『壹』 為什麼把單片機主程序入口地址設為0100H
沒有為什麼,只是個人喜好,一般將入口地址設為0030H,這是因為8051單片機的中斷向量到0023H,設為0030H能夠充分利用程序空間。
『貳』 工業順序控制——工業自動加熱反應爐的控制(單片機編程)
(一)溫度控制系統的組成 溫度是工業對象中主要的被控參數之一,象冶金、機械、食品、化工各類工業中,廣泛使用的各種加熱爐、熱處理爐、反應爐等,對工件的處理溫度要求嚴格控制,計算機溫度控制系統使溫度控制指標得到了大幅度提高。 電阻爐爐溫控制系統的控制過程是:單片機定時對爐溫進行檢測,經A/D轉換晶元得到相應的數字量,經過計算機進行數據轉換,得到應有的控制量,去控制加熱功率,從而實現對溫度的控制。 進行系統設計時應考慮如下問題: 爐溫變化規律的控制,即爐溫按預定的溫度——時間關系變化,這主要在控製程序設計中考慮。 溫度控制范圍:如400~1000℃,這就涉及到測溫元件、電爐功率的選擇等。 控制精度、超調量等指標,這涉及到A/D轉換精度、控制規律選擇等。 (二)硬體電路設計 1.溫度檢測元件及變送器、ADC的選擇 溫度檢測元件及變送器的選擇要考慮溫度控制范圍及精度要求。對於0~1000℃ 的測量范圍,採用熱電偶,如鎳鉻熱電偶,分度號為EU,其輸出信號為0~41.32mV,經毫伏變送器,輸出0~10mA,然後再經過電流——電壓變換電路轉換為0~5V電壓信號。為了提高測量精度,可將變送器進行零點遷移,例如溫度測量范圍改為400~1000℃,熱電偶給出16.4~41.32mV 時,使變送器輸出0~10mV,這樣使用8位A/D轉換器,能使量化誤差達到±2.34℃。 2.介面晶元的擴展 由於本系統既要顯示、報警、鍵盤輸入,又要進行控制,所以系統在8031系統中擴展了一片8155,它有三個8位I/O口,256位元組的RAM,可以作為外部數據存儲器供系統使用,8031的P2.1接8155的CE,P2.0接8155的IO/M,當P2.1=0,P2.0=1時,選中8155片內的三個I/O埠,其口地址如下: 0100H 〖〗命令狀態寄存器0101H〖〗A口0102H〖〗B口0103H〖〗C口或控制口寄存器0104H〖〗計數值低八位0105H〖〗計數值高八位和方式寄存器當P2.2=0時,選中ADC0809(允許啟動各通道轉換與讀取相應的轉換結果)。轉換結束信號EOC經倒相後接至單片機的外部中斷INT1 (P3.3),當P3.3=0時,說明轉換結束。我們選用0通道作為輸入,把0809視為一個地址為03F8H的外部數據存儲單元,對其寫數據時, 8031的WR信號使ALE和START有效,將74LS373鎖存的地址低三位存入0809,並啟動ADC0809,D 9EOC為低電平時,A/D轉換正在進行,當EOC為高電平時,表示轉換結束,8031可以讀如轉換好的數據。 3.溫度控制電路 溫度控制電路採用晶閘管調功方式。雙向晶閘管串在50Hz交流電源和加熱絲電路中,只要在給定周期里改變晶閘管開關的接通時間的脈沖信號即可。這可以用一條I/O線,通過程序輸出控制脈沖。 為了達到過零觸發的目的,需要交流電過零檢測電路。此電路輸出對應於50Hz交流電壓過零時刻的脈沖,作為觸發雙向晶閘管的同步脈沖,使晶閘管,在交流電壓過零時刻導通。 電壓比較器LM311 將50HZ正弦交流電壓變成方波。方波上升沿和下降沿分別作為單穩態觸發器的觸發信號,單穩觸發器輸出的窄脈沖經二極體或門混合,就得到對應於220V市電過零時刻的同步脈沖。此脈沖一路作為觸發同步脈沖加到溫控電路,一路作為計數脈沖加到單片機8031的P3.4和P3.5輸入端。 (三)控制規律的選擇和程序設計 電阻爐爐溫控制是這樣一個反饋調節過程,比較實際爐溫和需要爐溫得到偏差,通過對偏差的處理獲得控制信號,去調節電阻爐的熱功率,從而實現對爐溫的控制。 按照偏差的比例、積分和微分產生控製作用(PID控制),是過程式控制制中應用最廣泛的一種控制形式。 計算機PID是用差分方程近似實現的。 PID調節規律的微分方程(略)。 系統控製程序採用兩重中斷嵌套方式設計。首先使T0 計數器產生定時中斷,作為本系統的采樣周期。在中斷服務程序中啟動A/D,讀入采樣數據,進行數字濾波、上下限報警處理,PID計算,然後輸出控制脈沖信號。脈沖寬度由T1計數器溢出中斷決定。在等待T1中斷時,將本次采樣值轉換成對應的溫度值放入顯示緩沖區,然後調用顯示子程序。從T1中斷返回後,再從 T0中斷返回主程序並且、繼續顯示本次采樣溫度,等待下次T0中斷。