『壹』 一篇搞懂tcp,http,socket,socket連接池之間的關系
作為一名開發人員我們經常會聽到HTTP協議、TCP/IP協議、UDP協議、Socket、Socket長連接、Socket連接池等字眼,然而它們之間的關系、區別及原理並不是所有人都能理解清楚,這篇文章就從網路協議基礎開始到Socket連接池,一步一步解釋他們之間的關系。
首先從網路通信的分層模型講起:七層模型,亦稱OSI(Open System Interconnection)模型。自下往上分為:物理層、數據鏈路層、網路層、傳輸層、會話層、表示層和應用層。所有有關通信的都離不開它,下面這張圖片介紹了各層所對應的一些協議和硬體
通過上圖,我知道IP協議對應於網路層,TCP、UDP協議對應於傳輸層,而HTTP協議對應於應用層,OSI並沒有Socket,那什麼是Socket,後面我們將結合代碼具體詳細介紹。
關於傳輸層TCP、UDP協議可能我們平時遇見的會比較多,有人說TCP是安全的,UDP是不安全的,UDP傳輸比TCP快,那為什麼呢,我們先從TCP的連接建立的過程開始分析,然後解釋UDP和TCP的區別。
TCP的三次握手和四次分手
我們知道TCP建立連接需要經過三次握手,而斷開連接需要經過四次分手,那三次握手和四次分手分別做了什麼和如何進行的。
第一次握手: 建立連接。客戶端發送連接請求報文段,將SYN位置為1,Sequence Number為x;然後,客戶端進入SYN_SEND狀態,等待伺服器的確認;
第二次握手: 伺服器收到客戶端的SYN報文段,需要對這個SYN報文段進行確認,設置Acknowledgment Number為x+1(Sequence Number+1);同時,自己自己還要發送SYN請求信息,將SYN位置為1,Sequence Number為y;伺服器端將上述所有信息放到一個報文段(即SYN+ACK報文段)中,一並發送給客戶端,此時伺服器進入SYN_RECV狀態;
第三次握手: 客戶端收到伺服器的SYN+ACK報文段。然後將Acknowledgment Number設置為y+1,向伺服器發送ACK報文段,這個報文段發送完畢以後,客戶端和伺服器端都進入ESTABLISHED狀態,完成TCP三次握手。
完成了三次握手,客戶端和伺服器端就可以開始傳送數據。以上就是TCP三次握手的總體介紹。通信結束客戶端和服務端就斷開連接,需要經過四次分手確認。
第一次分手: 主機1(可以使客戶端,也可以是伺服器端),設置Sequence Number和Acknowledgment Number,向主機2發送一個FIN報文段;此時,主機1進入FIN_WAIT_1狀態;這表示主機1沒有數據要發送給主機2了;
第二次分手: 主機2收到了主機1發送的FIN報文段,向主機1回一個ACK報文段,Acknowledgment Number為Sequence Number加1;主機1進入FIN_WAIT_2狀態;主機2告訴主機1,我「同意」你的關閉請求;
第三次分手: 主機2向主機1發送FIN報文段,請求關閉連接,同時主機2進入LAST_ACK狀態;
第四次分手 :主機1收到主機2發送的FIN報文段,向主機2發送ACK報文段,然後主機1進入TIME_WAIT狀態;主機2收到主機1的ACK報文段以後,就關閉連接;此時,主機1等待2MSL後依然沒有收到回復,則證明Server端已正常關閉,那好,主機1也可以關閉連接了。
可以看到一次tcp請求的建立及關閉至少進行7次通信,這還不包過數據的通信,而UDP不需3次握手和4次分手。
TCP和UDP的區別
1、TCP是面向鏈接的,雖然說網路的不安全不穩定特性決定了多少次握手都不能保證連接的可靠性,但TCP的三次握手在最低限度上(實際上也很大程度上保證了)保證了連接的可靠性;而UDP不是面向連接的,UDP傳送數據前並不與對方建立連接,對接收到的數據也不發送確認信號,發送端不知道數據是否會正確接收,當然也不用重發,所以說UDP是無連接的、不可靠的一種數據傳輸協議。
2、也正由於1所說的特點,使得UDP的開銷更小數據傳輸速率更高,因為不必進行收發數據的確認,所以UDP的實時性更好。知道了TCP和UDP的區別,就不難理解為何採用TCP傳輸協議的MSN比採用UDP的QQ傳輸文件慢了,但並不能說QQ的通信是不安全的,因為程序員可以手動對UDP的數據收發進行驗證,比如發送方對每個數據包進行編號然後由接收方進行驗證啊什麼的,即使是這樣,UDP因為在底層協議的封裝上沒有採用類似TCP的「三次握手」而實現了TCP所無法達到的傳輸效率。
關於傳輸層我們會經常聽到一些問題
1.TCP伺服器最大並發連接數是多少?
關於TCP伺服器最大並發連接數有一種誤解就是「因為埠號上限為65535,所以TCP伺服器理論上的可承載的最大並發連接數也是65535」。首先需要理解一條TCP連接的組成部分: 客戶端IP、客戶端埠、服務端IP、服務端埠 。所以對於TCP服務端進程來說,他可以同時連接的客戶端數量並不受限於可用埠號,理論上一個伺服器的一個埠能建立的連接數是全球的IP數*每台機器的埠數。實際並發連接數受限於linux可打開文件數,這個數是可以配置的,可以非常大,所以實際上受限於系統性能。通過#ulimit -n 查看服務的最大文件句柄數,通過ulimit -n xxx 修改 xxx是你想要能打開的數量。也可以通過修改系統參數:
2.為什麼TIME_WAIT狀態還需要等2MSL後才能返回到CLOSED狀態?
這是因為雖然雙方都同意關閉連接了,而且握手的4個報文也都協調和發送完畢,按理可以直接回到CLOSED狀態(就好比從SYN_SEND狀態到ESTABLISH狀態那樣);但是因為我們必須要假想網路是不可靠的,你無法保證你最後發送的ACK報文會一定被對方收到,因此對方處於LAST_ACK狀態下的Socket可能會因為超時未收到ACK報文,而重發FIN報文,所以這個TIME_WAIT狀態的作用就是用來重發可能丟失的ACK報文。
3.TIME_WAIT狀態還需要等2MSL後才能返回到CLOSED狀態會產生什麼問題
通信雙方建立TCP連接後,主動關閉連接的一方就會進入TIME_WAIT狀態,TIME_WAIT狀態維持時間是兩個MSL時間長度,也就是在1-4分鍾,Windows操作系統就是4分鍾。進入TIME_WAIT狀態的一般情況下是客戶端,一個TIME_WAIT狀態的連接就佔用了一個本地埠。一台機器上埠號數量的上限是65536個,如果在同一台機器上進行壓力測試模擬上萬的客戶請求,並且循環與服務端進行短連接通信,那麼這台機器將產生4000個左右的TIME_WAIT Socket,後續的短連接就會產生address already in use : connect的異常,如果使用Nginx作為方向代理也需要考慮TIME_WAIT狀態,發現系統存在大量TIME_WAIT狀態的連接,通過調整內核參數解決。
編輯文件,加入以下內容:
然後執行 /sbin/sysctl -p 讓參數生效。
net.ipv4.tcp_syncookies = 1 表示開啟SYN Cookies。當出現SYN等待隊列溢出時,啟用cookies來處理,可防範少量SYN攻擊,默認為0,表示關閉;
net.ipv4.tcp_tw_reuse = 1 表示開啟重用。允許將TIME-WAIT sockets重新用於新的TCP連接,默認為0,表示關閉;
net.ipv4.tcp_tw_recycle = 1 表示開啟TCP連接中TIME-WAIT sockets的快速回收,默認為0,表示關閉。
net.ipv4.tcp_fin_timeout 修改系統默認的TIMEOUT時間
相關視頻推薦
10道網路八股文,每道都很經典,讓你在面試中逼格滿滿
徒手實現網路協議棧,請准備好環境,一起來寫代碼
學習地址:C/C++Linux伺服器開發/後台架構師【零聲教育】-學習視頻教程-騰訊課堂
需要C/C++ Linux伺服器架構師學習資料加qun812855908獲取(資料包括 C/C++,Linux,golang技術,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒體,CDN,P2P,K8S,Docker,TCP/IP,協程,DPDK,ffmpeg 等),免費分享
關於TCP/IP和HTTP協議的關系,網路有一段比較容易理解的介紹:「我們在傳輸數據時,可以只使用(傳輸層)TCP/IP協議,但是那樣的話,如果沒有應用層,便無法識別數據內容。如果想要使傳輸的數據有意義,則必須使用到應用層協議。應用層協議有很多,比如HTTP、FTP、TELNET等,也可以自己定義應用層協議。
HTTP協議即超文本傳送協議(Hypertext Transfer Protocol ),是Web聯網的基礎,也是手機聯網常用的協議之一,WEB使用HTTP協議作應用層協議,以封裝HTTP文本信息,然後使用TCP/IP做傳輸層協議將它發到網路上。
由於HTTP在每次請求結束後都會主動釋放連接,因此HTTP連接是一種「短連接」,要保持客戶端程序的在線狀態,需要不斷地向伺服器發起連接請求。通常 的做法是即時不需要獲得任何數據,客戶端也保持每隔一段固定的時間向伺服器發送一次「保持連接」的請求,伺服器在收到該請求後對客戶端進行回復,表明知道 客戶端「在線」。若伺服器長時間無法收到客戶端的請求,則認為客戶端「下線」,若客戶端長時間無法收到伺服器的回復,則認為網路已經斷開。
下面是一個簡單的HTTP Post application/json數據內容的請求:
現在我們了解到TCP/IP只是一個協議棧,就像操作系統的運行機制一樣,必須要具體實現,同時還要提供對外的操作介面。就像操作系統會提供標準的編程介面,比如Win32編程介面一樣,TCP/IP也必須對外提供編程介面,這就是Socket。現在我們知道,Socket跟TCP/IP並沒有必然的聯系。Socket編程介面在設計的時候,就希望也能適應其他的網路協議。所以,Socket的出現只是可以更方便的使用TCP/IP協議棧而已,其對TCP/IP進行了抽象,形成了幾個最基本的函數介面。比如create,listen,accept,connect,read和write等等。
不同語言都有對應的建立Socket服務端和客戶端的庫,下面舉例Nodejs如何創建服務端和客戶端:
服務端:
服務監聽9000埠
下面使用命令行發送http請求和telnet
注意到curl只處理了一次報文。
客戶端
Socket長連接
所謂長連接,指在一個TCP連接上可以連續發送多個數據包,在TCP連接保持期間,如果沒有數據包發送,需要雙方發檢測包以維持此連接(心跳包),一般需要自己做在線維持。 短連接是指通信雙方有數據交互時,就建立一個TCP連接,數據發送完成後,則斷開此TCP連接。比如Http的,只是連接、請求、關閉,過程時間較短,伺服器若是一段時間內沒有收到請求即可關閉連接。其實長連接是相對於通常的短連接而說的,也就是長時間保持客戶端與服務端的連接狀態。
通常的短連接操作步驟是:
連接 數據傳輸 關閉連接;
而長連接通常就是:
連接 數據傳輸 保持連接(心跳) 數據傳輸 保持連接(心跳) …… 關閉連接;
什麼時候用長連接,短連接?
長連接多用於操作頻繁,點對點的通訊,而且連接數不能太多情況,。每個TCP連接都需要三步握手,這需要時間,如果每個操作都是先連接,再操作的話那麼處理 速度會降低很多,所以每個操作完後都不斷開,次處理時直接發送數據包就OK了,不用建立TCP連接。例如:資料庫的連接用長連接, 如果用短連接頻繁的通信會造成Socket錯誤,而且頻繁的Socket創建也是對資源的浪費。
什麼是心跳包為什麼需要:
心跳包就是在客戶端和服務端間定時通知對方自己狀態的一個自己定義的命令字,按照一定的時間間隔發送,類似於心跳,所以叫做心跳包。網路中的接收和發送數據都是使用Socket進行實現。但是如果此套接字已經斷開(比如一方斷網了),那發送數據和接收數據的時候就一定會有問題。可是如何判斷這個套接字是否還可以使用呢?這個就需要在系統中創建心跳機制。其實TCP中已經為我們實現了一個叫做心跳的機制。如果你設置了心跳,那TCP就會在一定的時間(比如你設置的是3秒鍾)內發送你設置的次數的心跳(比如說2次),並且此信息不會影響你自己定義的協議。也可以自己定義,所謂「心跳」就是定時發送一個自定義的結構體(心跳包或心跳幀),讓對方知道自己「在線」,以確保鏈接的有效性。
實現:
服務端:
服務端輸出結果:
客戶端代碼:
客戶端輸出結果:
如果想要使傳輸的數據有意義,則必須使用到應用層協議比如Http、Mqtt、Dubbo等。基於TCP協議上自定義自己的應用層的協議需要解決的幾個問題:
下面我們就一起來定義自己的協議,並編寫服務的和客戶端進行調用:
定義報文頭格式: length:000000000xxxx; xxxx代表數據的長度,總長度20,舉例子不嚴謹。
數據表的格式: Json
服務端:
日誌列印:
客戶端
日誌列印:
客戶端定時發送自定義協議數據到服務端,先發送頭數據,在發送內容數據,另外一個定時器發送心跳數據,服務端判斷是心跳數據,再判斷是不是頭數據,再是內容數據,然後解析後再發送數據給客戶端。從日誌的列印可以看出客戶端先後writeheader和data數據,服務端可能在一個data事件裡面接收到。
這里可以看到一個客戶端在同一個時間內處理一個請求可以很好的工作,但是想像這么一個場景,如果同一時間內讓同一個客戶端去多次調用服務端請求,發送多次頭數據和內容數據,服務端的data事件收到的數據就很難區別哪些數據是哪次請求的,比如兩次頭數據同時到達服務端,服務端就會忽略其中一次,而後面的內容數據也不一定就對應於這個頭的。所以想復用長連接並能很好的高並發處理服務端請求,就需要連接池這種方式了。
什麼是Socket連接池,池的概念可以聯想到是一種資源的集合,所以Socket連接池,就是維護著一定數量Socket長連接的集合。它能自動檢測Socket長連接的有效性,剔除無效的連接,補充連接池的長連接的數量。從代碼層次上其實是人為實現這種功能的類,一般一個連接池包含下面幾個屬性:
場景: 一個請求過來,首先去資源池要求獲取一個長連接資源,如果空閑隊列裡面有長連接,就獲取到這個長連接Socket,並把這個Socket移到正在運行的長連接隊列。如果空閑隊列裡面沒有,且正在運行的隊列長度小於配置的連接池資源的數量,就新建一個長連接到正在運行的隊列去,如果正在運行的不下於配置的資源池長度,則這個請求進入到等待隊列去。當一個正在運行的Socket完成了請求,就從正在運行的隊列移到空閑的隊列,並觸發等待請求隊列去獲取空閑資源,如果有等待的情況。
這里簡單介紹Nodejs的Socket連接池generic-pool模塊的源碼。
主要文件目錄結構
下面介紹庫的使用:
初始化連接池
使用連接池
下面連接池的使用,使用的協議是我們之前自定義的協議。
日誌列印:
這里看到前面兩個請求都建立了新的Socket連接 socket_pool 127.0.0.1 9000 connect,定時器結束後重新發起兩個請求就沒有建立新的Socket連接了,直接從連接池裡面獲取Socket連接資源。
源碼分析
發現主要的代碼就位於lib文件夾中的Pool.js
構造函數:
lib/Pool.js
可以看到包含之前說的空閑的資源隊列,正在請求的資源隊列,正在等待的請求隊列等。
下面查看 Pool.acquire 方法
lib/Pool.js
上面的代碼就按種情況一直走下到最終獲取到長連接的資源,其他更多代碼大家可以自己去深入了解。
『貳』 linux socket 連接超時 怎麼解決
今天發現自己的系統存在很嚴重缺陷,當前台關閉的時候後台就無法正常工作,原因很好定位,後台的socket連接超時時間過長,系統默認時間好像是75秒,於是找資料,根據下邊文章中的內容解決了,把超時時間設為5秒後,感覺好多了。看來還有好多東西需要慢慢挖掘阿!
如何設置socket的Connect超時(linux)
[From]http://dev.cbw.com/c/c/200510195601_4292587.shtml
1.首先將標志位設為Non-blocking模式,准備在非阻塞模式下調用connect函數
2.調用connect,正常情況下,因為TCP三次握手需要一些時間;而非阻塞調用只要不能立即完成就會返回錯誤,所以這里會返回EINPROGRESS,表示在建立連接但還沒有完成。
3.在讀套介面描述符集(fd_set rset)和寫套介面描述符集(fd_set wset)中將當前套介面置位(用FD_ZERO()、FD_SET()宏),並設置好超時時間(struct timeval *timeout)
4.調用select( socket, &rset, &wset, NULL, timeout )
返回0表示connect超時
如果你設置的超時時間大於75秒就沒有必要這樣做了,因為內核中對connect有超時限制就是75秒。
[From]http://www.ycgczj.com.cn/34733.html
網路編程中socket的分量我想大家都很清楚了,socket也就是套介面,在套介面編程中,提到超時的概念,我們一下子就能想到3個:發送超時,接收超時,以及select超時(註: select函數並不是只用於套介面的,但是套介面編程中用的比較多),在connect到目標主機的時候,這個超時是不由我們來設置的。不過正常情況下這個超時都很長,並且connect又是一個阻塞方法,一個主機不能連接,等著connect返回還能忍受,你的程序要是要試圖連接多個主機,恐怕遇到多個不能連接的主機的時候,會塞得你受不了的。我也廢話少說,先說說我的方法,如果你覺得你已掌握這種方法,你就不用再看下去了,如果你還不了解,我願意與你分享。本文是已在Linux下的程序為例子,不過拿到Windows中方法也是一樣,無非是換幾個函數名字罷了。
Linux中要給connect設置超時,應該是有兩種方法的。一種是該系統的一些參數,這個方法我不講,因為我講不清楚:P,它也不是編程實現的。另外一種方法就是變相的實現connect的超時,我要講的就是這個方法,原理上是這樣的:
1.建立socket
2.將該socket設置為非阻塞模式
3.調用connect()
4.使用select()檢查該socket描述符是否可寫(注意,是可寫)
5.根據select()返回的結果判斷connect()結果
6.將socket設置為阻塞模式(如果你的程序不需要用阻塞模式的,這步就省了,不過一般情況下都是用阻塞模式的,這樣也容易管理)
如果你對網路編程很熟悉的話,其實我一說出這個過程你就知道怎麼寫你的程序了,下面給出我寫的一段程序,僅供參考。
/******************************
* Time out for connect()
* Write by Kerl W
******************************/
#include <sys/socket.h>
#include <sys/types.h>
#define TIME_OUT_TIME 20 //connect超時時間20秒
int main(int argc , char **argv)
{
………………
int sockfd = socket(AF_INET, SOCK_STREAM, 0);
if(sockfd < 0) exit(1);
struct sockaddr_in serv_addr;
………//以伺服器地址填充結構serv_addr
int error=-1, len;
len = sizeof(int);
timeval tm;
fd_set set;
unsigned long ul = 1;
ioctl(sockfd, FIONBIO, &ul); //設置為非阻塞模式
bool ret = false;
if( connect(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) == -1)
{
tm.tv_set = TIME_OUT_TIME;
tm.tv_uset = 0;
FD_ZERO(&set);
FD_SET(sockfd, &set);
if( select(sockfd+1, NULL, &set, NULL, &tm) > 0)
{
getsockopt(sockfd, SOL_SOCKET, SO_ERROR, &error, (socklen_t *)&len);
if(error == 0) ret = true;
else ret = false;
} else ret = false;
}
else ret = true;
ul = 0;
ioctl(sockfd, FIONBIO, &ul); //設置為阻塞模式
if(!ret)
{
close( sockfd );
fprintf(stderr , "Cannot Connect the server!n");
return;
}
fprintf( stderr , "Connected!n");
//下面還可以進行發包收包操作
……………
}
以上代碼片段,僅供參考,也是為初學者提供一些提示,主要用到的幾個函數,select, ioctl, getsockopt都可以找到相關資料,具體用法我這里就不贅述了,你只需要在linux中輕輕的敲一個man <函數名>就能夠看到它的用法。
此外我需要說明的幾點是,雖然我們用ioctl把套介面設置為非阻塞模式,不過select本身是阻塞的,阻塞的時間就是其超時的時間由調用select 的時候的最後一個參數timeval類型的變數指針指向的timeval結構變數來決定的,timeval結構由一個表示秒數的和一個表示微秒數(long類型)的成員組成,一般我們設置了秒數就行了,把微妙數設為0(註:1秒等於100萬微秒)。而select函數另一個值得一提的參數就是上面我們用到的fd_set類型的變數指針。調用之前,這個變數裡面存了要用select來檢查的描述符,調用之後,針對上面的程序這裡面是可寫的描述符,我們可以用宏FD_ISSET來檢查某個描述符是否在其中。由於我這里只有一個套介面描述符,我就沒有使用FD_ISSET宏來檢查調用select之後這個sockfd是否在set裡面,其實是需要加上這個判斷的。不過我用了getsockopt來檢查,這樣才可以判斷出這個套介面是否是真的連接上了,因為我們只是變相的用select來檢查它是否連接上了,實際上select檢查的是它是否可寫,而對於可寫,是針對以下三種條件任一條件滿足時都表示可寫的:
1)套介面發送緩沖區中的可用控制項位元組數大於等於套介面發送緩沖區低潮限度的當前值,且或者i)套介面已連接,或者ii)套介面不要求連接(UDP方式的)
2)連接的寫這一半關閉。
3)有一個套介面錯誤待處理。
這樣,我們就需要用getsockopt函數來獲取套介面目前的一些信息來判斷是否真的是連接上了,沒有連接上的時候還能給出發生了什麼錯誤,當然我程序中並沒有標出那麼多狀態,只是簡單的表示可連接/不可連接。
下面我來談談對這個程序測試的結果。我針對3種情形做了測試:
1. 目標機器網路正常的情況
可以連接到目標主機,並能成功以阻塞方式進行發包收包作業。
2. 目標機器網路斷開的情況
在等待設置的超時時間(上面的程序中為20秒)後,顯示目標主機不能連接。
3. 程序運行前斷開目標機器網路,超時時間內,恢復目標機器的網路
在恢復目標主機網路連接之前,程序一隻等待,恢復目標主機後,程序顯示連接目標主機成功,並能成功以阻塞方式進行發包收包作業。
以上各種情況的測試結果表明,這種設置connect超時的方法是完全可行的。我自己是把這種設置了超時的connect封裝到了自己的類庫,用在一套監控系統中,到目前為止,運行還算正常。這種編程實現的connect超時比起修改系統參數的那種方法的有點就在於它只用於你的程序之中而不影響系統。
『叄』 請問linux怎麼增大socket連接上限
1、修改用戶進程可打開文件數限制
在Linux平台上,無論編寫客戶端程序還是服務端程序,在進行高並發TCP連接處理時,
最高的並發數量都要受到系統對用戶單一進程同時可打開文件數量的限制(這是因為系統
為每個TCP連接都要創建一個socket句柄,每個socket句柄同時也是一個文件句柄)。
可使用ulimit命令查看系統允許當前用戶進程打開的文件數限制:
[speng@as4 ~]$ ulimit -n
1024
這表示當前用戶的每個進程最多允許同時打開1024個文件,這1024個文件中還得除去
每個進程必然打開的標准輸入,標准輸出,標准錯誤,伺服器監聽 socket,
進程間通訊的unix域socket等文件,那麼剩下的可用於客戶端socket連接的文件數就
只有大概1024-10=1014個左右。也就是說預設情況下,基於Linux的通訊程序最多允許
同時1014個TCP並發連接。
對於想支持更高數量的TCP並發連接的通訊處理程序,就必須修改Linux對當前用戶的
進程同時打開的文件數量的軟限制(soft limit)和硬限制(hardlimit)。其中軟限制
是指Linux在當前系統能夠承受的范圍內進一步限制用戶同時打開的文件數;硬限制
則是根據系統硬體資源狀況(主要是系統內存)計算出來的系統最多可同時打開的文件數量。
通常軟限制小於或等於硬限制。
修改上述限制的最簡單的辦法就是使用ulimit命令:
[speng@as4 ~]$ ulimit -n
上述命令中,在中指定要設置的單一進程允許打開的最大文件數。如果系統回顯
類似於「Operation notpermitted」之類的話,說明上述限制修改失敗,實際上是
因為在中指定的數值超過了Linux系統對該用戶打開文件數的軟限制或硬限制。
因此,就需要修改Linux系統對用戶的關於打開文件數的軟限制和硬限制。
第一步,修改/etc/security/limits.conf文件,在文件中添加如下行:
speng soft nofile 10240
speng hard nofile 10240
其中speng指定了要修改哪個用戶的打開文件數限制,可用』*'號表示修改所有用戶的限制;
soft或hard指定要修改軟限制還是硬限制;10240則指定了想要修改的新的限制值,
即最大打開文件數(請注意軟限制值要小於或等於硬限制)。修改完後保存文件。
第二步,修改/etc/pam.d/login文件,在文件中添加如下行:
session required /lib/security/pam_limits.so
這是告訴Linux在用戶完成系統登錄後,應該調用pam_limits.so模塊來設置系統對
該用戶可使用的各種資源數量的最大限制(包括用戶可打開的最大文件數限制),
而pam_limits.so模塊就會從/etc/security/limits.conf文件中讀取配置來設置這些限制值。
修改完後保存此文件。
第三步,查看Linux系統級的最大打開文件數限制,使用如下命令:
[speng@as4 ~]$ cat /proc/sys/fs/file-max
12158
這表明這台Linux系統最多允許同時打開(即包含所有用戶打開文件數總和)12158個文件,
是Linux系統級硬限制,所有用戶級的打開文件數限制都不應超過這個數值。通常這個系統級
硬限制是Linux系統在啟動時根據系統硬體資源狀況計算出來的最佳的最大同時打開文件數限制,
如果沒有特殊需要,不應該修改此限制,除非想為用戶級打開文件數限制設置超過此限制的值。
修改此硬限制的方法是修改/etc/rc.local腳本,在腳本中添加如下行:
echo 22158 > /proc/sys/fs/file-max
這是讓Linux在啟動完成後強行將系統級打開文件數硬限制設置為22158。修改完後保存此文件。
完成上述步驟後重啟系統,一般情況下就可以將Linux系統對指定用戶的單一進程允許同時
打開的最大文件數限制設為指定的數值。如果重啟後用 ulimit-n命令查看用戶可打開文件數限制
仍然低於上述步驟中設置的最大值,這可能是因為在用戶登錄腳本/etc/profile中使用ulimit -n命令
已經將用戶可同時打開的文件數做了限制。由於通過ulimit-n修改系統對用戶可同時打開文件的
最大數限制時,新修改的值只能小於或等於上次 ulimit-n設置的值,因此想用此命令增大這個
限制值是不可能的。
所以,如果有上述問題存在,就只能去打開/etc/profile腳本文件,
在文件中查找是否使用了ulimit-n限制了用戶可同時打開的最大文件數量,如果找到,
則刪除這行命令,或者將其設置的值改為合適的值,然後保存文件,用戶退出並重新登錄系統即可。
通過上述步驟,就為支持高並發TCP連接處理的通訊處理程序解除關於打開文件數量方面的系統限制。
2、修改網路內核對TCP連接的有關限制
在Linux上編寫支持高並發TCP連接的客戶端通訊處理程序時,有時會發現盡管已經解除了系統
對用戶同時打開文件數的限制,但仍會出現並發TCP連接數增加到一定數量時,再也無法成功
建立新的TCP連接的現象。出現這種現在的原因有多種。
第一種原因可能是因為Linux網路內核對本地埠號范圍有限制。此時,進一步分析為什麼無法
建立TCP連接,會發現問題出在connect()調用返回失敗,查看系統錯誤提示消息是「Can』t assign requestedaddress」。同時,如果在此時用tcpmp工具監視網路,會發現根本沒有TCP連接時客戶端
發SYN包的網路流量。這些情況說明問題在於本地Linux系統內核中有限制。
其實,問題的根本原因
在於Linux內核的TCP/IP協議實現模塊對系統中所有的客戶端TCP連接對應的本地埠號的范圍
進行了限制(例如,內核限制本地埠號的范圍為1024~32768之間)。當系統中某一時刻同時
存在太多的TCP客戶端連接時,由於每個TCP客戶端連接都要佔用一個唯一的本地埠號
(此埠號在系統的本地埠號范圍限制中),如果現有的TCP客戶端連接已將所有的本地埠號占滿,
則此時就無法為新的TCP客戶端連接分配一個本地埠號了,因此系統會在這種情況下在connect()
調用中返回失敗,並將錯誤提示消息設為「Can』t assignrequested address」。
有關這些控制
邏輯可以查看Linux內核源代碼,以linux2.6內核為例,可以查看tcp_ipv4.c文件中如下函數:
static int tcp_v4_hash_connect(struct sock *sk)
請注意上述函數中對變數sysctl_local_port_range的訪問控制。變數sysctl_local_port_range
的初始化則是在tcp.c文件中的如下函數中設置:
void __init tcp_init(void)
內核編譯時默認設置的本地埠號范圍可能太小,因此需要修改此本地埠范圍限制。
第一步,修改/etc/sysctl.conf文件,在文件中添加如下行:
net.ipv4.ip_local_port_range = 1024 65000
這表明將系統對本地埠范圍限制設置為1024~65000之間。請注意,本地埠范圍的最小值
必須大於或等於1024;而埠范圍的最大值則應小於或等於65535。修改完後保存此文件。
第二步,執行sysctl命令:
[speng@as4 ~]$ sysctl -p
如果系統沒有錯誤提示,就表明新的本地埠范圍設置成功。如果按上述埠范圍進行設置,
則理論上單獨一個進程最多可以同時建立60000多個TCP客戶端連接。
第二種無法建立TCP連接的原因可能是因為Linux網路內核的IP_TABLE防火牆對最大跟蹤的TCP
連接數有限制。此時程序會表現為在 connect()調用中阻塞,如同死機,如果用tcpmp工具監視網路,
也會發現根本沒有TCP連接時客戶端發SYN包的網路流量。由於 IP_TABLE防火牆在內核中會對
每個TCP連接的狀態進行跟蹤,跟蹤信息將會放在位於內核內存中的conntrackdatabase中,
這個資料庫的大小有限,當系統中存在過多的TCP連接時,資料庫容量不足,IP_TABLE無法為
新的TCP連接建立跟蹤信息,於是表現為在connect()調用中阻塞。此時就必須修改內核對最大跟蹤
的TCP連接數的限制,方法同修改內核對本地埠號范圍的限制是類似的:
第一步,修改/etc/sysctl.conf文件,在文件中添加如下行:
net.ipv4.ip_conntrack_max = 10240
這表明將系統對最大跟蹤的TCP連接數限制設置為10240。請注意,此限制值要盡量小,
以節省對內核內存的佔用。
第二步,執行sysctl命令:
[speng@as4 ~]$ sysctl -p
如果系統沒有錯誤提示,就表明系統對新的最大跟蹤的TCP連接數限制修改成功。
如果按上述參數進行設置,則理論上單獨一個進程最多可以同時建立10000多個TCP客戶端連接。
3、使用支持高並發網路I/O的編程技術
在Linux上編寫高並發TCP連接應用程序時,必須使用合適的網路I/O技術和I/O事件分派機制。
可用的I/O技術有同步I/O,非阻塞式同步I/O(也稱反應式I/O),以及非同步I/O。在高TCP並發的情形下,
如果使用同步I/O,這會嚴重阻塞程序的運轉,除非為每個TCP連接的I/O創建一個線程。
但是,過多的線程又會因系統對線程的調度造成巨大開銷。因此,在高TCP並發的情形下使用
同步 I/O是不可取的,這時可以考慮使用非阻塞式同步I/O或非同步I/O。非阻塞式同步I/O的技術包括使用select(),poll(),epoll等機制。非同步I/O的技術就是使用AIO。
從I/O事件分派機制來看,使用select()是不合適的,因為它所支持的並發連接數有限(通常在1024個以內)。
如果考慮性能,poll()也是不合適的,盡管它可以支持的較高的TCP並發數,但是由於其採用
「輪詢」機制,當並發數較高時,其運行效率相當低,並可能存在I/O事件分派不均,導致部分TCP
連接上的I/O出現「飢餓」現象。而如果使用epoll或AIO,則沒有上述問題(早期Linux內核的AIO技術
實現是通過在內核中為每個 I/O請求創建一個線程來實現的,這種實現機制在高並發TCP連接的情形下
使用其實也有嚴重的性能問題。但在最新的Linux內核中,AIO的實現已經得到改進)。
綜上所述,在開發支持高並發TCP連接的Linux應用程序時,應盡量使用epoll或AIO技術來實現並發的
TCP連接上的I/O控制,這將為提升程序對高並發TCP連接的支持提供有效的I/O保證。
內核參數sysctl.conf的優化
/etc/sysctl.conf 是用來控制linux網路的配置文件,對於依賴網路的程序(如web伺服器和cache伺服器)
非常重要,RHEL默認提供的最好調整。
推薦配置(把原/etc/sysctl.conf內容清掉,把下面內容復制進去):
net.ipv4.ip_local_port_range = 1024 65536
net.core.rmem_max=16777216
net.core.wmem_max=16777216
net.ipv4.tcp_rmem=4096 87380 16777216
net.ipv4.tcp_wmem=4096 65536 16777216
net.ipv4.tcp_fin_timeout = 10
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_timestamps = 0
net.ipv4.tcp_window_scaling = 0
net.ipv4.tcp_sack = 0
net.core.netdev_max_backlog = 30000
net.ipv4.tcp_no_metrics_save=1
net.core.somaxconn = 262144
net.ipv4.tcp_syncookies = 0
net.ipv4.tcp_max_orphans = 262144
net.ipv4.tcp_max_syn_backlog = 262144
net.ipv4.tcp_synack_retries = 2
net.ipv4.tcp_syn_retries = 2
這個配置參考於cache伺服器varnish的推薦配置和SunOne 伺服器系統優化的推薦配置。
varnish調優推薦配置的地址為:http://varnish.projects.linpro.no/wiki/Performance
不過varnish推薦的配置是有問題的,實際運行表明「net.ipv4.tcp_fin_timeout = 3」的配置
會導致頁面經常打不開;並且當網友使用的是IE6瀏覽器時,訪問網站一段時間後,所有網頁都會
打不開,重啟瀏覽器後正常。可能是國外的網速快吧,我們國情決定需要
調整「net.ipv4.tcp_fin_timeout = 10」,在10s的情況下,一切正常(實際運行結論)。
修改完畢後,執行:
/sbin/sysctl -p /etc/sysctl.conf
/sbin/sysctl -w net.ipv4.route.flush=1
命令生效。為了保險起見,也可以reboot系統。
調整文件數:
linux系統優化完網路必須調高系統允許打開的文件數才能支持大的並發,默認1024是遠遠不夠的。
執行命令:
Shell代碼
echo ulimit -HSn 65536 >> /etc/rc.local
echo ulimit -HSn 65536 >>/root/.bash_profile
ulimit -HSn 65536
『肆』 設計一個linux c語言,Http協議的伺服器,用socket收發消息,簡單點,求代碼and注釋。
OK
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/ip.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include <string.h>
int main(int argc,char *argv[])
{
int sockfd,new_socket;
int sock_value;
char buf[] = "hello! China!I Love You\n";
struct sockaddr_in client_;
struct sockaddr_in server_;
int SIZE = sizeof(struct sockaddr_in);
if(argc != 2){
fprintf(stderr,"The two number!\n");
exit(1);
}
if((sock_value = atoi(argv[1])) < 0){
fprintf(stderr,"socket error!\n");
exit(1);
}
if((sockfd = socket(PF_INET,SOCK_STREAM, 0)) == -1){
perror("socket");
exit(1);
}
bzero(&server_,SIZE);
server_.sin_family = PF_INET;
server_.sin_port = htons(sock_value);
server_.sin_addr.s_addr = INADDR_ANY;
if(bind(sockfd,(struct sockaddr *)(&server_),SIZE) == -1){
perror("bind");
exit(1);
}
if(listen(sockfd, 12) == -1){
perror("listen");
exit(1);
}
printf("Waiting ... ...\n");
while(1){
if((new_socket = accept(sockfd,(struct sockaddr *)(&client_),&SIZE)) == -1){
perror("accept");
exit(1);
}
printf("The client IP is %s\n",inet_ntoa(client_.sin_addr));
printf("The socket is %d\n",ntohs(client_.sin_port));
if(write(new_socket,buf,strlen(buf)) == -1){
perror("write");
exit(1);
}
int my;
char mybuf[1024];
if((my = read(new_socket, mybuf,1024)) == -1){
perror("read");
exit(1);
}
mybuf[my] = '\0';
printf("#++++#++++#:%s\n",mybuf);
close(new_socket);
}
close(sockfd);
return 0;
}
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/ip.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
int main(int argc,char *argv[])
{
int sockfd;
int sock_value;
char buf[1024];
char mybuf[] = "Linux\n";
int read_count;
struct sockaddr_in client_;
struct sockaddr_in server_;
int SIZE = sizeof(struct sockaddr_in);
if(argc != 3){
fprintf(stderr,"The two number!\n");
exit(1);
}
if((sock_value = atoi(argv[2])) < 0){
fprintf(stderr,"socket error!\n");
exit(1);
}
if((sockfd = socket(PF_INET,SOCK_STREAM, 0)) == -1){
perror("socket");
exit(1);
}
bzero(&client_,SIZE);
bzero(&server_,SIZE);
client_.sin_family = PF_INET;
client_.sin_port = htons(52252);
client_.sin_addr.s_addr = INADDR_ANY;
server_.sin_family = PF_INET;
server_.sin_port = htons(sock_value);
server_.sin_addr.s_addr = inet_addr(argv[1]);
if(connect(sockfd,(struct sockaddr *)(&server_),SIZE) == -1){
perror("connect");
exit(1);
}
if((read_count = read(sockfd,buf,1024)) == -1){
perror("read");
exit(1);
}
buf[read_count] = '\0';
printf("#----#----#:%s\n",buf);
if(write(sockfd, mybuf,6) == -1){
perror("write");
exit(1);
}
close(sockfd);
exit(0);
return 0;
}
『伍』 linux之socket , URL 訪問http伺服器
給提供一個指導步驟:
1、修改socket服務埠為80/443;
2、申請一個域名並配置IP和域名的映射,如是本地的話,請把伺服器主機名和IP地址在開發機器上做一個映射即可,如是linux機器,請在/etc/hosts文件添加如下信息,
ipmapping_hostname
『陸』 linux 下用socket 文件傳輸問題(UDP)
要下班了,時間急,不寫代碼了先給你一個思路
1 實現最簡單的udp socket 模型,實現發送一個字元串。
2 實現一個簡單的打開文件,讀取文件的例子,如用fgets(),類似的函數有很多,然後再把讀取的文件內容忘另一個文件里寫(相關函數fopen(),write(),read())。
3 把上面兩個函數結合到一起,在客戶端實現打開要傳送的文件,按一定的大小讀取,讀取後調用sendto()發送到伺服器端。在伺服器端創建一個文件,然後調用recvfrom()接受客戶端發送過來的數據,向來是創建的那個文件中寫。
下面是改好的udp發送文件的例子。
伺服器端程序的編譯
gcc -o file_server file_server
客戶端程序的編譯
gcc -o file_client file_client.c
伺服器程序和客戶端程應當分別運行在2台計算機上.
伺服器端程序的運行,在一個計算機的終端執行
./file_server
客戶端程序的運行,在另一個計算機的終端中執行
./file_client 運行伺服器程序的計算機的IP地址
根據提示輸入要傳輸的伺服器上的文件,該文件在伺服器的運行目錄上
在實際編程和測試中,可以用2個終端代替2個計算機,這樣就可以在一台計算機上測試網路程序,
伺服器端程序的運行,在一個終端執行
./file_server
客戶端程序的運行,在另一個終端中執行
./file_client 127.0.0.1
說明: 任何計算機都可以通過127.0.0.1訪問自己. 也可以用計算機的實際IP地址代替127.0.0.1
//////////////////////////////////////////////////////////////////////////////////////
// file_server.c 文件傳輸順序伺服器示例
//////////////////////////////////////////////////////////////////////////////////////
//本文件是伺服器的代碼
#include <netinet/in.h> // for sockaddr_in
#include <sys/types.h> // for socket
#include <sys/socket.h> // for socket
#include <stdio.h> // for printf
#include <stdlib.h> // for exit
#include <string.h> // for bzero
/*
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
*/
#define HELLO_WORLD_SERVER_PORT 6666
#define LENGTH_OF_LISTEN_QUEUE 20
#define BUFFER_SIZE 1024
#define FILE_NAME_MAX_SIZE 512
int main(int argc, char **argv)
{
//設置一個socket地址結構server_addr,代表伺服器internet地址, 埠
struct sockaddr_in server_addr, pcliaddr;
bzero(&server_addr,sizeof(server_addr)); //把一段內存區的內容全部設置為0
server_addr.sin_family = AF_INET;
server_addr.sin_addr.s_addr = htons(INADDR_ANY);
server_addr.sin_port = htons(HELLO_WORLD_SERVER_PORT);
//創建用於internet的據報套接字(UDPt,用server_socket代表伺服器socket
// 創建數據報套接字(UDP)
int server_socket = socket(PF_INET,SOCK_DGRAM,0);
if( server_socket < 0)
{
printf("Create Socket Failed!");
exit(1);
}
//把socket和socket地址結構聯系起來
if( bind(server_socket,(struct sockaddr*)&server_addr,sizeof(server_addr)))
{
printf("Server Bind Port : %d Failed!", HELLO_WORLD_SERVER_PORT);
exit(1);
}
while (1) //伺服器端要一直運行
{
//定義客戶端的socket地址結構client_addr
struct sockaddr_in client_addr;
socklen_t n = sizeof(client_addr) ;
int length;
char buffer[BUFFER_SIZE];
bzero(buffer, BUFFER_SIZE);
length = recvfrom(new_server_socket,buffer,BUFFER_SIZE,0,&pcliaddr,&n);
if (length < 0)
{
printf("Server Recieve Data Failed!\n");
break;
}
char file_name[FILE_NAME_MAX_SIZE+1];
bzero(file_name, FILE_NAME_MAX_SIZE+1);
strncpy(file_name, buffer, strlen(buffer)>FILE_NAME_MAX_SIZE?FILE_NAME_MAX_SIZE:strlen(buffer));
// int fp = open(file_name, O_RDONLY);
// if( fp < 0 )
FILE * fp = fopen(file_name,"r");
if(NULL == fp )
{
printf("File:\t%s Not Found\n", file_name);
}
else
{
bzero(buffer, BUFFER_SIZE);
int file_block_length = 0;
// while( (file_block_length = read(fp,buffer,BUFFER_SIZE))>0)
while( (file_block_length = fread(buffer,sizeof(char),BUFFER_SIZE,fp))>0)
{
printf("file_block_length = %d\n",file_block_length);
//發送buffer中的字元串到new_server_socket,實際是給客戶端
if(send(new_server_socket,buffer,file_block_length,0)<0)
{
printf("Send File:\t%s Failed\n", file_name);
break;
}
bzero(buffer, BUFFER_SIZE);
}
// close(fp);
fclose(fp);
printf("File:\t%s Transfer Finished\n",file_name);
}
}
}
//////////////////////////////////////////////////////////////////////////////////////
// file_client.c 文件傳輸客戶端程序示例
//////////////////////////////////////////////////////////////////////////////////////
//本文件是客戶機的代碼
#include <netinet/in.h> // for sockaddr_in
#include <sys/types.h> // for socket
#include <sys/socket.h> // for socket
#include <stdio.h> // for printf
#include <stdlib.h> // for exit
#include <string.h> // for bzero
/*
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
*/
#define HELLO_WORLD_SERVER_PORT 6666
#define BUFFER_SIZE 1024
#define FILE_NAME_MAX_SIZE 512
int main(int argc, char **argv)
{
if (argc != 2)
{
printf("Usage: ./%s ServerIPAddress\n",argv[0]);
exit(1);
}
//設置一個socket地址結構client_addr,代表客戶機internet地址, 埠
struct sockaddr_in client_addr;
bzero(&client_addr,sizeof(client_addr)); //把一段內存區的內容全部設置為0
client_addr.sin_family = AF_INET; //internet協議族
client_addr.sin_addr.s_addr = htons(INADDR_ANY);//INADDR_ANY表示自動獲取本機地址
client_addr.sin_port = htons(0); //0表示讓系統自動分配一個空閑埠
//創建用於internet的流協議(TCP)socket,用client_socket代表客戶機socket
int client_socket = socket(AF_INET,SOCK_DGRAM,0);
if( client_socket < 0)
{
printf("Create Socket Failed!\n");
exit(1);
}
//設置一個socket地址結構server_addr,代表伺服器的internet地址, 埠
struct sockaddr_in server_addr;
bzero(&server_addr,sizeof(server_addr));
server_addr.sin_family = AF_INET;
if(inet_aton(argv[1],&server_addr.sin_addr) == 0) //伺服器的IP地址來自程序的參數
{
printf("Server IP Address Error!\n");
exit(1);
}
server_addr.sin_port = htons(HELLO_WORLD_SERVER_PORT);
socklen_t server_addr_length = sizeof(server_addr);
char file_name[FILE_NAME_MAX_SIZE+1];
bzero(file_name, FILE_NAME_MAX_SIZE+1);
printf("Please Input File Name On Server:\t");
scanf("%s", file_name);
char buffer[BUFFER_SIZE];
bzero(buffer,BUFFER_SIZE);
strncpy(buffer, file_name, strlen(file_name)>BUFFER_SIZE?BUFFER_SIZE:strlen(file_name));
//向伺服器發送buffer中的數據
socklen_t n = sizeof(server_addr) ;
sendto(client_socket,buffer,BUFFER_SIZE,0,(struct sockaddr*)&server_addr,n);
// int fp = open(file_name, O_WRONLY|O_CREAT);
// if( fp < 0 )
FILE * fp = fopen(file_name,"w");
if(NULL == fp )
{
printf("File:\t%s Can Not Open To Write\n", file_name);
exit(1);
}
//從伺服器接收數據到buffer中
bzero(buffer,BUFFER_SIZE);
int length = 0;
while( length = recv(client_socket,buffer,BUFFER_SIZE,0))
{
if(length < 0)
{
printf("Recieve Data From Server %s Failed!\n", argv[1]);
break;
}
// int write_length = write(fp, buffer,length);
int write_length = fwrite(buffer,sizeof(char),length,fp);
if (write_length<length)
{
printf("File:\t%s Write Failed\n", file_name);
break;
}
bzero(buffer,BUFFER_SIZE);
}
printf("Recieve File:\t %s From Server[%s] Finished\n",file_name, argv[1]);
return 0;
}
『柒』 C 語言在Linux下發送HTTP 請求
您好 您直接建立一個socket,把http協議的內容放在buffer中,發送到伺服器就可以,在c語言中,盡量比較底層的操作,這樣您可以更靈活的操作,我們一般都是這么實現的~