導航:首頁 > 操作系統 > linuxpci驅動程序

linuxpci驅動程序

發布時間:2023-02-23 14:37:21

linux驅動程序的工作原理

由於你的問題太長我只好轉載別人的手打的太累不好意思~~~
Linux是Unix***作系統的一種變種,在Linux下編寫驅動程序的原理和

思想完全類似於其他的Unix系統,但它dos或window環境下的驅動程序有很大的

區別.在Linux環境下設計驅動程序,思想簡潔,***作方便,功芤埠芮看?但是

支持函數少,只能依賴kernel中的函數,有些常用的***作要自己來編寫,而且調

試也不方便.本人這幾周來為實驗室自行研製的一塊多媒體卡編制了驅動程序,

獲得了一些經驗,願與Linux fans共享,有不當之處,請予指正.

以下的一些文字主要來源於khg,johnsonm的Write linux device driver,

Brennan's Guide to Inline Assembly,The Linux A-Z,還有清華BBS上的有關

device driver的一些資料. 這些資料有的已經過時,有的還有一些錯誤,我依

據自己的試驗結果進行了修正.

一. Linux device driver 的概念

系統調用是***作系統內核和應用程序之間的介面,設備驅動程序是***作系統

內核和機器硬體之間的介面.設備驅動程序為應用程序屏蔽了硬體的細節,這樣

在應用程序看來,硬體設備只是一個設備文件, 應用程序可以象***作普通文件

一樣對硬體設備進行***作.設備驅動程序是內核的一部分,它完成以下的功能:

1.對設備初始化和釋放.

2.把數據從內核傳送到硬體和從硬體讀取數據.

3.讀取應用程序傳送給設備文件的數據和回送應用程序請求的數據.

4.檢測和處理設備出現的錯誤.

在Linux***作系統下有兩類主要的設備文件類型,一種是字元設備,另一種是

塊設備.字元設備和塊設備的主要區別是:在對字元設備發出讀/寫請求時,實際

的硬體I/O一般就緊接著發生了,塊設備則不然,它利用一塊系統內存作緩沖區,

當用戶進程對設備請求能滿足用戶的要求,就返回請求的數據,如果不能,就調用請求函數來進行實際

的I/O***作.塊設備是主要針對磁碟等慢速設備設計的,以免耗費過多的CPU時間

來等待.

已經提到,用戶進程是通過設備文件來與實際的硬體打交道.每個設備文件都

都有其文件屬性(c/b),表示是字元設備還蔤強檣璞?另外每個文件都有兩個設

備號,第一個是主設備號,標識驅動程序,第二個是從設備號,標識使用同一個

設備驅動程序的不同的硬體設備,比如有兩個軟盤,就可以用從設備號來區分

他們.設備文件的的主設備號必須與設備驅動程序在登記時申請的主設備號

一致,否則用戶進程將無法訪問到驅動程序.

最後必須提到的是,在用戶進程調用驅動程序時,系統進入核心態,這時不再是

搶先式調度.也就是說,系統必須在你的驅動程序的子函數返回後才能進行其他

的工作.如果你的驅動程序陷入死循環,不幸的是你只有重新啟動機器了,然後就

是漫長的fsck.//hehe

(請看下節,實例剖析)

讀/寫時,它首先察看緩沖區的內容,如果緩沖區的數據

如何編寫Linux***作系統下的設備驅動程序

Roy G

二.實例剖析

我們來寫一個最簡單的字元設備驅動程序.雖然它什麼也不做,但是通過它

可以了解Linux的設備驅動程序的工作原理.把下面的C代碼輸入機器,你就會

獲得一個真正的設備驅動程序.不過我的kernel是2.0.34,在低版本的kernel

上可能會出現問題,我還沒測試過.//xixi

#define __NO_VERSION__

#include

#include

char kernel_version [] = UTS_RELEASE;

這一段定義了一些版本信息,雖然用處不是很大,但也必不可少.Johnsonm說所

有的驅動程序的開頭都要包含,但我看倒是未必.

由於用戶進程是通過設備文件同硬體打交道,對設備文件的***作方式不外乎就

是一些系統調用,如 open,read,write,close...., 注意,不是fopen, fread.,

但是如何把系統調用和驅動程序關聯起來呢?這需要了解一個非常關鍵的數據

結構:

struct file_operations {

int (*seek) (struct inode * ,struct file *, off_t ,int);

int (*read) (struct inode * ,struct file *, char ,int);

int (*write) (struct inode * ,struct file *, off_t ,int);

int (*readdir) (struct inode * ,struct file *, struct dirent * ,int);

int (*select) (struct inode * ,struct file *, int ,select_table *);

int (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long

int (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);

int (*open) (struct inode * ,struct file *);

int (*release) (struct inode * ,struct file *);

int (*fsync) (struct inode * ,struct file *);

int (*fasync) (struct inode * ,struct file *,int);

int (*check_media_change) (struct inode * ,struct file *);

int (*revalidate) (dev_t dev);

}

這個結構的每一個成員的名字都對應著一個系統調用.用戶進程利用系統調用

在對設備文件進行諸如read/write***作時,系統調用通過設備文件的主設備號

找到相應的設備驅動程序,然後讀取這個數據結構相應的函數指針,接著把控制

權交給該函數.這是linux的設備驅動程序工作的基本原理.既然是這樣,則編寫

設備驅動程序的主要工作就是編寫子函數,並填充file_operations的各個域.

相當簡單,不是嗎?

下面就開始寫子程序.

#include

#include

#include

#include

#include

unsigned int test_major = 0;

static int read_test(struct inode *node,struct file *file,

char *buf,int count)

{

int left;

if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )

return -EFAULT;

for(left = count left > 0 left--)

{

__put_user(1,buf,1);

buf++;

}

return count;

}

這個函數是為read調用准備的.當調用read時,read_test()被調用,它把用戶的

緩沖區全部寫1.

buf 是read調用的一個參數.它是用戶進程空間的一個地址.但是在read_test

被調用時,系統進入核心態.所以不能使用buf這個地址,必須用__put_user(),

這是kernel提供的一個函數,用於向用戶傳送數據.另外還有很多類似功能的

函數.請參考.在向用戶空間拷貝數據之前,必須驗證buf是否可用.

這就用到函數verify_area.

static int write_tibet(struct inode *inode,struct file *file,

const char *buf,int count)

{

return count;

}

static int open_tibet(struct inode *inode,struct file *file )

{

MOD_INC_USE_COUNT;

return 0;

} static void release_tibet(struct inode *inode,struct file *file )

{

MOD_DEC_USE_COUNT;

}

這幾個函數都是空***作.實際調用發生時什麼也不做,他們僅僅為下面的結構

提供函數指針。

struct file_operations test_fops = {

NULL,

read_test,

write_test,

NULL, /* test_readdir */

NULL,

NULL, /* test_ioctl */

NULL, /* test_mmap */

open_test,

release_test, NULL, /* test_fsync */

NULL, /* test_fasync */

/* nothing more, fill with NULLs */

};

設備驅動程序的主體可以說是寫好了。現在要把驅動程序嵌入內核。驅動程序

可以按照兩種方式編譯。一種是編譯進kernel,另一種是編譯成模塊(moles),

如果編譯進內核的話,會增加內核的大小,還要改動內核的源文件,而且不能

動態的卸載,不利於調試,所以推薦使用模塊方式。

int init_mole(void)

{

int result;

result = register_chrdev(0, "test", &test_fops);

if (result < 0) {

printk(KERN_INFO "test: can't get major number ");

return result;

}

if (test_major == 0) test_major = result; /* dynamic */

return 0;

}

在用insmod命令將編譯好的模塊調入內存時,init_mole 函數被調用。在

這里,init_mole只做了一件事,就是向系統的字元設備表登記了一個字元

設備。register_chrdev需要三個參數,參數一是希望獲得的設備號,如果是

零的話,系統將選擇一個沒有被佔用的設備號返回。參數二是設備文件名,

參數三用來登記驅動程序實際執行***作的函數的指針。

如果登記成功,返回設備的主設備號,不成功,返回一個負值。

void cleanup_mole(void)

{

unregister_chrdev(test_major, "test");

}

在用rmmod卸載模塊時,cleanup_mole函數被調用,它釋放字元設備test

在系統字元設備表中佔有的表項。

一個極其簡單的字元設備可以說寫好了,文件名就叫test.c吧。

下面編譯

$ gcc -O2 -DMODULE -D__KERNEL__ -c test.c

得到文件test.o就是一個設備驅動程序。

如果設備驅動程序有多個文件,把每個文件按上面的命令行編譯,然後

ld -r file1.o file2.o -o molename.

驅動程序已經編譯好了,現在把它安裝到系統中去。

$ insmod -f test.o

如果安裝成功,在/proc/devices文件中就可以看到設備test,

並可以看到它的主設備號,。

要卸載的話,運行

$ rmmod test

下一步要創建設備文件。

mknod /dev/test c major minor

c 是指字元設備,major是主設備號,就是在/proc/devices里看到的。

用shell命令

$ cat /proc/devices | awk "\$2=="test" {print \$1}"

就可以獲得主設備號,可以把上面的命令行加入你的shell script中去。

minor是從設備號,設置成0就可以了。

我們現在可以通過設備文件來訪問我們的驅動程序。寫一個小小的測試程序。

#include

#include

#include

#include

main()

{

int testdev;

int i;

char buf[10];

testdev = open("/dev/test",O_RDWR);

if ( testdev == -1 )

{

printf("Cann't open file ");

exit(0);

}

read(testdev,buf,10);

for (i = 0; i < 10;i++)

printf("%d ",buf);

close(testdev);

}

編譯運行,看看是不是列印出全1 ?

以上只是一個簡單的演示。真正實用的驅動程序要復雜的多,要處理如中斷,

DMA,I/O port等問題。這些才是真正的難點。請看下節,實際情況的處理。

如何編寫Linux***作系統下的設備驅動程序

Roy G

三 設備驅動程序中的一些具體問題。

1. I/O Port.

和硬體打交道離不開I/O Port,老的ISA設備經常是佔用實際的I/O埠,

在linux下,***作系統沒有對I/O口屏蔽,也就是說,任何驅動程序都可以

對任意的I/O口***作,這樣就很容易引起混亂。每個驅動程序應該自己避免

誤用埠。

有兩個重要的kernel函數可以保證驅動程序做到這一點。

1)check_region(int io_port, int off_set)

這個函數察看系統的I/O表,看是否有別的驅動程序佔用某一段I/O口。

參數1:io埠的基地址,

參數2:io埠佔用的范圍。

返回值:0 沒有佔用, 非0,已經被佔用。

2)request_region(int io_port, int off_set,char *devname)

如果這段I/O埠沒有被佔用,在我們的驅動程序中就可以使用它。在使用

之前,必須向系統登記,以防止被其他程序佔用。登記後,在/proc/ioports

文件中可以看到你登記的io口。

參數1:io埠的基地址。

參數2:io埠佔用的范圍。

參數3:使用這段io地址的設備名。

在對I/O口登記後,就可以放心地用inb(), outb()之類的函來訪問了。

在一些pci設備中,I/O埠被映射到一段內存中去,要訪問這些埠就相當

於訪問一段內存。經常性的,我們要獲得一塊內存的物理地址。在dos環境下,

(之所以不說是dos***作系統是因為我認為DOS根本就不是一個***作系統,它實

在是太簡單,太不安全了)只要用段:偏移就可以了。在window95中,95ddk

提供了一個vmm 調用 _MapLinearToPhys,用以把線性地址轉化為物理地址。但

在Linux中是怎樣做的呢?

2 內存***作

在設備驅動程序中動態開辟內存,不是用malloc,而是kmalloc,或者用

get_free_pages直接申請頁。釋放內存用的是kfree,或free_pages. 請注意,

kmalloc等函數返回的是物理地址!而malloc等返回的是線性地址!關於

kmalloc返回的是物理地址這一點本人有點不太明白:既然從線性地址到物理

地址的轉換是由386cpu硬體完成的,那樣匯編指令的***作數應該是線性地址,

驅動程序同樣也不能直接使用物理地址而是線性地址。但是事實上kmalloc

返回的確實是物理地址,而且也可以直接通過它訪問實際的RAM,我想這樣可

以由兩種解釋,一種是在核心態禁止分頁,但是這好像不太現實;另一種是

linux的頁目錄和頁表項設計得正好使得物理地址等同於線性地址。我的想法

不知對不對,還請高手指教。

言歸正傳,要注意kmalloc最大隻能開辟128k-16,16個位元組是被頁描述符

結構佔用了。kmalloc用法參見khg.

內存映射的I/O口,寄存器或者是硬體設備的RAM(如顯存)一般佔用F0000000

以上的地址空間。在驅動程序中不能直接訪問,要通過kernel函數vremap獲得

重新映射以後的地址。

另外,很多硬體需要一塊比較大的連續內存用作DMA傳送。這塊內存需要一直

駐留在內存,不能被交換到文件中去。但是kmalloc最多隻能開辟128k的內存。

這可以通過犧牲一些系統內存的方法來解決。

具體做法是:比如說你的機器由32M的內存,在lilo.conf的啟動參數中加上

mem=30M,這樣linux就認為你的機器只有30M的內存,剩下的2M內存在vremap

之後就可以為DMA所用了。

請記住,用vremap映射後的內存,不用時應用unremap釋放,否則會浪費頁表。

3 中斷處理

同處理I/O埠一樣,要使用一個中斷,必須先向系統登記。

int request_irq(unsigned int irq ,

void(*handle)(int,void *,struct pt_regs *),

unsigned int long flags,

const char *device);

irq: 是要申請的中斷。

handle:中斷處理函數指針。

flags:SA_INTERRUPT 請求一個快速中斷,0 正常中斷。

device:設備名。

如果登記成功,返回0,這時在/proc/interrupts文件中可以看你請求的

中斷。

4一些常見的問題。

對硬體***作,有時時序很重要。但是如果用C語言寫一些低級的硬體***作

的話,gcc往往會對你的程序進行優化,這樣時序就錯掉了。如果用匯編寫呢,

gcc同樣會對匯編代碼進行優化,除非你用volatile關鍵字修飾。最保險的

辦法是禁止優化。這當然只能對一部分你自己編寫的代碼。如果對所有的代碼

都不優化,你會發現驅動程序根本無法裝載。這是因為在編譯驅動程序時要

用到gcc的一些擴展特性,而這些擴展特性必須在加了優化選項之後才能體現

出來。

關於kernel的調試工具,我現在還沒有發現有合適的。有誰知道請告訴我,

不勝感激。我一直都在printk列印調試信息,倒也還湊合。

關於設備驅動程序還有很多內容,如等待/喚醒機制,塊設備的編寫等。

我還不是很明白,不敢亂說。

❷ pci驅動在哪個文件夾

include/linux/pci.h。pci驅動通常在相應的目錄中的文件夾中,比如include/linux/pci.h。PCI簡易通訊控制器,一款生僻但是頗受歡迎的遠程式控制制器,生僻是因為PCI簡易通訊控制器驅動安裝復雜,客戶很難弄懂PCI簡易通訊控制器。

❸ 如何編寫Linux 驅動程序

如何編寫Linux設備驅動程序
回想學習Linux操作系統已經有近一年的時間了,前前後後,零零碎碎的一路學習過來,也該試著寫的東西了。也算是給自己能留下一點記憶和回憶吧!由於完全是自學的,以下內容若有不當之處,還請大家多指教。
Linux是Unix操作系統的一種變種,在Linux下編寫驅動程序的原理和思想完全類似於其他的Unix系統,但它dos或window環境下的驅動程序有很大的區別。在Linux環境下設計驅動程序,思想簡潔,操作方便,功能也很強大,但是支持函數少,只能依賴kernel中的函數,有些常用的操作要自己來編寫,而且調試也不方便。
以下的一些文字主要來源於khg,johnsonm的Write linux device driver,Brennan's Guide to Inline Assembly,The Linux A-Z,還有清華BBS上的有關device driver的一些資料。
一、Linux device driver 的概念
系統調用是操作系統內核和應用程序之間的介面,設備驅動程序是操作系統內核和機器硬體之間的介面。設備驅動程序為應用程序屏蔽了硬體的細節,這樣在應用程序看來,硬體設備只是一個設備文件,應用程序可以象操作普通文件一樣對硬體設備進行操作。設備驅動程序是內核的一部分,它完成以下的功能:
1、對設備初始化和釋放。
2、把數據從內核傳送到硬體和從硬體讀取數據。
3、讀取應用程序傳送給設備文件的數據和回送應用程序請求的數據。
4、檢測和處理設備出現的錯誤。
在Linux操作系統下有三類主要的設備文件類型,一是字元設備,二是塊設備,三是網路設備。字元設備和塊設備的主要區別是:在對字元設備發出讀/寫請求時,實際的硬體I/O一般就緊接著發生了,塊設備則不然,它利用一塊系統內存作緩沖區,當用戶進程對設備請求能滿足用戶的要求,就返回請求的數據,如果不能,就調用請求函數來進行實際的I/O操作。塊設備是主要針對磁碟等慢速設備設計的,以免耗費過多的CPU時間來等待。
已經提到,用戶進程是通過設備文件來與實際的硬體打交道。每個設備文件都都有其文件屬性(c/b),表示是字元設備還是塊設備?另外每個文件都有兩個設備號,第一個是主設備號,標識驅動程序,第二個是從設備號,標識使用同一個設備驅動程序的不同的硬體設備,比如有兩個軟盤,就可以用從設備號來區分他們。設備文件的的主設備號必須與設備驅動程序在登記時申請的主設備號一致,否則用戶進程將無法訪問到驅動程序。
最後必須提到的是,在用戶進程調用驅動程序時,系統進入核心態,這時不再是搶先式調度。也就是說,系統必須在你的驅動程序的子函數返回後才能進行其他的工作。如果你的驅動程序陷入死循環,不幸的是你只有重新啟動機器了,然後就是漫長的fsck。
讀/寫時,它首先察看緩沖區的內容,如果緩沖區的數據未被處理,則先處理其中的內容。
如何編寫Linux操作系統下的設備驅動程序

二、實例剖析
我們來寫一個最簡單的字元設備驅動程序。雖然它什麼也不做,但是通過它可以了解Linux的設備驅動程序的工作原理。把下面的C代碼輸入機器,你就會獲得一個真正的設備驅動程序。
#define __NO_VERSION__
#include <linux/moles.h>
#include <linux/version.h>
char kernel_version [] = UTS_RELEASE;
這一段定義了一些版本信息,雖然用處不是很大,但也必不可少。Johnsonm說所有的驅動程序的開頭都要包含<linux/config.h>,一般來講最好使用。
由於用戶進程是通過設備文件同硬體打交道,對設備文件的操作方式不外乎就是一些系統調用,如 open,read,write,close…, 注意,不是fopen, fread,但是如何把系統調用和驅動程序關聯起來呢?這需要了解一個非常關鍵的數據結構:
struct file_operations
{
int (*seek) (struct inode * ,struct file *, off_t ,int);
int (*read) (struct inode * ,struct file *, char ,int);
int (*write) (struct inode * ,struct file *, off_t ,int);
int (*readdir) (struct inode * ,struct file *, struct dirent * ,int);
int (*select) (struct inode * ,struct file *, int ,select_table *);
int (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long);
int (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);
int (*open) (struct inode * ,struct file *);
int (*release) (struct inode * ,struct file *);
int (*fsync) (struct inode * ,struct file *);
int (*fasync) (struct inode * ,struct file *,int);
int (*check_media_change) (struct inode * ,struct file *);
int (*revalidate) (dev_t dev);
}

這個結構的每一個成員的名字都對應著一個系統調用。用戶進程利用系統調用在對設備文件進行諸如read/write操作時,系統調用通過設備文件的主設備號找到相應的設備驅動程序,然後讀取這個數據結構相應的函數指針,接著把控制權交給該函數。這是linux的設備驅動程序工作的基本原理。既然是這樣,則編寫設備驅動程序的主要工作就是編寫子函數,並填充file_operations的各個域。
下面就開始寫子程序。
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include<linux/config.h>
#include <linux/errno.h>
#include <asm/segment.h>
unsigned int test_major = 0;
static int read_test(struct inode *node,struct file *file,char *buf,int count)
{
int left;
if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )
return -EFAULT;
for(left = count ; left > 0 ; left--)
{
__put_user(1,buf,1);
buf++;
}
return count;
}

這個函數是為read調用准備的。當調用read時,read_test()被調用,它把用戶的緩沖區全部寫1。buf 是read調用的一個參數。它是用戶進程空間的一個地址。但是在read_test被調用時,系統進入核心態。所以不能使用buf這個地址,必須用__put_user(),這是kernel提供的一個函數,用於向用戶傳送數據。另外還有很多類似功能的函數。請參考Robert著的《Linux內核設計與實現》(第二版)。然而,在向用戶空間拷貝數據之前,必須驗證buf是否可用。這就用到函數verify_area。
static int write_tibet(struct inode *inode,struct file *file,const char *buf,int count)
{
return count;
}
static int open_tibet(struct inode *inode,struct file *file )
{
MOD_INC_USE_COUNT;
return 0;
}
static void release_tibet(struct inode *inode,struct file *file )
{
MOD_DEC_USE_COUNT;
}

這幾個函數都是空操作。實際調用發生時什麼也不做,他們僅僅為下面的結構提供函數指針。
struct file_operations test_fops = {
NULL,
read_test,
write_test,
NULL, /* test_readdir */
NULL,
NULL, /* test_ioctl */
NULL, /* test_mmap */
open_test,
release_test,
NULL, /* test_fsync */
NULL, /* test_fasync */
/* nothing more, fill with NULLs */
};
這樣,設備驅動程序的主體可以說是寫好了。現在要把驅動程序嵌入內核。驅動程序可以按照兩種方式編譯。一種是編譯進kernel,另一種是編譯成模塊(moles),如果編譯進內核的話,會增加內核的大小,還要改動內核的源文件,而且不能動態的卸載,不利於調試,所以推薦使用模塊方式。
int init_mole(void)
{
int result;
result = register_chrdev(0, "test", &test_fops);
if (result < 0) {
printk(KERN_INFO "test: can't get major number\n");
return result;
}
if (test_major == 0) test_major = result; /* dynamic */
return 0;
}

在用insmod命令將編譯好的模塊調入內存時,init_mole 函數被調用。在這里,init_mole只做了一件事,就是向系統的字元設備表登記了一個字元設備。register_chrdev需要三個參數,參數一是希望獲得的設備號,如果是零的話,系統將選擇一個沒有被佔用的設備號返回。參數二是設備文件名,參數三用來登記驅動程序實際執行操作的函數的指針。
如果登記成功,返回設備的主設備號,不成功,返回一個負值。
void cleanup_mole(void)
{
unregister_chrdev(test_major,"test");
}
在用rmmod卸載模塊時,cleanup_mole函數被調用,它釋放字元設備test在系統字元設備表中佔有的表項。
一個極其簡單的字元設備可以說寫好了,文件名就叫test.c吧。
下面編譯 :
$ gcc -O2 -DMODULE -D__KERNEL__ -c test.c
得到文件test.o就是一個設備驅動程序。
如果設備驅動程序有多個文件,把每個文件按上面的命令行編譯,然後
ld -r file1.o file2.o -o molename。
驅動程序已經編譯好了,現在把它安裝到系統中去。
$ insmod –f test.o
如果安裝成功,在/proc/devices文件中就可以看到設備test,並可以看到它的主設備號。要卸載的話,運行 :
$ rmmod test
下一步要創建設備文件。
mknod /dev/test c major minor
c 是指字元設備,major是主設備號,就是在/proc/devices里看到的。
用shell命令
$ cat /proc/devices
就可以獲得主設備號,可以把上面的命令行加入你的shell script中去。
minor是從設備號,設置成0就可以了。
我們現在可以通過設備文件來訪問我們的驅動程序。寫一個小小的測試程序。
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
main()
{
int testdev;
int i;
char buf[10];
testdev = open("/dev/test",O_RDWR);
if ( testdev == -1 )
{
printf("Cann't open file \n");
exit(0);
}
read(testdev,buf,10);
for (i = 0; i < 10;i++)
printf("%d\n",buf[i]);
close(testdev);
}

編譯運行,看看是不是列印出全1 ?
以上只是一個簡單的演示。真正實用的驅動程序要復雜的多,要處理如中斷,DMA,I/O port等問題。這些才是真正的難點。請看下節,實際情況的處理。
如何編寫Linux操作系統下的設備驅動程序
三、設備驅動程序中的一些具體問題
1。 I/O Port。
和硬體打交道離不開I/O Port,老的ISA設備經常是佔用實際的I/O埠,在linux下,操作系統沒有對I/O口屏蔽,也就是說,任何驅動程序都可對任意的I/O口操作,這樣就很容易引起混亂。每個驅動程序應該自己避免誤用埠。
有兩個重要的kernel函數可以保證驅動程序做到這一點。
1)check_region(int io_port, int off_set)
這個函數察看系統的I/O表,看是否有別的驅動程序佔用某一段I/O口。
參數1:I/O埠的基地址,
參數2:I/O埠佔用的范圍。
返回值:0 沒有佔用, 非0,已經被佔用。
2)request_region(int io_port, int off_set,char *devname)
如果這段I/O埠沒有被佔用,在我們的驅動程序中就可以使用它。在使用之前,必須向系統登記,以防止被其他程序佔用。登記後,在/proc/ioports文件中可以看到你登記的I/O口。
參數1:io埠的基地址。
參數2:io埠佔用的范圍。
參數3:使用這段io地址的設備名。
在對I/O口登記後,就可以放心地用inb(), outb()之類的函來訪問了。
在一些pci設備中,I/O埠被映射到一段內存中去,要訪問這些埠就相當於訪問一段內存。經常性的,我們要獲得一塊內存的物理地址。

2。內存操作
在設備驅動程序中動態開辟內存,不是用malloc,而是kmalloc,或者用get_free_pages直接申請頁。釋放內存用的是kfree,或free_pages。 請注意,kmalloc等函數返回的是物理地址!
注意,kmalloc最大隻能開辟128k-16,16個位元組是被頁描述符結構佔用了。
內存映射的I/O口,寄存器或者是硬體設備的RAM(如顯存)一般佔用F0000000以上的地址空間。在驅動程序中不能直接訪問,要通過kernel函數vremap獲得重新映射以後的地址。
另外,很多硬體需要一塊比較大的連續內存用作DMA傳送。這塊程序需要一直駐留在內存,不能被交換到文件中去。但是kmalloc最多隻能開辟128k的內存。
這可以通過犧牲一些系統內存的方法來解決。

3。中斷處理
同處理I/O埠一樣,要使用一個中斷,必須先向系統登記。
int request_irq(unsigned int irq ,void(*handle)(int,void *,struct pt_regs *),
unsigned int long flags, const char *device);
irq: 是要申請的中斷。
handle:中斷處理函數指針。
flags:SA_INTERRUPT 請求一個快速中斷,0 正常中斷。
device:設備名。

如果登記成功,返回0,這時在/proc/interrupts文件中可以看你請求的中斷。
4。一些常見的問題。
對硬體操作,有時時序很重要(關於時序的具體問題就要參考具體的設備晶元手冊啦!比如網卡晶元RTL8139)。但是如果用C語言寫一些低級的硬體操作的話,gcc往往會對你的程序進行優化,這樣時序會發生錯誤。如果用匯編寫呢,gcc同樣會對匯編代碼進行優化,除非用volatile關鍵字修飾。最保險的辦法是禁止優化。這當然只能對一部分你自己編寫的代碼。如果對所有的代碼都不優化,你會發現驅動程序根本無法裝載。這是因為在編譯驅動程序時要用到gcc的一些擴展特性,而這些擴展特性必須在加了優化選項之後才能體現出來。
寫在後面:學習Linux確實不是一件容易的事情,因為要付出很多精力,也必須具備很好的C語言基礎;但是,學習Linux也是一件非常有趣的事情,它裡麵包含了許多高手的智慧和「幽默」,這些都需要自己親自動手才能體會到,O(∩_∩)O~哈哈!

❹ generic marvell yukon 88e8040 pci-e 在linux下的驅動程序

1.超級兔子魔法設置 進去以後選"打造屬於自己的系統"-->網路-->網卡地址 然後把想要改成的地址輸入進去-->確認修改-->重啟 http://www.onlinedown.net/soft/2636.htm 2.幾乎所有的網卡驅動程序都可以被NdisReadNetworkAddress參數調用,以便從注冊表中讀取一個用戶指定的MAC地址。當驅動程序確定這個MAC地址是有效的,就會將這個MAC地址編程入其硬體寄存器中,而忽略網卡固有的MAC地址。我們通過手工修改Windows的注冊表就可以達到目的。 在Winodws 下運行Windows的注冊表編輯器,展開「HKEY_LOCAL_MACHINE\System\Current ControlSet\Services\Class\Net」,會看到類似「0000」、「0001」、「0002」的子鍵。從「0000」子鍵開始點擊,依次查找子鍵下的「DriverDesc」鍵的內容,直到找到與我們查找的目標完全相同的網卡注冊表信息為止。 當找到正確的網卡後,點擊下拉式菜單「編輯/新建/字元串」,串的名稱為「Networkaddress」,在新建的「Networkaddress」串名稱上雙擊滑鼠就可以輸入數值了。輸入你想指定的新的MAC地址值。新的MAC地址應該是一個12位的十六進制數字或字母,其間沒有「-」,類似「000000000000」的這樣的數值(注意,在Windows 98和Windows 2000/XP中具體鍵值的位置稍有不同,大家可通過查找功能來尋找)。 在「NetworkAddress」下繼續添加一個名為「ParamDesc」的字串值,它將作為「NetworkAddress」項的描述,數值可以取為「MAC Address」。再把它的內容修改為你想設定的內容。如圖所示。 這樣,我們就成功地修改了網卡的MAC地址,重新啟動計算機即可。

❺ linux下pcie驅動開發,該看些什麼資料

linux下pcie驅動開發大概可以分為4個階段,水平從低到高:
從安裝使用=>linux常用命令=>linux系統編程=>內核開發閱讀內核源碼
系統編程推薦《高級unix環境編程》;
還有《unix網路編程》;
內核開發閱讀內核源碼階段,從寫驅動入手逐漸深入linux內核開發
參考書如下:
1.《linux device drivers》
2.《linux kernel development》
3.《understading the linux kernel》
4.《linux源碼情景分析》
然後還需要看資料理解elf文件格式,連接器和載入器,cmu的一本教材中文名為《深入理解計算機系統》比較好。

❻ 如何寫linux pci設備驅動程序

Linux是Unix操作系統的一種變種,在Linux下編寫驅動程序的原理和思想完全類似於其他的Unix系統,但它dos或window環境下的驅動程序有很大的區別。在Linux環境下設計驅動程序,思想簡潔,操作方便,功能也很強大,但是支持函數少,只能依賴kernel...

❼ 如何寫linux pci設備驅動程序

Linux下PCI設備驅動開發
1. 關鍵數據結構
PCI設備上有三種地址空間:PCI的I/O空間、PCI的存儲空間和PCI的配置空間。CPU可以訪問PCI設備上的所有地址空間,其中I/O空間和存儲空間提供給設備驅動程序使用,而配置空間則由Linux內核中的PCI初始化代碼使用。內核在啟動時負責對所有PCI設備進行初始化,配置好所有的PCI設備,包括中斷號以及I/O基址,並在文件/proc/pci中列出所有找到的PCI設備,以及這些設備的參數和屬性。
Linux驅動程序通常使用結構(struct)來表示一種設備,而結構體中的變數則代表某一具體設備,該變數存放了與該設備相關的所有信息。好的驅動程序都應該能驅動多個同種設備,每個設備之間用次設備號進行區分,如果採用結構數據來代表所有能由該驅動程序驅動的設備,那麼就可以簡單地使用數組下標來表示次設備號。
在PCI驅動程序中,下面幾個關鍵數據結構起著非常核心的作用:
pci_driver
這個數據結構在文件include/linux/pci.h里,這是Linux內核版本2.4之後為新型的PCI設備驅動程序所添加的,其中最主要的是用於識別設備的id_table結構,以及用於檢測設備的函數probe( )和卸載設備的函數remove( ):
struct pci_driver {
struct list_head node;
char *name;
const struct pci_device_id *id_table;
int (*probe) (struct pci_dev *dev, const struct pci_device_id *id);
void (*remove) (struct pci_dev *dev);
int (*save_state) (struct pci_dev *dev, u32 state);
int (*suspend)(struct pci_dev *dev, u32 state);
int (*resume) (struct pci_dev *dev);
int (*enable_wake) (struct pci_dev *dev, u32 state, int enable);
};
pci_dev
這個數據結構也在文件include/linux/pci.h里,它詳細描述了一個PCI設備幾乎所有的
硬體信息,包括廠商ID、設備ID、各種資源等:
struct pci_dev {
struct list_head global_list;
struct list_head bus_list;
struct pci_bus *bus;
struct pci_bus *subordinate;
void *sysdata;
struct proc_dir_entry *procent;
unsigned int devfn;
unsigned short vendor;
unsigned short device;
unsigned short subsystem_vendor;
unsigned short subsystem_device;
unsigned int class;
u8 hdr_type;
u8 rom_base_reg;
struct pci_driver *driver;
void *driver_data;
u64 dma_mask;
u32 current_state;
unsigned short vendor_compatible[DEVICE_COUNT_COMPATIBLE];
unsigned short device_compatible[DEVICE_COUNT_COMPATIBLE];
unsigned int irq;
struct resource resource[DEVICE_COUNT_RESOURCE];
struct resource dma_resource[DEVICE_COUNT_DMA];
struct resource irq_resource[DEVICE_COUNT_IRQ];
char name[80];
char slot_name[8];
int active;
int ro;
unsigned short regs;
int (*prepare)(struct pci_dev *dev);
int (*activate)(struct pci_dev *dev);
int (*deactivate)(struct pci_dev *dev);
};
2. 基本框架
在用模塊方式實現PCI設備驅動程序時,通常至少要實現以下幾個部分:初始化設備模塊、設備打開模塊、數據讀寫和控制模塊、中斷處理模塊、設備釋放模塊、設備卸載模塊。下面給出一個典型的PCI設備驅動程序的基本框架,從中不難體會到這幾個關鍵模塊是如何組織起來的。
/* 指明該驅動程序適用於哪一些PCI設備 */
static struct pci_device_id demo_pci_tbl [] __initdata = {
{PCI_VENDOR_ID_DEMO, PCI_DEVICE_ID_DEMO,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, DEMO},
{0,}
};
/* 對特定PCI設備進行描述的數據結構 */
struct demo_card {
unsigned int magic;
/* 使用鏈表保存所有同類的PCI設備 */
struct demo_card *next;
/* ... */
}
/* 中斷處理模塊 */
static void demo_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
/* ... */
}
/* 設備文件操作介面 */
static struct file_operations demo_fops = {
owner: THIS_MODULE, /* demo_fops所屬的設備模塊 */
read: demo_read, /* 讀設備操作*/
write: demo_write, /* 寫設備操作*/
ioctl: demo_ioctl, /* 控制設備操作*/
mmap: demo_mmap, /* 內存重映射操作*/
open: demo_open, /* 打開設備操作*/
release: demo_release /* 釋放設備操作*/
/* ... */
};
/* 設備模塊信息 */
static struct pci_driver demo_pci_driver = {
name: demo_MODULE_NAME, /* 設備模塊名稱 */
id_table: demo_pci_tbl, /* 能夠驅動的設備列表 */
probe: demo_probe, /* 查找並初始化設備 */
remove: demo_remove /* 卸載設備模塊 */
/* ... */
};
static int __init demo_init_mole (void)
{
/* ... */
}
static void __exit demo_cleanup_mole (void)
{
pci_unregister_driver(&demo_pci_driver);
}
/* 載入驅動程序模塊入口 */
mole_init(demo_init_mole);
/* 卸載驅動程序模塊入口 */
mole_exit(demo_cleanup_mole);
上面這段代碼給出了一個典型的PCI設備驅動程序的框架,是一種相對固定的模式。需要注意的是,同載入和卸載模塊相關的函數或數據結構都要在前面加上__init、__exit等標志符,以使同普通函數區分開來。構造出這樣一個框架之後,接下去的工作就是如何完成框架內的各個功能模塊了。
3. 初始化設備模塊
在Linux系統下,想要完成對一個PCI設備的初始化,需要完成以下工作:
檢查PCI匯流排是否被Linux內核支持;
檢查設備是否插在匯流排插槽上,如果在的話則保存它所佔用的插槽的位置等信息。
讀出配置頭中的信息提供給驅動程序使用。
當Linux內核啟動並完成對所有PCI設備進行掃描、登錄和分配資源等初始化操作的同時,會建立起系統中所有PCI設備的拓撲結構,此後當PCI驅動程序需要對設備進行初始化時,一般都會調用如下的代碼:
static int __init demo_init_mole (void)
{
/* 檢查系統是否支持PCI匯流排 */
if (!pci_present())
return -ENODEV;
/* 注冊硬體驅動程序 */
if (!pci_register_driver(&demo_pci_driver)) {
pci_unregister_driver(&demo_pci_driver);
return -ENODEV;
}
/* ... */
return 0;
}
驅動程序首先調用函數pci_present( )檢查PCI匯流排是否已經被Linux內核支持,如果系統支持PCI匯流排結構,這個函數的返回值為0,如果驅動程序在調用這個函數時得到了一個非0的返回值,那麼驅動程序就必須得中止自己的任務了。在2.4以前的內核中,需要手工調用pci_find_device( )函數來查找PCI設備,但在2.4以後更好的辦法是調用pci_register_driver( )函數來注冊PCI設備的驅動程序,此時需要提供一個pci_driver結構,在該結構中給出的probe探測常式將負責完成對硬體的檢測工作。
static int __init demo_probe(struct pci_dev *pci_dev, const struct
pci_device_id *pci_id)
{
struct demo_card *card;
/* 啟動PCI設備 */
if (pci_enable_device(pci_dev))
return -EIO;
/* 設備DMA標識 */
if (pci_set_dma_mask(pci_dev, DEMO_DMA_MASK)) {
return -ENODEV;
}
/* 在內核空間中動態申請內存 */
if ((card = kmalloc(sizeof(struct demo_card), GFP_KERNEL)) == NULL) {
printk(KERN_ERR "pci_demo: out of memory\n");
return -ENOMEM;
}
memset(card, 0, sizeof(*card));
/* 讀取PCI配置信息 */
card->iobase = pci_resource_start (pci_dev, 1);
card->pci_dev = pci_dev;
card->pci_id = pci_id->device;
card->irq = pci_dev->irq;
card->next = devs;
card->magic = DEMO_CARD_MAGIC;
/* 設置成匯流排主DMA模式 */
pci_set_master(pci_dev);
/* 申請I/O資源 */
request_region(card->iobase, 64, card_names[pci_id->driver_data]);
return 0;
}
4. 打開設備模塊
在這個模塊里主要實現申請中斷、檢查讀寫模式以及申請對設備的控制權等。在申請控制權的時候,非阻塞方式遇忙返回,否則進程主動接受調度,進入睡眠狀態,等待其它進程釋放對設備的控制權。
static int demo_open(struct inode *inode, struct file *file)
{
/* 申請中斷,注冊中斷處理程序 */
request_irq(card->irq, &demo_interrupt, SA_SHIRQ,
card_names[pci_id->driver_data], card)) {
/* 檢查讀寫模式 */
if(file->f_mode & FMODE_READ) {
/* ... */
}
if(file->f_mode & FMODE_WRITE) {
/* ... */
}
/* 申請對設備的控制權 */
down(&card->open_sem);
while(card->open_mode & file->f_mode) {
if (file->f_flags & O_NONBLOCK) {
/* NONBLOCK模式,返回-EBUSY */
up(&card->open_sem);
return -EBUSY;
} else {
/* 等待調度,獲得控制權 */
card->open_mode |= f_mode & (FMODE_READ | FMODE_WRITE);
up(&card->open_sem);
/* 設備打開計數增1 */
MOD_INC_USE_COUNT;
/* ... */
}
}
}
5. 數據讀寫和控制信息模塊
PCI設備驅動程序可以通過demo_fops 結構中的函數demo_ioctl( ),向應用程序提供對硬體進行控制的介面。例如,通過它可以從I/O寄存器里讀取一個數據,並傳送到用戶空間里:
static int demo_ioctl(struct inode *inode, struct file *file, unsigned int
cmd, unsigned long arg)
{
/* ... */
switch(cmd) {
case DEMO_RDATA:
/* 從I/O埠讀取4位元組的數據 */
val = inl(card->iobae + 0x10);
/* 將讀取的數據傳輸到用戶空間 */
return 0;
}
/* ... */
}
事實上,在demo_fops里還可以實現諸如demo_read( )、demo_mmap( )等操作,Linux內核源碼中的driver目錄里提供了許多設備驅動程序的源代碼,找那裡可以找到類似的例子。在對資源的訪問方式上,除了有I/O指令以外,還有對外設I/O內存的訪問。對這些內存的操作一方面可以通過把I/O內存重新映射後作為普通內存進行操作,另一方面也可以通過匯流排主DMA(Bus Master DMA)的方式讓設備把數據通過DMA傳送到系統內存中。
6. 中斷處理模塊
PC的中斷資源比較有限,只有0~15的中斷號,因此大部分外部設備都是以共享的形式申請中斷號的。當中斷發生的時候,中斷處理程序首先負責對中斷進行識別,然後再做進一步的處理。
static void demo_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct demo_card *card = (struct demo_card *)dev_id;
u32 status;
spin_lock(&card->lock);
/* 識別中斷 */
status = inl(card->iobase + GLOB_STA);
if(!(status & INT_MASK))
{
spin_unlock(&card->lock);
return; /* not for us */
}
/* 告訴設備已經收到中斷 */
outl(status & INT_MASK, card->iobase + GLOB_STA);
spin_unlock(&card->lock);
/* 其它進一步的處理,如更新DMA緩沖區指針等 */
}
7. 釋放設備模塊
釋放設備模塊主要負責釋放對設備的控制權,釋放佔用的內存和中斷等,所做的事情正好與打開設備模塊相反:
static int demo_release(struct inode *inode, struct file *file)
{
/* ... */
/* 釋放對設備的控制權 */
card->open_mode &= (FMODE_READ | FMODE_WRITE);
/* 喚醒其它等待獲取控制權的進程 */
wake_up(&card->open_wait);
up(&card->open_sem);
/* 釋放中斷 */
free_irq(card->irq, card);
/* 設備打開計數增1 */
MOD_DEC_USE_COUNT;
/* ... */
}
8. 卸載設備模塊
卸載設備模塊與初始化設備模塊是相對應的,實現起來相對比較簡單,主要是調用函數pci_unregister_driver( )從Linux內核中注銷設備驅動程序:
static void __exit demo_cleanup_mole (void)
{
pci_unregister_driver(&demo_pci_driver);
}
小結
PCI匯流排不僅是目前應用廣泛的計算機匯流排標准,而且是一種兼容性最強、功能最全的計算機匯流排。而Linux作為一種新的操作系統,其發展前景是無法估量的,同時也為PCI匯流排與各種新型設備互連成為可能。由於Linux源碼開放,因此給連接到PCI匯流排上的任何設備編寫驅動程序變得相對容易。本文介紹如何編譯Linux下的PCI驅動程序,針對的內核版本是2.4。

❽ Linux中的PCI驅動總結

l Pci驅動注冊

Pci_register_driver(struct pci_driver *drv)

Static struct pci_driver pci_driver= {

.name = DRV_NAME,

.id_table = pci_pci_tbl,

.probe = pci_init_one,

.remove = _devexit_p(pci_remove_one),

};

l Pci配置空間

Pci_read_config_byte/word/dword(struct pci_dev *pdev,int offset,int *value)

Pci_write_config_byte/word/dword(struct pci_dev *pdev,int offset,int *value)

l Pci的I/O和內存空間

Pci_resource_start(struct pci_dev *dev,int bar) bar的范圍0-5;功能:從配置區相應寄存器得到I/O區域的基址

Pci_resource_length(struct pci_dev *dev,int bar)bar的范圍0-5;功能:從配置區相應寄存器得到I/O區域的內存區域長度

Request_mem_fegion(io_base,length,name)申請I/O埠

Request_mem_region(io_base,length,name)釋放I/O埠

Pci_enable_device啟用設備的I/O

Pci_set_master設定設備工作在匯流排主設備模式

閱讀全文

與linuxpci驅動程序相關的資料

熱點內容
哪個app聽音樂最好 瀏覽:281
考研英語2真題pdf 瀏覽:699
煙台編程積木教育環境好不好 瀏覽:214
python優秀代碼 瀏覽:620
androidtop命令 瀏覽:455
你平時怎麼排解壓力 瀏覽:68
表格中的文件夾怎樣設置 瀏覽:476
em78單片機 瀏覽:960
splitjava空格 瀏覽:248
電腦怎麼谷歌伺服器地址 瀏覽:515
nx自定義工具啟動宏命令 瀏覽:101
程序員怎麼解決無法訪問互聯網 瀏覽:303
java訪問本地文件 瀏覽:747
瓦斯琪伺服器怎麼用 瀏覽:22
安卓主題用什麼app 瀏覽:747
修改伺服器pci地址空間 瀏覽:321
程序員將來去哪裡 瀏覽:966
虛幻5創建c無法編譯 瀏覽:189
javaweb項目設計 瀏覽:407
國家反詐app緊急聯系人怎麼填 瀏覽:191