PidFile怎樣設置,始終在安裝前綴目錄下的logs目錄(PidFile指令的默認值)中創建pid文件。把服務管理腳本的pidfile改為/usr/local/apache24/logs/httpd.pid,而主配置文件中不指定PidFile指令,就OK了。至於為什麼有的編譯有這樣的情況,而有的卻沒有,我也搞不懂。
補充:原因查明了,對於httpd2.4,使用Include包含了extra中的httpd-mpms.conf配置文件,PidFile屬於Mpm模塊中的指令。對於pidfile的設置如果在最下面取消注釋了包含httpd-mpm.conf文件的那個Include指令,就必須到httpd-mpm.conf中修改PidFile指令的值,否則在主配置文件中沒用,會被httpd-mpm.conf中的PidFile覆蓋掉。如果是使用httpd2.2版本的軟體的話,也無非就是PidFile指令的生效問題,大家好好查查。
『叄』 在linux中用C語言實現死鎖
讓我來告訴你答案!設置狀態變數lock=0,在佔用資源的函數中,設置lock=1;並在處理結束後設lock=0.
比如:
boollock=0;
intscan()
{
while(lock!=0);//循環檢測,直到資源釋放才執行下面的語句
lock=1;//鎖定資源
...//具體的執行掃描的語句
lock=1;//釋放資源
return0;
}
這個方法容易實現,但是佔用CPU,假定其他線程正在佔用掃描儀,那麼這個線程就會在自己的時間片內不停的執行while語句直到對方釋放掃描儀。由此造成了浪費。
現在流行的做法是通過中斷信號來做,那是一本書的內容,建議看linux內核編程方面的書。
『肆』 Linux 多線程 死鎖問題求解
這么專業的問題還是不要在這問了,白費時間和精力!本人的多線程死鎖還一直是個難題,再加上socket通訊的阻塞與非阻塞,非常不好辦。
網上也就解決點常識性的,別的還是需要閉門造車的精神多做研究吧
『伍』 Linux下各種鎖的理解和使用及總結解決epoll驚群問題(面試常考)-
鎖出現的原因
臨界資源是什麼: 多線程執行流所共享的資源
鎖的作用是什麼, 可以做原子操作, 在多線程中針對臨界資源的互斥訪問... 保證一個時刻只有一個線程可以持有鎖對於臨界資源做修改操作...
任何一個線程如果需要修改,向臨界資源做寫入操作都必須持有鎖,沒有持有鎖就不能對於臨界資源做寫入操作.
鎖 : 保證同一時刻只能有一個線程對於臨界資源做寫入操作 (鎖地功能)
再一個直觀地代碼引出問題,再從指令集的角度去看問題
上述一個及其奇怪的結果,這個結果每一次運行都可能是不一樣的,Why ? 按照我們本來的想法是每一個線程 + 20000000 結果肯定應該是60000000呀,可以就是達不到這個值
為何? (深入匯編指令來看) 一定將過程放置到匯編指令上去看就可以理解這個過程了.
a++; 或者 a += 1; 這些操作的匯編操作是幾個步驟?
其實是三個步驟:
正常情況下,數據少,操作的線程少,問題倒是不大,想一想要是這樣的情況下,操作次數大,對齊操作的線程多,有些線程從中間切入進來了,在運算之後還沒寫回內存就另外一個線程切入進來同時對於之前的數據進行++ 再寫回內存, 啥效果,多次++ 操作之後結果確實一次加加操作後的結果。 這樣的操作 (術語叫做函數的重入) 我覺得其實就是重入到了匯編指令中間了,還沒將上一次運算的結果寫回內存就重新對這個內存讀取再運算寫入,結果肯定和正常的邏輯後的結果不一樣呀
來一幅圖片解釋一下
咋辦? 其實問題很清楚,我們只需要處理的是多條匯編指令不能讓它中間被插入其他的線程運算. (要想自己在執行匯編指令的時候別人不插入進來) 將多條匯編指令綁定成為一條指令不就OK了嘛。
也就是原子操作!!!
不會原子操作?操作系統給咱提供了線程的 綁定方式工具呀:mutex 互斥鎖(互斥量), 自旋鎖(spinlock), 讀寫鎖(readers-writer lock) 他們也稱作悲觀鎖. 作用都是一個樣,將多個匯編指令鎖成為一條原子操作 (此處的匯編指令也相當於如下的臨界資源)
悲觀鎖:鎖如其名,每次都悲觀地認為其他線程也會來修改數據,進行寫入操作,所以會在取數據前先加鎖保護,當其他線程想要訪問數據時,被阻塞掛起
樂觀鎖:每次取數據的時候,總是樂觀地認為數據不會被其他線程修改,因此不上鎖。但是在更新數據前, 會判斷其他數據在更新前有沒有對數據進行修改。
互斥鎖
最為常見使用地鎖就是互斥鎖, 也稱互斥量. mutex
特徵,當其他線程持有互斥鎖對臨界資源做寫入操作地時候,當前線程只能掛起等待,讓出CPU,存在線程間切換工作
解釋一下存在線程間切換工作 : 當線程試圖去獲取鎖對臨界資源做寫入操作時候,如果鎖被別的線程正在持有,該線程會保存上下文直接掛起,讓出CPU,等到鎖被釋放出來再進行線程間切換,從新持有CPU執行寫入操作
互斥鎖需要進行線程間切換,相比自旋鎖而言性能會差上許多,因為自旋鎖不會讓出CPU, 也就不需要進行線程間切換的步驟,具體原理下一點詳述
加互斥量(互斥鎖)確實可以達到要求,但是會發現運行時間非常的長,因為線程間不斷地切換也需要時間, 線程間切換的代價比較大.
相關視頻推薦
你繞不開的組件—鎖,4個方面手撕鎖的多種實現
「驚群」原理、鎖的設計方案及繞不開的「死鎖」問題
學習地址:C/C++Linux伺服器開發/後台架構師【零聲教育】-學習視頻教程-騰訊課堂
需要C/C++ Linux伺服器架構師學習資料加qun812855908獲取(資料包括 C/C++,Linux,golang技術,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒體,CDN,P2P,K8S,Docker,TCP/IP,協程,DPDK,ffmpeg 等),免費分享
自旋鎖
spinlock.自旋鎖.
對比互斥量(互斥鎖)而言,獲取自旋鎖不需要進行線程間切換,如果自旋鎖正在被別的線程佔用,該線程也不會放棄CPU進行掛起休眠,而是恰如其名的在哪裡不斷地循環地查看自旋鎖保持者(持有者)是否將自旋鎖資源釋放出來... (自旋地原來就是如此)
口語解釋自旋:持有自旋鎖的線程不釋放自旋鎖,那也沒有關系呀,我就在這里不斷地一遍又一遍地查詢自旋鎖是否釋放出來,一旦釋放出來我立馬就可以直接使用 (因為我並沒有掛起等待,不需要像互斥鎖還需要進行線程間切換,重新獲取CPU,保存恢復上下文等等操作)
哪正是因為上述這些特點,線程嘗試獲取自旋鎖,獲取不到不會採取休眠掛起地方式,而是原地自旋(一遍又一遍查詢自旋鎖是否可以獲取)效率是遠高於互斥鎖了. 那我們是不是所有情況都使用自旋鎖就行了呢,互斥鎖就可以放棄使用了嗎????
解釋自旋鎖地弊端:如果每一個線程都僅僅只是需要短時間獲取這個鎖,那我自旋占據CPU等待是沒啥問題地。要是線程需要長時間地使用占據(鎖)。。。 會造成過多地無端占據CPU資源,俗稱站著茅坑不拉屎... 但是要是僅僅是短時間地自旋,平衡CPU利用率 + 程序運行效率 (自旋鎖確實是在有些時候更加合適)
自旋鎖需要場景:內核可搶占或者SMP(多處理器)情況下才真正需求 (避免死鎖陷入死循環,瘋狂地自旋,比如遞歸獲取自旋鎖. 你獲取了還要獲取,但是又沒法釋放)
自旋鎖的使用函數其實和互斥鎖幾乎是一摸一樣地,僅僅只是需要將所有的mutex換成spin即可
僅僅只是在init存在些許不同
何為驚群,池塘一堆, 我瞄準一條插過去,但是好似所有的都像是覺著自己正在被插一樣的四處逃竄。 這個就是驚群的生活一點的理解
驚群現象其實一點也不少,比如說 accept pthread_cond_broadcast 還有多個線程共享epoll監視一個listenfd 然後此刻 listenfd 說來 SYN了,放在了SYN隊列中,然後完成了三次握手放在了 accept隊列中了, 現在問題是這個connect我應該交付給哪一個線程處理呢.
多個epoll監視准備工作的線程 就是這群 (),然後connet就是魚叉,這一叉下去肯定是所有的 epoll線程都會被驚醒 (多線程共享listenfd引發的epoll驚群)
同樣如果將上述的多個線程換成多個進程共享監視 同一個 listenfd 就是(多進程的epoll驚群現象)
咱再畫一個草圖再來理解一下這個驚群:
如果是多進程道理是一樣滴,僅僅只是將所有的線程換成進程就OK了
終是來到了今天的正題了: epoll驚群問題地解決上面了...
首先 先說說accept的驚群問題,沒想到吧accept 平時大家寫它的多線程地時候,多個線程同時accept同一個listensock地時候也是會存在驚群問題地,但是accept地驚群問題已經被Linux內核處理了: 當有新的連接進入到accept隊列的時候,內核喚醒且僅喚醒一個進程來處理
但是對於epoll的驚群問題,內核卻沒有直接進行處理。哪既然內核沒有直接幫我們處理,我們應該如何針對這種現象做出一定的措施呢?
驚群效應帶來的弊端: 驚群現象會造成epoll的偽喚醒,本來epoll是阻塞掛起等待著地,這個時候因為掛起等待是不會佔用CPU地。。。 但是一旦喚醒就會佔用CPU去處理發生地IO事件, 但是其實是一個偽喚醒,這個就是對於線程或者進程的無效調度。然而進程或者線程地調取是需要花費代價地,需要上下文切換。需要進行進程(線程)間的不斷切換... 本來多核CPU是用來支持高並發地,但是現在卻被用來無效地喚醒,對於多核CPU簡直就是一種浪費 (浪費系統資源) 還會影響系統的性能.
解決方式(一般是兩種)
Nginx的解決方式:
加鎖:驚群問題發生的前提是多個進程(線程)監聽同一個套接字(listensock)上的事件,所以我們只讓一個進程(線程)去處理監聽套接字就可以了。
畫兩張圖來理解一下:
上述還沒有進行一個每一個進程都對應一個listensock 而是多線程共享一個listensock 運行結果如下
所有的線程同時被喚醒了,但是實際上會處理連接的僅僅只是一個線程,
咱僅僅只是將主線程做如上這樣一個簡單的修改,每一個線程對應一個listensock;每一個線程一個獨有的監視窗口,將問題拋給內核去處理,讓內核去負載均衡 : 結果如下
僅僅喚醒一個線程來進行處理連接,解決了驚群問題
本文通過介紹兩種鎖入手,以及為什麼需要鎖,鎖本質就是為了保護,持有鎖你就有權力有能力操作寫入一定的臨界保護資源,沒有鎖你就不行需要等待,本質其實是將多條匯編指令綁定成原子操作
然後介紹了驚群現象,通過一個巧妙地例子,扔一顆石子,只是瞄準一條魚扔過去了,但是整池魚都被驚醒了,
對應我們地實際問題就是, 多個線程或者進程共同監視同一個listensock。。。。然後IO連接事件到來地時候本來僅僅只是需要一個線程醒過來處理即可,但是卻會使得所有地線程(進程)全部醒過來,造成不必要地進程線程間切換,多核CPU被浪費喔,系統資源被浪費
處理方式 一。 Nginx 源碼加互斥鎖處理。。 二。設置SO_REUSEPORT, 使得多個進程線程可以同時連接同一個port , 為每一個進程線程搞一個listensock... 將問題拋給內核去處理,讓他去負載均衡地僅僅將IO連接事件分配給一個進程或線程
『陸』 soft lockup 解決思路
前幾天,幫同事一起查一個機器老是掛死無法進入問題,說有一台虛擬機時不時登陸不上掛死,同時甲方竟然沒有這些主機監控,判斷不了當時的cpu,內存,網路等的基礎數據信息,那就只能看看內核信息了。
通過dmesg命令顯示如下圖,可以看到有soft lockup- CPU..stuck for 24s!字樣,soft lockup是一種內核死鎖檢查的方式,類似於程序的心跳,列印這句話表示發生了內核軟鎖死。linux中每個cpu都設置了一個看門狗
進程,來檢測內存軟鎖的問題,如果進程進入死鎖或者進入死循環,長時間看門狗進程得不到調度,系統檢測到進程佔用cpu的時間超出特定的時間值後,會列印soft lockup告警,告警包含佔用時長和進程名以及pid。
它的原理查了下:
也可以直接修改啟動參數:
如下參數也都可以在/etc/default/grub修改GRUB_CMDLINE_LINUX行添加
這樣在重啟的時候不需要重新設置。
為了列印內核的core信息,需要安裝kmp且啟動程序
『柒』 怎麼解除Linux系統的死鎖
你可以進到系統另外一個環境,打開終端,使用TOP命令看看什麼進程沒有響應,kill 掉 就可以解除死鎖了
『捌』 linux內核同步問題
Linux內核設計與實現 十、內核同步方法
手把手教Linux驅動5-自旋鎖、信號量、互斥體概述
== 基礎概念: ==
並發 :多個執行單元同時進行或多個執行單元微觀串列執行,宏觀並行執行
競態 :並發的執行單元對共享資源(硬體資源和軟體上的全局變數)的訪問而導致的竟態狀態。
臨界資源 :多個進程訪問的資源
臨界區 :多個進程訪問的代碼段
== 並發場合: ==
1、單CPU之間進程間的並發 :時間片輪轉,調度進程。 A進程訪問列印機,時間片用完,OS調度B進程訪問列印機。
2、單cpu上進程和中斷之間並發 :CPU必須停止當前進程的執行中斷;
3、多cpu之間
4、單CPU上中斷之間的並發
== 使用偏向: ==
==信號量用於進程之間的同步,進程在信號量保護的臨界區代碼裡面是可以睡眠的(需要進行進程調度),這是與自旋鎖最大的區別。==
信號量又稱為信號燈,它是用來協調不同進程間的數據對象的,而最主要的應用是共享內存方式的進程間通信。本質上,信號量是一個計數器,它用來記錄對某個資源(如共享內存)的存取狀況。它負責協調各個進程,以保證他們能夠正確、合理的使用公共資源。它和spin lock最大的不同之處就是:無法獲取信號量的進程可以睡眠,因此會導致系統調度。
1、==用於進程與進程之間的同步==
2、==允許多個進程進入臨界區代碼執行,臨界區代碼允許睡眠;==
3、信號量本質是==基於調度器的==,在UP和SMP下沒有區別;進程獲取不到信號量將陷入休眠,並讓出CPU;
4、不支持進程和中斷之間的同步
5、==進程調度也是會消耗系統資源的,如果一個int型共享變數就需要使用信號量,將極大的浪費系統資源==
6、信號量可以用於多個線程,用於資源的計數(有多種狀態)
==信號量加鎖以及解鎖過程:==
sema_init(&sp->dead_sem, 0); / 初始化 /
down(&sema);
臨界區代碼
up(&sema);
==信號量定義:==
==信號量初始化:==
==dowm函數實現:==
==up函數實現:==
信號量一般可以用來標記可用資源的個數。
舉2個生活中的例子:
==dowm函數實現原理解析:==
(1)down
判斷sem->count是否 > 0,大於0則說明系統資源夠用,分配一個給該進程,否則進入__down(sem);
(2)__down
調用__down_common(sem, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);其中TASK_UNINTERRUPTIBLE=2代表進入睡眠,且不可以打斷;MAX_SCHEDULE_TIMEOUT休眠最長LONG_MAX時間;
(3)list_add_tail(&waiter.list, &sem->wait_list);
把當前進程加入到sem->wait_list中;
(3)先解鎖後加鎖;
進入__down_common前已經加鎖了,先把解鎖,調用schele_timeout(timeout),當waiter.up=1後跳出for循環;退出函數之前再加鎖;
Linux內核ARM構架中原子變數的底層實現研究
rk3288 原子操作和原子位操作
原子變數適用於只共享一個int型變數;
1、原子操作是指不被打斷的操作,即它是最小的執行單位。
2、最簡單的原子操作就是一條條的匯編指令(不包括一些偽指令,偽指令會被匯編器解釋成多條匯編指令)
==常見函數:==
==以atomic_inc為例介紹實現過程==
在Linux內核文件archarmincludeasmatomic.h中。 執行atomic_read、atomic_set這些操作都只需要一條匯編指令,所以它們本身就是不可打斷的。 需要特別研究的是atomic_inc、atomic_dec這類讀出、修改、寫回的函數。
所以atomic_add的原型是下面這個宏:
atomic_add等效於:
result(%0) tmp(%1) (v->counter)(%2) (&v->counter)(%3) i(%4)
注意:根據內聯匯編的語法,result、tmp、&v->counter對應的數據都放在了寄存器中操作。如果出現上下文切換,切換機制會做寄存器上下文保護。
(1)ldrex %0, [%3]
意思是將&v->counter指向的數據放入result中,並且(分別在Local monitor和Global monitor中)設置獨占標志。
(2)add %0, %0, %4
result = result + i
(3)strex %1, %0, [%3]
意思是將result保存到&v->counter指向的內存中, 此時 Exclusive monitors會發揮作用,將保存是否成功的標志放入tmp中。
(4) teq %1, #0
測試strex是否成功(tmp == 0 ??)
(5)bne 1b
如果發現strex失敗,從(1)再次執行。
Spinlock 是內核中提供的一種比較常見的鎖機制,==自旋鎖是「原地等待」的方式解決資源沖突的==,即,一個線程獲取了一個自旋鎖後,另外一個線程期望獲取該自旋鎖,獲取不到,只能夠原地「打轉」(忙等待)。由於自旋鎖的這個忙等待的特性,註定了它使用場景上的限制 —— 自旋鎖不應該被長時間的持有(消耗 CPU 資源),一般應用在==中斷上下文==。
1、spinlock是一種死等機制
2、信號量可以允許多個執行單元進入,spinlock不行,一次只能允許一個執行單元獲取鎖,並且進入臨界區,其他執行單元都是在門口不斷的死等
3、由於不休眠,因此spinlock可以應用在中斷上下文中;
4、由於spinlock死等的特性,因此臨界區執行代碼盡可能的短;
==spinlock加鎖以及解鎖過程:==
spin_lock(&devices_lock);
臨界區代碼
spin_unlock(&devices_lock);
==spinlock初始化==
==進程和進程之間同步==
==本地軟中斷之間同步==
==本地硬中斷之間同步==
==本地硬中斷之間同步並且保存本地中斷狀態==
==嘗試獲取鎖==
== arch_spinlock_t結構體定義如下: ==
== arch_spin_lock的實現如下: ==
lockval(%0) newval(%1) tmp(%2) &lock->slock(%3) 1 << TICKET_SHIFT(%4)
(1)ldrex %0, [%3]
把lock->slock的值賦值給lockval;並且(分別在Local monitor和Global monitor中)設置獨占標志。
(2)add %1, %0, %4
newval =lockval +(1<<16); 相當於next+1;
(3)strex %2, %1, [%3]
newval =lockval +(1<<16); 相當於next+1;
意思是將newval保存到 &lock->slock指向的內存中, 此時 Exclusive monitors會發揮作用,將保存是否成功的標志放入tmp中。
(4) teq %2, #0
測試strex是否成功
(5)bne 1b
如果發現strex失敗,從(1)再次執行。
通過上面的分析,可知關鍵在於strex的操作是否成功的判斷上。而這個就歸功於ARM的Exclusive monitors和ldrex/strex指令的機制。
(6)while (lockval.tickets.next != lockval.tickets.owner)
如何lockval.tickets的next和owner是否相等。相同則跳出while循環,否則在循環內等待判斷;
* (7)wfe()和smp_mb() 最終調用#define barrier() asm volatile ("": : :"memory") *
阻止編譯器重排,保證編譯程序時在優化屏障之前的指令不會在優化屏障之後執行。
== arch_spin_unlock的實現如下: ==
退出鎖時:tickets.owner++
== 出現死鎖的情況: ==
1、擁有自旋鎖的進程A在內核態阻塞了,內核調度B進程,碰巧B進程也要獲得自旋鎖,此時B只能自旋轉。 而此時搶占已經關閉,(單核)不會調度A進程了,B永遠自旋,產生死鎖。
2、進程A擁有自旋鎖,中斷到來,CPU執行中斷函數,中斷處理函數,中斷處理函數需要獲得自旋鎖,訪問共享資源,此時無法獲得鎖,只能自旋,產生死鎖。
== 如何避免死鎖: ==
1、如果中斷處理函數中也要獲得自旋鎖,那麼驅動程序需要在擁有自旋鎖時禁止中斷;
2、自旋鎖必須在可能的最短時間內擁有
3、避免某個獲得鎖的函數調用其他同樣試圖獲取這個鎖的函數,否則代碼就會死鎖;不論是信號量還是自旋鎖,都不允許鎖擁有者第二次獲得這個鎖,如果試圖這么做,系統將掛起;
4、鎖的順序規則(a) 按同樣的順序獲得鎖;b) 如果必須獲得一個局部鎖和一個屬於內核更中心位置的鎖,則應該首先獲取自己的局部鎖 ;c) 如果我們擁有信號量和自旋鎖的組合,則必須首先獲得信號量;在擁有自旋鎖時調用down(可導致休眠)是個嚴重的錯誤的;)
== rw(read/write)spinlock: ==
加鎖邏輯:
1、假設臨界區內沒有任何的thread,這個時候任何的讀線程和寫線程都可以鍵入
2、假設臨界區內有一個讀線程,這時候信賴的read線程可以任意進入,但是寫線程不能進入;
3、假設臨界區有一個寫線程,這時候任何的讀、寫線程都不可以進入;
4、假設臨界區內有一個或者多個讀線程,寫線程不可以進入臨界區,但是寫線程也無法阻止後續的讀線程繼續進去,要等到臨界區所有的讀線程都結束了,才可以進入,可見:==rw(read/write)spinlock更加有利於讀線程;==
== seqlock(順序鎖): ==
加鎖邏輯:
1、假設臨界區內沒有任何的thread,這個時候任何的讀線程和寫線程都可以鍵入
2、假設臨界區內沒有寫線程的情況下,read線程可以任意進入;
3、假設臨界區有一個寫線程,這時候任何的讀、寫線程都不可以進入;
4、假設臨界區內只有read線程的情況下,寫線程可以理解執行,不會等待,可見:==seqlock(順序鎖)更加有利於寫線程;==
讀寫速度 : CPU > 一級緩存 > 二級緩存 > 內存 ,因此某一個CPU0的lock修改了,其他的CPU的lock就會失效;那麼其他CPU就會依次去L1 L2和主存中讀取lock值,一旦其他CPU去讀取了主存,就存在系統性能降低的風險;
mutex用於互斥操作。
互斥體只能用於一個線程,資源只有兩種狀態(佔用或者空閑)
1、mutex的語義相對於信號量要簡單輕便一些,在鎖爭用激烈的測試場景下,mutex比信號量執行速度更快,可擴展
性更好,
2、另外mutex數據結構的定義比信號量小;、
3、同一時刻只有一個線程可以持有mutex
4、不允許遞歸地加鎖和解鎖
5、當進程持有mutex時,進程不可以退出。
• mutex必須使用官方API來初始化。
• mutex可以睡眠,所以不允許在中斷處理程序或者中斷下半部中使用,例如tasklet、定時器等
==常見操作:==
struct mutex mutex_1;
mutex_init(&mutex_1);
mutex_lock(&mutex_1)
臨界區代碼;
mutex_unlock(&mutex_1)
==常見函數:==
=
『玖』 什麼時候會kernel panic
什麼時候可能出現內核崩潰,kernrl panic呢?
Linux在中斷處理程序中,它不處於任何一個進程上下文,如果使用可能睡眠的函數,則系統調度會被破壞,導致kernel panic。因此,在中斷處理程序中,是不能使用有可能導致睡眠的函數(例如信號量等)。
在中斷發起的軟中斷中,其上下文環境有可能是中斷上下文,同理,也不能調用可能導致睡眠的函數。軟中斷執行時,全局中斷是打開的,而中斷程序執行時,全局中斷是禁止的。
軟中斷除了系統調度進入點,當軟中斷數量頻繁時,內核中有一個專門的軟中斷的後台程序daemon來處理其事務。
還有內核堆棧溢出,或者指針異常訪問時,也會出現kernel panic。
堆棧溢出:程序循環或者多層嵌套的深度過多時,可能會導致棧溢出。
顯而易見,除0異常、內存訪問越界、緩沖區溢出等錯誤時,當這些事件發生在應用程序時,Linux內核的異常處理機制可以對這些由應用程序引起的情況予以處理。當應用程序出現不可恢復性錯誤時,Linux內核可以僅僅終止產生錯誤的應用程序,而不影響其他程序。如果上述操作發生在內核空間,就會引起kernel panic。
還有內核陷入死鎖狀態,自旋鎖嵌套、在內核線程中,存在死循環的操作等等都會引起kermel panic。
『拾』 如何linux內核報告問題
Linux Kernel BUG:soft lockup CPU#1 stuck分析
1.線上內核bug日誌
kernel: Deltaway too big! 18428729675200069867 ts=18446743954022816244 write stamp =18014278822746377
kernel:------------[ cut here ]------------
kernel:WARNING: at kernel/trace/ring_buffer.c:1988 rb_reserve_next_event+0x2ce/0x370()(Not tainted)
kernel:Hardware name: ProLiant DL360 G7
kernel:Moles linked in: fuse ipv6 power_meter bnx2 sg microcode serio_raw iTCO_wdtiTCO_vendor_support hpilo hpwdt i7core_edac edac_core shpchp ext4 mbcache jbd2sd_mod crc_t10dif hpsa radeon ttm drm_kms_helper drm i2c_algo_bit i2c_coredm_mirror dm_region_hash dm_log dm_mod [last unloaded: scsi_wait_scan]
kernel: Pid:5483, comm: master Not tainted 2.6.32-220.el6.x86_64 #1
kernel: CallTrace:
kernel:[<ffffffff81069b77>] ? warn_slowpath_common+0x87/0xc0
kernel:[<ffffffff81069bca>] ? warn_slowpath_null+0x1a/0x20
kernel:[<ffffffff810ea8ae>] ? rb_reserve_next_event+0x2ce/0x370
kernel:[<ffffffff810eab02>] ? ring_buffer_lock_reserve+0xa2/0x160
kernel:[<ffffffff810ec97c>] ? trace_buffer_lock_reserve+0x2c/0x70
kernel:[<ffffffff810ecb16>] ? trace_current_buffer_lock_reserve+0x16/0x20
kernel:[<ffffffff8107ae1e>] ? ftrace_raw_event_hrtimer_cancel+0x4e/0xb0
kernel:[<ffffffff81095e7a>] ? hrtimer_try_to_cancel+0xba/0xd0
kernel:[<ffffffff8106f634>] ? do_setitimer+0xd4/0x220
kernel:[<ffffffff8106f88a>] ? alarm_setitimer+0x3a/0x60
kernel:[<ffffffff8107c27e>] ? sys_alarm+0xe/0x20
kernel:[<ffffffff8100b308>] ? tracesys+0xd9/0xde
kernel: ---[end trace 4d0a1ef2e62cb1a2 ]---
abrt-mp-oops: Reported 1 kernel oopses to Abrt
kernel: BUG: softlockup - CPU#11 stuck for 4278190091s! [qmgr:5492]
kernel:Moles linked in: fuse ipv6 power_meter bnx2 sg microcode serio_raw iTCO_wdtiTCO_vendor_support hpilo hpwdt i7core_edac edac_core shpchp ext4 mbcache jbd2sd_mod crc_t10dif hpsa radeon ttm drm_kms_helper drm i2c_algo_bit i2c_coredm_mirror dm_region_hash dm_log dm_mod [last unloaded: scsi_wait_scan]
kernel: CPU 11
kernel:Moles linked in: fuse ipv6 power_meter bnx2 sg microcode serio_raw iTCO_wdtiTCO_vendor_support hpilo hpwdt i7core_edac edac_core shpchp ext4 mbcache jbd2sd_mod crc_t10dif hpsa radeon ttm drm_kms_helper drm i2c_algo_bit i2c_coredm_mirror dm_region_hash dm_log dm_mod [last unloaded: scsi_wait_scan]
kernel:
kernel: Pid:5492, comm: qmgr Tainted: G W ---------------- 2.6.32-220.el6.x86_64 #1 HPProLiant DL360 G7
kernel: RIP:0010:[<ffffffff8106f730>] [<ffffffff8106f730>]do_setitimer+0x1d0/0x220
kernel: RSP:0018:ffff88080a661ef8 EFLAGS: 00000286
kernel: RAX:ffff88080b175a08 RBX: ffff88080a661f18 RCX: 0000000000000000
kernel: RDX:0000000000000000 RSI: 0000000000000082 RDI: ffff88080c8c4c40
kernel: RBP:ffffffff8100bc0e R08: 0000000000000000 R09: 0099d7270e01c3f1
kernel: R10:0000000000000000 R11: 0000000000000246 R12: ffffffff810ef9a3
kernel: R13:ffff88080a661e88 R14: 0000000000000000 R15: ffff88080a65a544
kernel: FS:00007f10b245f7c0(0000) GS:ffff88083c4a0000(0000) knlGS:0000000000000000
kernel: CS:0010 DS: 0000 ES: 0000 CR0: 000000008005003b
kernel: CR2:00007ff955977380 CR3: 000000100a80b000 CR4: 00000000000006e0
kernel: DR0:0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
kernel: DR3:0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
kernel:Process qmgr (pid: 5492, threadinfo ffff88080a660000, task ffff880809577500)
kernel: Stack:
kernel:00007f10b323def0 00007f10b248ead0 00007f10b26d0f78 00007f10b248ede0
kernel:<0> ffff88080a661f68 ffffffff8106f88a 0000000000000000 0000000000000000
kernel:<0> 000000000000014c 00000000000f423d 0000000000000000 0000000000000000
kernel: CallTrace:
kernel:[<ffffffff8106f88a>] ? alarm_setitimer+0x3a/0x60
kernel:[<ffffffff8107c27e>] ? sys_alarm+0xe/0x20
kernel:[<ffffffff8100b308>] ? tracesys+0xd9/0xde
kernel: Code:89 ef e8 74 66 02 00 83 3d 15 69 b5 00 00 75 37 49 8b 84 24 70 07 00 00 48 0508 08 00 00 66 ff 00 66 66 90 fb 66 0f 1f 44 00 00 <31> c0 e9 64 fe ff ff49 8b 84 24 68 07 00 00 48 c7 80 d0 00 00
kernel: CallTrace:
kernel:[<ffffffff8106f769>] ? do_setitimer+0x209/0x220
kernel:[<ffffffff8106f88a>] ? alarm_setitimer+0x3a/0x60
kernel:[<ffffffff8107c27e>] ? sys_alarm+0xe/0x20
kernel:[<ffffffff8100b308>] ? tracesys+0xd9/0xde
abrt-mp-oops: Reported 1 kernel oopses to Abrt
2.內核軟死鎖(soft lockup)bug原因分析
Soft lockup名稱解釋:所謂,soft lockup就是說,這個bug沒有讓系統徹底死機,但是若干個進程(或者kernel thread)被鎖死在了某個狀態(一般在內核區域),很多情況下這個是由於內核鎖的使用的問題。
Linux內核對於每一個cpu都有一個監控進程,在技術界這個叫做watchdog(看門狗)。通過ps –ef | grep watchdog能夠看見,進程名稱大概是watchdog/X(數字:cpu邏輯編號1/2/3/4之類的)。這個進程或者線程每一秒鍾運行一次,否則會睡眠和待機。這個進程運行會收集每一個cpu運行時使用數據的時間並且存放到屬於每個cpu自己的內核數據結構。在內核中有很多特定的中斷函數。這些中斷函數會調用soft lockup計數,他會使用當前的時間戳與特定(對應的)cpu的內核數據結構中保存的時間對比,如果發現當前的時間戳比對應cpu保存的時間大於設定的閥值,他就假設監測進程或看門狗線程在一個相當可觀的時間還沒有執。Cpu軟鎖為什麼會產生,是怎麼產生的?如果linux內核是經過精心設計安排的CPU調度訪問,那麼怎麼會產生cpu軟死鎖?那麼只能說由於用戶開發的或者第三方軟體引入,看我們伺服器內核panic的原因就是qmgr進程引起。因為每一個無限的循環都會一直有一個cpu的執行流程(qmgr進程示一個後台郵件的消息隊列服務進程),並且擁有一定的優先順序。Cpu調度器調度一個驅動程序來運行,如果這個驅動程序有問題並且沒有被檢測到,那麼這個驅動程序將會暫用cpu的很長時間。根據前面的描述,看門狗進程會抓住(catch)這一點並且拋出一個軟死鎖(soft lockup)錯誤。軟死鎖會掛起cpu使你的系統不可用。
如果是用戶空間的進程或線程引起的問題backtrace是不會有內容的,如果內核線程那麼在soft lockup消息中會顯示出backtrace信息。
3.根據linux內核源碼分析錯誤
根據我們第一部分內核拋出的錯誤信息和call trace(linux內核的跟蹤子系統)來分析產生的具體原因。
首先根據我們的centos版本安裝相應的linux內核源碼,具體步驟如下:
(1)下載源碼的rpm包kernel-2.6.32-220.17.1.el6.src.rpm
(2)安裝相應的依賴庫,命令:yuminstall rpm-build redhat-rpm-config asciidoc newt-devel
(3)安裝源碼包:rpm -ikernel-2.6.32-220.17.1.el6.src.rpm
(4)進入建立源碼的目錄:cd~/rpmbuild/SPECS
(5)建立生成源碼目錄:rpmbuild-bp --target=`uname -m` kernel.spec
下面開始真正的根據內核bug日誌分析源碼:
(1)第一階段內核錯誤日誌分析(時間在Dec 4 14:03:34這個階段的日誌輸出代碼分析,其實這部分代碼不會導致cpu軟死鎖,主要是第二階段錯誤日誌顯示導致cpu軟死鎖)
我們首先通過日誌定位到相關源代碼:看下面日誌:Dec 4 14:03:34 BP-YZH-1-xxxx kernel: WARNING: atkernel/trace/ring_buffer.c:1988 rb_reserve_next_event+0x2ce/0x370() (Not tainted)
根據日誌內容我們可以很容易的定位到kernel/trace/ring_buffer.c這個文件的1988行代碼如下:WARN_ON(1)。
先簡單解釋一下WARN_ON的作用:WARN_ON只是列印出當前棧信息,不會panic。所以會看到後面有一大堆的棧信息。這個宏定義如下:
#ifndef WARN_ON
#defineWARN_ON(condition) ({ \
int __ret_warn_on = !!(condition); \
if (unlikely(__ret_warn_on)) \
__WARN(); \
unlikely(__ret_warn_on); \
})
#endif
這個宏很簡單保證傳遞進來的條件值為0或者1(兩次邏輯非操作的結果),然後使用分支預測技術(保證執行概率大的分支緊鄰上面的指令)判斷是否需要調用__WARN()宏定義。如果滿足條件執行了__WARN()宏定義也接著執行一條空指令;。上面調用WARN_ON宏是傳遞的1,所以會執行__WARN()。下面繼續看一下__WARN()宏定義如下:
#define __WARN() warn_slowpath_null(__FILE__,__LINE__)
從接下來的call trace信息中我們也確實發現調用了warn_slowpath_null這個函數。通過在linux內核源代碼中搜索這個函數的實現,發現在panic.c(內核恐慌時的相關功能實現)中實現如下:
voidwarn_slowpath_null(const char *file, int line)
{
warn_slowpath_common(file, line,__builtin_return_address(0),
TAINT_WARN, NULL);
}
EXPORT_SYMBOL(warn_slowpath_null);//都出這個符號,讓其他模塊可以使用這個函數
同樣的我們看到了warn_slowpath_common這個函數,而在call trace當中這個函數在warn_slowpath_null函數之前列印出來,再次印證了這個流程是正確的。同樣在panic.c這個文件中我發現了warn_slowpath_common這個函數的實現如下:
static voidwarn_slowpath_common(const char *file, int line, void *caller,
unsigned taint, struct slowpath_args *args)
{
const char *board;
printk(KERN_WARNING "------------[ cut here]------------\n");
printk(KERN_WARNING "WARNING: at %s:%d %pS()(%s)\n",
file, line, caller, print_tainted());
board = dmi_get_system_info(DMI_PRODUCT_NAME);//得到dmi系統信息
if (board)
printk(KERN_WARNING "Hardware name:%s\n", board);//通過我們的日誌信息可以發現我們硬體名稱是ProLiant DL360 G7
if (args)
vprintk(args->fmt, args->args);
print_moles();//列印系統模塊信息
mp_stack();//mp信息輸出(call trace開始)
print_oops_end_marker();//列印oops結束
add_taint(taint);
}
分析這個函數的實現不難發現我們的很多日誌信息從這里開始輸出,包括列印一些系統信息,就不繼續深入分析了(請看代碼注釋,裡面調用相關函數列印對應信息,通過我分析這些函數的實現和我們的日誌信息完全能夠對應,其中mp_stack是與cpu體系結構相關的,我們的伺服器應該是屬於x86體系)。這里在繼續分析一下mp_stack函數的實現,因為這個是與cpu體系結構相關的,而且這個函數直接反應出導致內核panic的相關進程。這個函數實現如下:
/*
* The architecture-independent mp_stackgenerator
*/
void mp_stack(void)
{
unsigned long stack;
printk("Pid: %d, comm: %.20s %s %s %.*s\n",
current->pid, current->comm,print_tainted(),
init_utsname()->release,
(int