mutex相關的函數並不是linux kernel實現的,而是glibc實現的,源碼位於nptl目錄下。
http://ftp.gnu.org/pub/gnu/glibc/glibc-2.3.5.tar.gz
首先說數據結構:
typedef union
{
struct
{
int __lock;
unsigned int __count;
int __owner;
unsigned int __nusers;
/* KIND must stay at this position in the structure to maintain
binary compatibility. */
int __kind;
int __spins;
} __data;
char __size[__SIZEOF_PTHREAD_MUTEX_T];
long int __align;
} pthread_mutex_t;
int __lock; 資源競爭引用計數
int __kind; 鎖類型,init 函數中mutexattr 參數傳遞,該參數可以為NULL,一般為 PTHREAD_MUTEX_NORMAL
結構體其他元素暫時不了解,以後更新。
/*nptl/pthread_mutex_init.c*/
int
__pthread_mutex_init (mutex, mutexattr)
pthread_mutex_t *mutex;
const pthread_mutexattr_t *mutexattr;
{
const struct pthread_mutexattr *imutexattr;
assert (sizeof (pthread_mutex_t) <= __SIZEOF_PTHREAD_MUTEX_T);
imutexattr = (const struct pthread_mutexattr *) mutexattr ?: &default_attr;
/* Clear the whole variable. */
memset (mutex, '\0', __SIZEOF_PTHREAD_MUTEX_T);
/* Copy the values from the attribute. */
mutex->__data.__kind = imutexattr->mutexkind & ~0x80000000;
/* Default values: mutex not used yet. */
// mutex->__count = 0; already done by memset
// mutex->__owner = 0; already done by memset
// mutex->__nusers = 0; already done by memset
// mutex->__spins = 0; already done by memset
return 0;
}
init函數就比較簡單了,將mutex結構體清零,設置結構體中__kind屬性。
/*nptl/pthread_mutex_lock.c*/
int
__pthread_mutex_lock (mutex)
pthread_mutex_t *mutex;
{
assert (sizeof (mutex->__size) >= sizeof (mutex->__data));
pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
switch (__builtin_expect (mutex->__data.__kind, PTHREAD_MUTEX_TIMED_NP))
{
…
default:
/* Correct code cannot set any other type. */
case PTHREAD_MUTEX_TIMED_NP:
simple:
/* Normal mutex. */
LLL_MUTEX_LOCK (mutex->__data.__lock);
break;
…
}
/* Record the ownership. */
assert (mutex->__data.__owner == 0);
mutex->__data.__owner = id;
#ifndef NO_INCR
++mutex->__data.__nusers;
#endif
return 0;
}
該函數主要是調用LLL_MUTEX_LOCK, 省略部分為根據mutex結構體__kind屬性不同值做些處理。
宏定義函數LLL_MUTEX_LOCK最終調用,將結構體mutex的__lock屬性作為參數傳遞進來
#define __lll_mutex_lock(futex) \
((void) ({ \
int *__futex = (futex); \
if (atomic_compare_and_exchange_bool_acq (__futex, 1, 0) != 0) \
__lll_lock_wait (__futex); \
}))
atomic_compare_and_exchange_bool_acq (__futex, 1, 0)宏定義為:
#define atomic_compare_and_exchange_bool_acq(mem, newval, oldval) \
({ __typeof (mem) __gmemp = (mem); \
__typeof (*mem) __gnewval = (newval); \
\
*__gmemp == (oldval) ? (*__gmemp = __gnewval, 0) : 1; })
這個宏實現的功能是:
如果mem的值等於oldval,則把newval賦值給mem,放回0,否則不做任何處理,返回1.
由此可以看出,當mutex鎖限制的資源沒有競爭時,__lock 屬性被置為1,並返回0,不會調用__lll_lock_wait (__futex); 當存在競爭時,再次調用lock函數,該宏不做任何處理,返回1,調用__lll_lock_wait (__futex);
void
__lll_lock_wait (int *futex)
{
do
{
int oldval = atomic_compare_and_exchange_val_acq (futex, 2, 1);
if (oldval != 0)
lll_futex_wait (futex, 2);
}
while (atomic_compare_and_exchange_bool_acq (futex, 2, 0) != 0);
}
atomic_compare_and_exchange_val_acq (futex, 2, 1); 宏定義:
/* The only basic operation needed is compare and exchange. */
#define atomic_compare_and_exchange_val_acq(mem, newval, oldval) \
({ __typeof (mem) __gmemp = (mem); \
__typeof (*mem) __gret = *__gmemp; \
__typeof (*mem) __gnewval = (newval); \
\
if (__gret == (oldval)) \
*__gmemp = __gnewval; \
__gret; })
這個宏實現的功能是,當mem等於oldval時,將mem置為newval,始終返回mem原始值。
此時,futex等於1,futex將被置為2,並且返回1. 進而調用
lll_futex_wait (futex, 2);
#define lll_futex_timed_wait(ftx, val, timespec) \
({ \
DO_INLINE_SYSCALL(futex, 4, (long) (ftx), FUTEX_WAIT, (int) (val), \
(long) (timespec)); \
_r10 == -1 ? -_retval : _retval; \
})
該宏對於不同的平台架構會用不同的實現,採用匯編語言實現系統調用。不過確定的是調用了Linux kernel的futex系統調用。
futex在linux kernel的實現位於:kernel/futex.c
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
struct timespec __user *, utime, u32 __user *, uaddr2,
u32, val3)
{
struct timespec ts;
ktime_t t, *tp = NULL;
u32 val2 = 0;
int cmd = op & FUTEX_CMD_MASK;
if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
cmd == FUTEX_WAIT_BITSET ||
cmd == FUTEX_WAIT_REQUEUE_PI)) {
if (_from_user(&ts, utime, sizeof(ts)) != 0)
return -EFAULT;
if (!timespec_valid(&ts))
return -EINVAL;
t = timespec_to_ktime(ts);
if (cmd == FUTEX_WAIT)
t = ktime_add_safe(ktime_get(), t);
tp = &t;
}
/*
* requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
* number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
*/
if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
val2 = (u32) (unsigned long) utime;
return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
}
futex具有六個形參,pthread_mutex_lock最終只關注了前四個。futex函數對參數進行判斷和轉化之後,直接調用do_futex。
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
u32 __user *uaddr2, u32 val2, u32 val3)
{
int clockrt, ret = -ENOSYS;
int cmd = op & FUTEX_CMD_MASK;
int fshared = 0;
if (!(op & FUTEX_PRIVATE_FLAG))
fshared = 1;
clockrt = op & FUTEX_CLOCK_REALTIME;
if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
return -ENOSYS;
switch (cmd) {
case FUTEX_WAIT:
val3 = FUTEX_BITSET_MATCH_ANY;
case FUTEX_WAIT_BITSET:
ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
break;
…
default:
ret = -ENOSYS;
}
return ret;
}
省略部分為對其他cmd的處理,pthread_mutex_lock函數最終傳入的cmd參數為FUTEX_WAIT,所以在此只關注此分之,分析futex_wait函數的實現。
static int futex_wait(u32 __user *uaddr, int fshared,
u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
{
struct hrtimer_sleeper timeout, *to = NULL;
struct restart_block *restart;
struct futex_hash_bucket *hb;
struct futex_q q;
int ret;
… … //delete parameters check and convertion
retry:
/* Prepare to wait on uaddr. */
ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
if (ret)
goto out;
/* queue_me and wait for wakeup, timeout, or a signal. */
futex_wait_queue_me(hb, &q, to);
… … //other handlers
return ret;
}
futex_wait_setup 將線程放進休眠隊列中,
futex_wait_queue_me(hb, &q, to);將本線程休眠,等待喚醒。
喚醒後,__lll_lock_wait函數中的while (atomic_compare_and_exchange_bool_acq (futex, 2, 0) != 0); 語句將被執行,由於此時futex在pthread_mutex_unlock中置為0,所以atomic_compare_and_exchange_bool_acq (futex, 2, 0)語句將futex置為2,返回0. 退出循環,訪問用戶控制項的臨界資源。
/*nptl/pthread_mutex_unlock.c*/
int
internal_function attribute_hidden
__pthread_mutex_unlock_usercnt (mutex, decr)
pthread_mutex_t *mutex;
int decr;
{
switch (__builtin_expect (mutex->__data.__kind, PTHREAD_MUTEX_TIMED_NP))
{
… …
default:
/* Correct code cannot set any other type. */
case PTHREAD_MUTEX_TIMED_NP:
case PTHREAD_MUTEX_ADAPTIVE_NP:
/* Normal mutex. Nothing special to do. */
break;
}
/* Always reset the owner field. */
mutex->__data.__owner = 0;
if (decr)
/* One less user. */
--mutex->__data.__nusers;
/* Unlock. */
lll_mutex_unlock (mutex->__data.__lock);
return 0;
}
省略部分是針對不同的__kind屬性值做的一些處理,最終調用 lll_mutex_unlock。
該宏函數最終的定義為:
#define __lll_mutex_unlock(futex) \
((void) ({ \
int *__futex = (futex); \
int __val = atomic_exchange_rel (__futex, 0); \
\
if (__builtin_expect (__val > 1, 0)) \
lll_futex_wake (__futex, 1); \
}))
atomic_exchange_rel (__futex, 0);宏為:
#define atomic_exchange_rel(mem, value) \
(__sync_synchronize (), __sync_lock_test_and_set (mem, value))
實現功能為:將mem設置為value,返回原始mem值。
__builtin_expect (__val > 1, 0) 是編譯器優化語句,告訴編譯器期望值,也就是大多數情況下__val > 1 ?是0,其邏輯判斷依然為if(__val > 1)為真的話執行 lll_futex_wake。
現在分析,在資源沒有被競爭的情況下,__futex 為1,那麼返回值__val則為1,那麼 lll_futex_wake (__futex, 1); 不會被執行,不產生系統調用。 當資源產生競爭的情況時,根據對pthread_mutex_lock 函數的分析,__futex為2, __val則為2,執行 lll_futex_wake (__futex, 1); 從而喚醒等在臨界資源的線程。
lll_futex_wake (__futex, 1); 最終會調動同一個系統調用,即futex, 只是傳遞的cmd參數為FUTEX_WAKE。
在linux kernel的futex實現中,調用
static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
{
struct futex_hash_bucket *hb;
struct futex_q *this, *next;
struct plist_head *head;
union futex_key key = FUTEX_KEY_INIT;
int ret;
if (!bitset)
return -EINVAL;
ret = get_futex_key(uaddr, fshared, &key);
if (unlikely(ret != 0))
goto out;
hb = hash_futex(&key);
spin_lock(&hb->lock);
head = &hb->chain;
plist_for_each_entry_safe(this, next, head, list) {
if (match_futex (&this->key, &key)) {
if (this->pi_state || this->rt_waiter) {
ret = -EINVAL;
break;
}
/* Check if one of the bits is set in both bitsets */
if (!(this->bitset & bitset))
continue;
wake_futex(this);
if (++ret >= nr_wake)
break;
}
}
spin_unlock(&hb->lock);
put_futex_key(fshared, &key);
out:
return ret;
}
該函數遍歷在該mutex上休眠的所有線程,調用wake_futex進行喚醒,
static void wake_futex(struct futex_q *q)
{
struct task_struct *p = q->task;
/*
* We set q->lock_ptr = NULL _before_ we wake up the task. If
* a non futex wake up happens on another CPU then the task
* might exit and p would dereference a non existing task
* struct. Prevent this by holding a reference on p across the
* wake up.
*/
get_task_struct(p);
plist_del(&q->list, &q->list.plist);
/*
* The waiting task can free the futex_q as soon as
* q->lock_ptr = NULL is written, without taking any locks. A
* memory barrier is required here to prevent the following
* store to lock_ptr from getting ahead of the plist_del.
*/
smp_wmb();
q->lock_ptr = NULL;
wake_up_state(p, TASK_NORMAL);
put_task_struct(p);
}
wake_up_state(p, TASK_NORMAL); 的實現位於kernel/sched.c中,屬於linux進程調度的技術。
B. linux proc下etime和time的區別
當你同熟練的UNIX用戶進行交談時,你經常會聽到他們傲慢地講出術語「改變時間(change time)」和「修改時間(modification time)」。對於許多人(和許多字典而言),改變和修改是相同的。這里會有什麼不同那?
改變和修改之間的區別在於是改某個組件的標簽還是更改它的內容。如果有人說chmod a-w myfile,那麼這是一個改變;如果有人說echo foo >> myfile,那麼
這是一個修改。改變是文件的索引節點發生了改變;修改是文本本身的內容發生了變化。[文件的修改時間也叫時間標志 (timestamp).]
只要討論改變時間和修改時間,就不可能不提到「訪問時間(access time)」.訪問時間是文件最後一次被讀取的時間。因此閱讀一個文件會更新它的訪問時間,當它的改變時間並沒有變化(有關文件的信息沒有被改變),它的修改時間也同樣如此(文件本身沒有被改變)
有時,在許多地方改變時間或者「ctime」被錯誤地寫成「創建時間」,包括某些UNIX參考手冊。不要相信他們
下面是我man出來的內容,僅供參考!
st_atime
Time when file data was last accessed. Changed by the
following functions: creat(), mknod(), pipe(),
utime(2), and read(2).
st_mtime
Time when data was last modified. Changed by the fol-
lowing functions: creat(), mknod(), pipe(), utime(),
and write(2).
st_ctime
Time when file status was last changed. Changed by the
following functions: chmod(), chown(), creat(),
link(2), mknod(), pipe(), unlink(2), utime(), and
write().
ls顯示出的time應該是mtime。
touch後,文件的三個時間應該都會改變,可以試一試。
問題描述
文件的 ctime、mtime、atime 之間有什麼區別?
配置信息
解決方法
文件的 Access time,atime 是在讀取文件或者執行文件時更改的。
文件的 Modified time,mtime 是在寫入文件時隨文件內容的更改而更改的。
文件的 Create time,ctime 是在寫入文件、更改所有者、許可權或鏈接設置時隨 Inode 的內容更改而更改的。
因此,更改文件的內容即會更改 mtime 和 ctime,但是文件的 ctime 可能會在 mtime 未發生任何變化時更改 - 在許可權更改,但是文件內容沒有變化的情況下。
ls(1) 命令可用來列出文件的 atime、ctime 和 mtime。
ls -lc filename 列出文件的 ctime
ls -lu filename 列出文件的 atime
ls -l filename 列出文件的 mtime
atime不一定在訪問文件之後被修改,因為:使用ext3文件系統的時候,如果在mount的時候使用了noatime參數那麼就不會更新atime的 信息。而這是加了 noatime 取消了, 不代表真實情況.反正, 這三個 time stamp 都放在 inode 中.若 mtime, atime 修改, inode 就一定會改, 既然 inode 改了, 那 ctime 也就跟著要改了.之所以在 mount option 中使用 noatime, 就是不想 file system 做太多的修改, 而改善讀取效能.
C. linux c 對鏈表進行操作需要哪些頭文件
linux和windows平台下,能夠對應的頭文件就是符合C11標準的頭文件。其他的頭文件不僅和平台有關系,還和平台下的編譯環境有關,很難畫上等號的。C語言符合標準的頭文件.
#include <assert.h> //設定插入點
#include <ctype.h> //字元處理
#include <errno.h> //定義錯誤碼
#include <float.h> //浮點數處理
#include <fstream.h> //文件輸入/輸出
#include <iomanip.h> //參數化輸入/輸出
#include <iostream.h> //數據流輸入/輸出
#include <limits.h> //定義各種數據類型最值常量
#include <locale.h> //定義本地化函數
#include <math.h> //定義數學函數
#include <stdio.h> //定義輸入/輸出函數
#include <stdlib.h> //定義雜項函數及內存分配函數
#include <string.h> //字元串處理
#include <strstrea.h> //基於數組的輸入/輸出
#include <time.h> //定義關於時間的函數
#include <wchar.h> //寬字元處理及輸入/輸出
#include <wctype.h> //寬字元分類
linux常用頭文件如下:
POSIX標準定義的頭文件
<dirent.h> 目錄項
<fcntl.h> 文件控制
<fnmatch.h> 文件名匹配類型
<glob.h> 路徑名模式匹配類型
<grp.h> 組文件
<netdb.h> 網路資料庫操作
<pwd.h> 口令文件
<regex.h> 正則表達式
<tar.h> TAR歸檔值
<termios.h> 終端I/O
<unistd.h> 符號常量
<utime.h> 文件時間
<wordexp.h> 字元擴展類型
-------------------------
<arpa/inet.h> INTERNET定義
<net/if.h> 套接字本地介面
<netinet/in.h> INTERNET地址族
<netinet/tcp.h> 傳輸控制協議定義
-------------------------
<sys/mman.h> 內存管理聲明
<sys/select.h> Select函數
<sys/socket.h> 套接字借口
<sys/stat.h> 文件狀態
<sys/times.h> 進程時間
<sys/types.h> 基本系統數據類型
<sys/un.h> UNIX域套接字定義
<sys/utsname.h> 系統名
<sys/wait.h> 進程式控制制
------------------------------
POSIX定義的XSI擴展頭文件
D. linux c++ 如何獲取 系統時間
用cstlib函數time,比如
#include <iostream>
#include <cstlib>
using namespace std;
int main()
{
int t, h, m, s;
t = time( 0 );
t = t % 86400;
s = t % 60;
t = ( t - s ) / 60;
m = t % 60;
t = ( t - m ) / 60;
h = t;
cout << "現在是" << h << ":" << m << ":" << s << endl;
return 0;
}
即可顯示
E. windows與linux 頭文件對照
1.linux和windows平台下,能夠對應的頭文件就是符合C11標準的頭文件。其他的頭文件不僅和平台有關系,還和平台下的編譯環境有關,很難畫上等號的。
2.C語言符合標準的頭文件
#include <assert.h> //設定插入點
#include <ctype.h> //字元處理
#include <errno.h> //定義錯誤碼
#include <float.h> //浮點數處理
#include <fstream.h> //文件輸入/輸出
#include <iomanip.h> //參數化輸入/輸出
#include <iostream.h> //數據流輸入/輸出
#include <limits.h> //定義各種數據類型最值常量
#include <locale.h> //定義本地化函數
#include <math.h> //定義數學函數
#include <stdio.h> //定義輸入/輸出函數
#include <stdlib.h> //定義雜項函數及內存分配函數
#include <string.h> //字元串處理
#include <strstrea.h> //基於數組的輸入/輸出
#include <time.h> //定義關於時間的函數
#include <wchar.h> //寬字元處理及輸入/輸出
#include <wctype.h> //寬字元分類
3.linux常用頭文件如下:
POSIX標準定義的頭文件
<dirent.h> 目錄項
<fcntl.h> 文件控制
<fnmatch.h> 文件名匹配類型
<glob.h> 路徑名模式匹配類型
<grp.h> 組文件
<netdb.h> 網路資料庫操作
<pwd.h> 口令文件
<regex.h> 正則表達式
<tar.h> TAR歸檔值
<termios.h> 終端I/O
<unistd.h> 符號常量
<utime.h> 文件時間
<wordexp.h> 字元擴展類型
-------------------------
<arpa/inet.h> INTERNET定義
<net/if.h> 套接字本地介面
<netinet/in.h> INTERNET地址族
<netinet/tcp.h> 傳輸控制協議定義
-------------------------
<sys/mman.h> 內存管理聲明
<sys/select.h> Select函數
<sys/socket.h> 套接字借口
<sys/stat.h> 文件狀態
<sys/times.h> 進程時間
<sys/types.h> 基本系統數據類型
<sys/un.h> UNIX域套接字定義
<sys/utsname.h> 系統名
<sys/wait.h> 進程式控制制
------------------------------
POSIX定義的XSI擴展頭文件
<cpio.h> cpio歸檔值
<dlfcn.h> 動態鏈接
<fmtmsg.h> 消息顯示結構
<ftw.h> 文件樹漫遊
<iconv.h> 代碼集轉換使用程序
<langinfo.h> 語言信息常量
<libgen.h> 模式匹配函數定義
<monetary.h> 貨幣類型
<ndbm.h> 資料庫操作
<nl_types.h> 消息類別
<poll.h> 輪詢函數
<search.h> 搜索表
<strings.h> 字元串操作
<syslog.h> 系統出錯日誌記錄
<ucontext.h> 用戶上下文
<ulimit.h> 用戶限制
<utmpx.h> 用戶帳戶資料庫
-----------------------------
<sys/ipc.h> IPC(命名管道)
<sys/msg.h> 消息隊列
<sys/resource.h>資源操作
<sys/sem.h> 信號量
<sys/shm.h> 共享存儲
<sys/statvfs.h> 文件系統信息
<sys/time.h> 時間類型
<sys/timeb.h> 附加的日期和時間定義
<sys/uio.h> 矢量I/O操作
------------------------------
POSIX定義的可選頭文件
<aio.h> 非同步I/O
<mqueue.h> 消息隊列
<pthread.h> 線程
<sched.h> 執行調度
<semaphore.h> 信號量
<spawn.h> 實時spawn介面
<stropts.h> XSI STREAMS介面
<trace.h> 事件跟蹤
F. Linux下touch命令有什麼作用如何使用
touch命令有兩個功能:一是用於把已存在文件的時間標簽更新為系統當前的時間(默認方式),它們的數據將原封不動地保留下來;二是用來創建新的空文件。
其它說明:
語法
touch(選項)(參數)
選項
-a:或--time=atime或--time=access或--time=use 只更改存取時間;
-c:或--no-create 不建立任何文件;
-d:<時間日期> 使用指定的日期時間,而非現在的時間;
-f:此參數將忽略不予處理,僅負責解決BSD版本touch指令的兼容性問題;
-m:或--time=mtime或--time=modify 只更該變動時間;
-r:<參考文件或目錄> 把指定文件或目錄的日期時間,統統設成和參考文件或目錄的日期時間相同;
-t:<日期時間> 使用指定的日期時間,而非現在的時間;
--help:在線幫助;
--version:顯示版本信息。
參數
文件:指定要設置時間屬性的文件列表。
實例
touch ex2
在當前目錄下建立一個空文件ex2,然後,利用ls -l命令可以發現文件ex2的大小為0,表示它是空文件。
G. 怎樣查詢linux系統調用函數
以下是Linux系統調用的一個列表,包含了大部分常用系統調用和由系統調用派生出的的函數。這可能是你在互聯網上所能看到的唯一一篇中文注釋的Linux系統調用列表,即使是簡單的字母序英文列表,能做到這么完全也是很罕見的。
按照慣例,這個列表以man pages第2節,即系統調用節為藍本。按照筆者的理解,對其作了大致的分類,同時也作了一些小小的修改,刪去了幾個僅供內核使用,不允許用戶調用的系統調用,對個別本人稍覺不妥的地方作了一些小的修改,並對所有列出的系統調用附上簡要注釋。
其中有一些函數的作用完全相同,只是參數不同。(可能很多熟悉C++朋友馬上就能聯想起函數重載,但是別忘了Linux核心是用C語言寫的,所以只能取成不同的函數名)。還有一些函數已經過時,被新的更好的函數所代替了(gcc在鏈接這些函數時會發出警告),但因為兼容的原因還保留著,這些函數我會在前面標上「*」號以示區別。
一、進程式控制制:
fork 創建一個新進程
clone 按指定條件創建子進程
execve 運行可執行文件
exit 中止進程
_exit 立即中止當前進程
getdtablesize 進程所能打開的最大文件數
getpgid 獲取指定進程組標識號
setpgid 設置指定進程組標志號
getpgrp 獲取當前進程組標識號
setpgrp 設置當前進程組標志號
getpid 獲取進程標識號
getppid 獲取父進程標識號
getpriority 獲取調度優先順序
setpriority 設置調度優先順序
modify_ldt 讀寫進程的本地描述表
nanosleep 使進程睡眠指定的時間
nice 改變分時進程的優先順序
pause 掛起進程,等待信號
personality 設置進程運行域
prctl 對進程進行特定操作
ptrace 進程跟蹤
sched_get_priority_max 取得靜態優先順序的上限
sched_get_priority_min 取得靜態優先順序的下限
sched_getparam 取得進程的調度參數
sched_getscheler 取得指定進程的調度策略
sched_rr_get_interval 取得按RR演算法調度的實時進程的時間片長度
sched_setparam 設置進程的調度參數
sched_setscheler 設置指定進程的調度策略和參數
sched_yield 進程主動讓出處理器,並將自己等候調度隊列隊尾
vfork 創建一個子進程,以供執行新程序,常與execve等同時使用
wait 等待子進程終止
wait3 參見wait
waitpid 等待指定子進程終止
wait4 參見waitpid
capget 獲取進程許可權
capset 設置進程許可權
getsid 獲取會晤標識號
setsid 設置會晤標識號
二、文件系統控制
1、文件讀寫操作
fcntl 文件控制
open 打開文件
creat 創建新文件
close 關閉文件描述字
read 讀文件
write 寫文件
readv 從文件讀入數據到緩沖數組中
writev 將緩沖數組里的數據寫入文件
pread 對文件隨機讀
pwrite 對文件隨機寫
lseek 移動文件指針
_llseek 在64位地址空間里移動文件指針
p 復制已打開的文件描述字
p2 按指定條件復制文件描述字
flock 文件加/解鎖
poll I/O多路轉換
truncate 截斷文件
ftruncate 參見truncate
umask 設置文件許可權掩碼
fsync 把文件在內存中的部分寫回磁碟
2、文件系統操作
access 確定文件的可存取性
chdir 改變當前工作目錄
fchdir 參見chdir
chmod 改變文件方式
fchmod 參見chmod
chown 改變文件的屬主或用戶組
fchown 參見chown
lchown 參見chown
chroot 改變根目錄
stat 取文件狀態信息
lstat 參見stat
fstat 參見stat
statfs 取文件系統信息
fstatfs 參見statfs
readdir 讀取目錄項
getdents 讀取目錄項
mkdir 創建目錄
mknod 創建索引節點
rmdir 刪除目錄
rename 文件改名
link 創建鏈接
symlink 創建符號鏈接
unlink 刪除鏈接
readlink 讀符號鏈接的值
mount 安裝文件系統
umount 卸下文件系統
ustat 取文件系統信息
utime 改變文件的訪問修改時間
utimes 參見utime
quotactl 控制磁碟配額
三、系統控制
ioctl I/O總控制函數
_sysctl 讀/寫系統參數
acct 啟用或禁止進程記賬
getrlimit 獲取系統資源上限
setrlimit 設置系統資源上限
getrusage 獲取系統資源使用情況
uselib 選擇要使用的二進制函數庫
ioperm 設置埠I/O許可權
iopl 改變進程I/O許可權級別
outb 低級埠操作
reboot 重新啟動
swapon 打開交換文件和設備
swapoff 關閉交換文件和設備
bdflush 控制bdflush守護進程
sysfs 取核心支持的文件系統類型
sysinfo 取得系統信息
adjtimex 調整系統時鍾
alarm 設置進程的鬧鍾
getitimer 獲取計時器值
setitimer 設置計時器值
gettimeofday 取時間和時區
settimeofday 設置時間和時區
stime 設置系統日期和時間
time 取得系統時間
times 取進程運行時間
uname 獲取當前UNIX系統的名稱、版本和主機等信息
vhangup 掛起當前終端
nfsservctl 對NFS守護進程進行控制
vm86 進入模擬8086模式
create_mole 創建可裝載的模塊項
delete_mole 刪除可裝載的模塊項
init_mole 初始化模塊
query_mole 查詢模塊信息
*get_kernel_syms 取得核心符號,已被query_mole代替
四、內存管理
brk 改變數據段空間的分配
sbrk 參見brk
mlock 內存頁面加鎖
munlock 內存頁面解鎖
mlockall 調用進程所有內存頁面加鎖
munlockall 調用進程所有內存頁面解鎖
mmap 映射虛擬內存頁
munmap 去除內存頁映射
mremap 重新映射虛擬內存地址
msync 將映射內存中的數據寫回磁碟
mprotect 設置內存映像保護
getpagesize 獲取頁面大小
sync 將內存緩沖區數據寫回硬碟
cacheflush 將指定緩沖區中的內容寫回磁碟
五、網路管理
getdomainname 取域名
setdomainname 設置域名
gethostid 獲取主機標識號
sethostid 設置主機標識號
gethostname 獲取本主機名稱
sethostname 設置主機名稱
六、socket控制
socketcall socket系統調用
socket 建立socket
bind 綁定socket到埠
connect 連接遠程主機
accept 響應socket連接請求
send 通過socket發送信息
sendto 發送UDP信息
sendmsg 參見send
recv 通過socket接收信息
recvfrom 接收UDP信息
recvmsg 參見recv
listen 監聽socket埠
select 對多路同步I/O進行輪詢
shutdown 關閉socket上的連接
getsockname 取得本地socket名字
getpeername 獲取通信對方的socket名字
getsockopt 取埠設置
setsockopt 設置埠參數
sendfile 在文件或埠間傳輸數據
socketpair 創建一對已聯接的無名socket
七、用戶管理
getuid 獲取用戶標識號
setuid 設置用戶標志號
getgid 獲取組標識號
setgid 設置組標志號
getegid 獲取有效組標識號
setegid 設置有效組標識號
geteuid 獲取有效用戶標識號
seteuid 設置有效用戶標識號
setregid 分別設置真實和有效的的組標識號
setreuid 分別設置真實和有效的用戶標識號
getresgid 分別獲取真實的,有效的和保存過的組標識號
setresgid 分別設置真實的,有效的和保存過的組標識號
getresuid 分別獲取真實的,有效的和保存過的用戶標識號
setresuid 分別設置真實的,有效的和保存過的用戶標識號
setfsgid 設置文件系統檢查時使用的組標識號
setfsuid 設置文件系統檢查時使用的用戶標識號
getgroups 獲取後補組標志清單
setgroups 設置後補組標志清單
八、進程間通信
ipc 進程間通信總控制調用
1、信號
sigaction 設置對指定信號的處理方法
sigprocmask 根據參數對信號集中的信號執行阻塞/解除阻塞等操作
sigpending 為指定的被阻塞信號設置隊列
sigsuspend 掛起進程等待特定信號
signal 參見signal
kill 向進程或進程組發信號
*sigblock 向被阻塞信號掩碼中添加信號,已被sigprocmask代替
*siggetmask 取得現有阻塞信號掩碼,已被sigprocmask代替
*sigsetmask 用給定信號掩碼替換現有阻塞信號掩碼,已被sigprocmask代替
*sigmask 將給定的信號轉化為掩碼,已被sigprocmask代替
*sigpause 作用同sigsuspend,已被sigsuspend代替
sigvec 為兼容BSD而設的信號處理函數,作用類似sigaction
ssetmask ANSI C的信號處理函數,作用類似sigaction
2、消息
msgctl 消息控制操作
msgget 獲取消息隊列
msgsnd 發消息
msgrcv 取消息
3、管道
pipe 創建管道
4、信號量
semctl 信號量控制
semget 獲取一組信號量
semop 信號量操作
5、共享內存
shmctl 控制共享內存
shmget 獲取共享內存
shmat 連接共享內存
shmdt 拆卸共享內存
H. linux用make語句編譯
$ cat makefile
.SUFFEXES:.c .o
.c.o:
gcc -Wall -c $<
OBJS=my_file.o
all: my_exec_file
my_exec_file:$(OBJS)
gcc -Wall $(OBJS) -o $@
$ make
gcc -Wall -c my_file.c
gcc -Wall my_file.o -o my_exec_file
簡單說明:
.SUFFEXES:.c .o :告訴make識別哪些源程序和目標程序
.c.o: :告訴make命令.c程序如何生成.o文件,採用其下的gcc -Wall -c $<($<代表任意一個編譯時用到的.c文件)命令。
all: my_exec_file :告訴make命令自動生成哪個可執行程序
my_exec_file:$(OBJS) :告訴make命令如何生成my_exec_file文件,需要哪些目標代碼($(OBJS)),採用其下的命令: gcc -Wall $(OBJS) -o $@ ($@代表my_exec_file,即要編譯的可執行文件名)
I. linux編譯程序時出現錯誤fatal error: sys/utime.h: No such file or directory
缺少頭文件utime.h, find utime.h得到真實路徑, 然後修改makefile文件,修改指向它的位置。