⑴ android啟動後怎麼查看其裡面的進程和線程
1)一個 Android 程序開始運行時,會單獨啟動一個Process。
默認情況下,所有這個程序中的Activity或者Service都會跑在這個Process。
默認情況下,一個Android程序也只有一個Process,但一個Process下卻可以有許多個Thread。
2)一個 Android 程序開始運行時,就有一個主線程Main Thread被創建。該線程主要負責UI界面的顯示、更新和控制項交互,所以又叫UI Thread。
3)一個Android程序創建之初,一個Process呈現的是單線程模型--即MainThread,所有的任務都在一個線程中運行,所以,MainThread所調用的每一個函數,其耗時應該越短越好,而對於比較耗時的工作,應該交給子線程去做,以避免主線程(UI線程)被阻塞,導致程序出現ANR(Application not response)
一個Activity就運行在一個線程中嗎?或者編碼時,如果不是明確安排在不同線程中的兩個Activity,其就都是在同一個線程中?那從一個Activity跳轉到另一個Activity時,是不是跳出的那個Activity就處在睡眠狀態了?
【答】 每個Activity都有一個Process屬性,可以指定該Activity是屬於哪個進程的。當然如果不明確指明,應該就是從屬於默認進程(Application指定的,如其未指定,應該就是默認主進程)。
Android中有Task的概念,而同一個Task的各個Activity會形成一個棧,只有站定的Activity才有機會與用戶交互。
原文地址:Android中的進程與線程 原文作者:江鵬
當應用程序的組件第一次運行時,Android將啟動一個只有一個執行線程的Linux進程。默認,應用程序所有的組件運行在這個進程和線程中。然而,你可以安排組件運行在其他進程中,且你可以為進程衍生出其它線程。本文從下面幾點來介紹Android的進程與線程:
1、進程
組件運行於哪個進程中由清單文件控制。組件元素——<activity>、<service>、<receiver>、<provider>,都有一個process屬性可以指定組件運行在哪個進程中。這個屬性可以設置為每個組件運行在自己的進程中,或者某些組件共享一個進程而其他的不共享。他們還可以設置為不同應用程序的組件運行在同一個進程中——假設這些應用程序共享同一個Linux用戶ID且被分配了同樣的許可權。<application>元素也有process屬性,為所有的組件設置一個默認值。
所有的組件都在特定進程的主線程中實例化,且系統調用組件是由主線程派遣。不會為每個實例創建單獨的線程,因此,對應這些調用的方法——諸如View.onKeyDown()報告用用戶的行為和生命周期通知,總是運行在進程的主線程中。這意味著,沒有組件當被系統調用時應該執行很長時間或阻塞操作(如網路操作或循環計算),因為這將阻塞進程中的其它組件。你可以為長操作衍生獨立的線程。
public boolean onKeyDown(int keyCode,KeyEvent event):默認實現KeyEvent.Callback.onKeyMultiple(),當按下視圖的KEYCODE_DPAD_CENTER或KEYCODE_ENTER然後釋放時執行,如果視圖可用且可點擊。
參數
keyCode-表示按鈕被按下的鍵碼,來自KeyEvent
event-定義了按鈕動作的KeyEvent對象
返回值
如果你處理事件,返回true;如果你想下一個接收者處理事件,返回false。
當內存剩餘較小且其它進程請求較大內存並需要立即分配,Android要回收某些進程,進程中的應用程序組件會被銷毀。當他們再次運行時,會重新開始一個進程。
當決定終結哪個進程時,Android會權衡他們對用戶重要性的相對權值。例如,與運行在屏幕可見的活動進程相比(前台進程),它更容易關閉一個進程,它的活動在屏幕是不可見(後台進程)。決定是否終結進程,取決於運行在進程中的組件狀態。關於組件的狀態,將在後面一篇——組件生命周期中介紹。
2、線程
雖然你可能會將你的應用程序限制在一個進程中,但有時候你會需要衍生一個線程做一些後台工作。因為用戶界面必須很快地響應用戶的操作,所以活動寄宿的線程不應該做一些耗時的操作如網路下載。任何不可能在短時間完成的操作應該分配到別的線程。
線程在代碼中是用標準的java線程對象創建的,Android提供了一些方便的類來管理線程——Looper用於在線程中運行消息循環、Handler用戶處理消息、HandlerThread用戶設置一個消息循環的線程。
Looper類
該類用戶在線程中運行消息循環。線程默認沒有消息循環,可以在線程中調用prepare()創建一個運行循環;然後調用loop()處理消息直到循環結束。大部分消息循環交互是通過Handler類。下面是一個典型的執行一個Looper線程的例子,分別使用prepare()和loop()創建一個初始的Handler與Looper交互:
1. Android中進程與進程、線程與線程之間如何通信?
1)一個 Android 程序開始運行時,會單獨啟動一個Process。
默認情況下,所有這個程序中的Activity或者Service都會跑在這個Process。
默認情況下,一個Android程序也只有一個Process,但一個Process下卻可以有許多個Thread。
2)一個 Android 程序開始運行時,就有一個主線程Main Thread被創建。該線程主要負責UI界面的顯示、更新和控制項交互,所以又叫UI Thread。
3)一個Android程序創建之初,一個Process呈現的是單線程模型--即MainThread,所有的任務都在一個線程中運行,所以,MainThread所調用的每一個函數,其耗時應該越短越好,而對於比較耗時的工作,應該交給子線程去做,以避免主線程(UI線程)被阻塞,導致程序出現ANR(Application not response)
一個Activity就運行在一個線程中嗎?或者編碼時,如果不是明確安排在不同線程中的兩個Activity,其就都是在同一個線程中?那從一個Activity跳轉到另一個Activity時,是不是跳出的那個Activity就處在睡眠狀態了?
【答】 每個Activity都有一個Process屬性,可以指定該Activity是屬於哪個進程的。當然如果不明確指明,應該就是從屬於默認進程(Application指定的,如其未指定,應該就是默認主進程)。
Android中有Task的概念,而同一個Task的各個Activity會形成一個棧,只有站定的Activity才有機會與用戶交互。
原文地址:Android中的進程與線程 原文作者:江鵬
當應用程序的組件第一次運行時,Android將啟動一個只有一個執行線程的Linux進程。默認,應用程序所有的組件運行在這個進程和線程中。然而,你可以安排組件運行在其他進程中,且你可以為進程衍生出其它線程。本文從下面幾點來介紹Android的進程與線程:
1、進程
組件運行於哪個進程中由清單文件控制。組件元素——<activity>、<service>、<receiver>、<provider>,都有一個process屬性可以指定組件運行在哪個進程中。這個屬性可以設置為每個組件運行在自己的進程中,或者某些組件共享一個進程而其他的不共享。他們還可以設置為不同應用程序的組件運行在同一個進程中——假設這些應用程序共享同一個Linux用戶ID且被分配了同樣的許可權。<application>元素也有process屬性,為所有的組件設置一個默認值。
所有的組件都在特定進程的主線程中實例化,且系統調用組件是由主線程派遣。不會為每個實例創建單獨的線程,因此,對應這些調用的方法——諸如View.onKeyDown()報告用用戶的行為和生命周期通知,總是運行在進程的主線程中。這意味著,沒有組件當被系統調用時應該執行很長時間或阻塞操作(如網路操作或循環計算),因為這將阻塞進程中的其它組件。你可以為長操作衍生獨立的線程。
public boolean onKeyDown(int keyCode,KeyEvent event):默認實現KeyEvent.Callback.onKeyMultiple(),當按下視圖的KEYCODE_DPAD_CENTER或KEYCODE_ENTER然後釋放時執行,如果視圖可用且可點擊。
參數
keyCode-表示按鈕被按下的鍵碼,來自KeyEvent
event-定義了按鈕動作的KeyEvent對象
返回值
如果你處理事件,返回true;如果你想下一個接收者處理事件,返回false。
當內存剩餘較小且其它進程請求較大內存並需要立即分配,Android要回收某些進程,進程中的應用程序組件會被銷毀。當他們再次運行時,會重新開始一個進程。
當決定終結哪個進程時,Android會權衡他們對用戶重要性的相對權值。例如,與運行在屏幕可見的活動進程相比(前台進程),它更容易關閉一個進程,它的活動在屏幕是不可見(後台進程)。決定是否終結進程,取決於運行在進程中的組件狀態。關於組件的狀態,將在後面一篇——組件生命周期中介紹。
2、線程
雖然你可能會將你的應用程序限制在一個進程中,但有時候你會需要衍生一個線程做一些後台工作。因為用戶界面必須很快地響應用戶的操作,所以活動寄宿的線程不應該做一些耗時的操作如網路下載。任何不可能在短時間完成的操作應該分配到別的線程。
線程在代碼中是用標準的Java線程對象創建的,Android提供了一些方便的類來管理線程——Looper用於在線程中運行消息循環、Handler用戶處理消息、HandlerThread用戶設置一個消息循環的線程。
Looper類
該類用戶在線程中運行消息循環。線程默認沒有消息循環,可以在線程中調用prepare()創建一個運行循環;然後調用loop()處理消息直到循環結束。大部分消息循環交互是通過Handler類。下面是一個典型的執行一個Looper線程的例子,分別使用prepare()和loop()創建一個初始的Handler與Looper交互:
2.1、遠程過程調用(Remote procere calls,RPCs)
Android有一個輕量級的遠程過程調用機制——方法在本地調用卻在遠程(另外一個進程中)執行,結果返回給調用者。這需要將方法調用和它伴隨的數據分解為操作系統能夠理解的層次,從本地進程和地址空間傳輸到遠程進程和地址空間,並重新組裝調用。返回值以相反方向傳輸。Android提供了做這些工作的所有代碼,這樣我們可以專注於定義和執行RPC介面本身。
一個RPC介面僅包含方法。所有的方法同步地執行(本地方法阻塞直到遠程方法執行完成),即使是沒有返回值。簡言之,該機制工作原理如下:首先,你用簡單的IDL(interface definition language,介面定義語言)聲明一個你想實現的RPC介面。從這個聲明中,aidl工具生成一個Java介面定義,提供給本地和遠程進程。它包含兩個內部類,如下圖所示:
內部類有管理你用IDL定義的介面的遠程過程調用所需要的所有代碼。這兩個內部類都實現了IBinder介面。其中之一就是在本地由系統內部使用,你寫代碼可以忽略它。另外一個是Stub,擴展自Binder類。除了用於有效地IPC(interprocess communication)調用的內部代碼,內部類在RPC介面聲明中還包含方法聲明。你可以定義Stub的子類實現這些方法,如圖中所示。
通常情況下,遠程過程有一個服務管理(因為服務能通知系統關於進程和它連接的其它進程的信息)。它有由aidl工具生成的介面文件和Stub子類實現的RPC方法。服務的客戶端僅有由aidl工具生成的介面文件。
下面介紹服務如何與它的客戶端建立連接:
· 服務的客戶端(在本地端的)應該實現onServiceConnected() 和onServiceDisconnected() 方法,因此當與遠程服務建立連接成功和斷開連接是會通知它。然後調用bindService() 建立連接。
· 服務的onBind()方法將實現為接受或拒絕連接,者取決於它接受到的意圖(該意圖傳送到binServive())。如果連接被接受,它返回一個Stub子類的實例。
· 如果服務接受連接,Android調用客戶端的onServiceConnected()方法且傳遞給它一個IBinder對象,返回由服務管理的Stub子類的一個代理。通過代理,客戶端可以調用遠程服務。
這里只是簡單地描述,省略了一些RPC機制的細節。你可以查閱相關資料或繼續關注Android開發之旅,後面將為你奉上。
2.2、線程安全方法
在一些情況下,你實現的方法可能會被不止一個線程調用,因此必須寫成線程安全的。這對遠程調用方法是正確的——如上一節討論的RPC機制。當從IBinder進程中調用一個IBinder對象中實現的一個方法,這個方法在調用者的線程中執行。然而,當從別的進程中調用,方法將在Android維護的IBinder進程中的線程池中選擇一個執行,它不在進程的主線程中執行。例如,一個服務的onBind()方法在服務進程的主線程中被調用,在onBind()返回的對象中執行的方法(例如,實現RPC方法的Stub子類)將在線程池中被調用。由於服務可以有一個以上的客戶端,所以同時可以有一個以上的線程在執行同一個IBinder方法。因此,IBinder的方法必須是線程安全的。
同樣,一個內容提供者可以接受其它進程產生的數據請求。雖然ContentResolver 和 ContentProvider 類隱藏進程通信如何管理的,對應哪些請求的ContentResolver 方法——query()、insert()、delete()、update()、getType(),在內容提供者的進程的線程池中被調用,而不是在這一進程的主線程中。因為這些方法可以同時從任意數量的線程中調用,他們也必須實現為線程安全的。
⑵ Android 中的「子線程」解析
Android 中線程可分為 主線程 和 子線程 兩類,其中主線程也就是 UI線程 ,它的主要這作用就是運行四大組件、處理界面交互。子線程則主要是處理耗時任務,也是我們要重點分析的。
首先 Java 中的各種線程在 Android 里是通用的,Android 特有的線程形態也是基於 Java 的實現的,所以有必要先簡單的了解下 Java 中的線程,本文主要包括以下內容:
在 Java 中要創建子線程可以直接繼承 Thread 類,重寫 run() 方法:
或者實現 Runnable 介面,然後用Thread執行Runnable,這種方式比較常用:
簡單的總結下:
Callable 和 Runnable 類似,都可以用來處理具體的耗時任務邏輯的,但是但具體的差別在哪裡呢?看一個小例子:
定義 MyCallable 實現了 Callable 介面,和之前 Runnable 的 run() 方法對比下, call() 方法是有返回值的哦,泛型就是返回值的類型:
一般會通過線程池來執行 Callable (線程池相關內容後邊會講到),執行結果就是一個 Future 對象:
可以看到,通過線程池執行 MyCallable 對象返回了一個 Future 對象,取出執行結果。
Future 是一個介面,從其內部的方法可以看出它提供了取消任務(有坑!!!)、判斷任務是否完成、獲取任務結果的功能:
Future 介面有一個 FutureTask 實現類,同時 FutureTask 也實現了 Runnable 介面,並提供了兩個構造函數:
用 FutureTask 一個參數的構造函數來改造下上邊的例子:
FutureTask 內部有一個 done() 方法,代表 Callable 中的任務已經結束,可以用來獲取執行結果:
所以 Future + Callable 的組合可以更方便的獲取子線程任務的執行結果,更好的控制任務的執行,主要的用法先說這么多了,其實 AsyncTask 內部也是類似的實現!
注意, Future 並不能取消掉運行中的任務,這點在後邊的 AsyncTask 解析中有提到。
Java 中線程池的具體的實現類是 ThreadPoolExecutor ,繼承了 Executor 介面,這些線程池在 Android 中也是通用的。使用線程池的好處:
常用的構造函數如下:
一個常規線程池可以按照如下方式來實現:
執行任務:
基於 ThreadPoolExecutor ,系統擴展了幾類具有新特性的線程池:
線程池可以通過 execute() 、 submit() 方法開始執行任務,主要差別從方法的聲明就可以看出,由於 submit() 有返回值,可以方便得到任務的執行結果:
要關閉線程池可以使用如下方法:
IntentService 是 Android 中一種特殊的 Service,可用於執行後台耗時任務,任務結束時會自動停止,由於屬於系統的四大組件之一,相比一般線程具有較高的優先順序,不容易被殺死。用法和普通 Service 基本一致,只需要在 onHandleIntent() 中處理耗時任務即可:
至於 HandlerThread,它是 IntentService 內部實現的重要部分,細節內容會在 IntentService 源碼中說到。
IntentService 首次創建被啟動的時候其生命周期方法 onCreate() 會先被調用,所以我們從這個方法開始分析:
這里出現了 HandlerThread 和 ServiceHandler 兩個類,先搞明白它們的作用,以便後續的分析。
首先看 HandlerThread 的核心實現:
首先它繼承了 Thread 類,可以當做子線程來使用,並在 run() 方法中創建了一個消息循環系統、開啟消息循環。
ServiceHandler 是 IntentService 的內部類,繼承了 Handler,具體內容後續分析:
現在回過頭來看 onCreate() 方法主要是一些初始化的操作, 首先創建了一個 thread 對象,並啟動線程,然後用其內部的 Looper 對象 創建一個 mServiceHandler 對象,將子線程的 Looper 和 ServiceHandler 建立了綁定關系,這樣就可以使用 mServiceHandler 將消息發送到子線程去處理了。
生命周期方法 onStartCommand() 方法會在 IntentService 每次被啟動時調用,一般會這里處理啟動 IntentService 傳遞 Intent 解析攜帶的數據:
又調用了 start() 方法:
就是用 mServiceHandler 發送了一條包含 startId 和 intent 的消息,消息的發送還是在主線程進行的,接下來消息的接收、處理就是在子線程進行的:
當接收到消息時,通過 onHandleIntent() 方法在子線程處理 intent 對象, onHandleIntent() 方法執行結束後,通過 stopSelf(msg.arg1) 等待所有消息處理完畢後終止服務。
為什麼消息的處理是在子線程呢?這里涉及到 Handler 的內部消息機制,簡單的說,因為 ServiceHandler 使用的 Looper 對象就是在 HandlerThread 這個子線程類里創建的,並通過 Looper.loop() 開啟消息循環,不斷從消息隊列(單鏈表)中取出消息,並執行,截取 loop() 的部分源碼:
dispatchMessage() 方法間接會調用 handleMessage() 方法,所以最終 onHandleIntent() 就在子線程中劃線執行了,即 HandlerThread 的 run() 方法。
這就是 IntentService 實現的核心,通過 HandlerThread + Hanlder 把啟動 IntentService 的 Intent 從主線程切換到子線程,實現讓 Service 可以處理耗時任務的功能!
AsyncTask 是 Android 中輕量級的非同步任務抽象類,它的內部主要由線程池以及 Handler 實現,在線程池中執行耗時任務並把結果通過 Handler 機制中轉到主線程以實現UI操作。典型的用法如下:
從 Android3.0 開始,AsyncTask 默認是串列執行的:
如果需要並行執行可以這么做:
AsyncTask 的源碼不多,還是比較容易理解的。根據上邊的用法,可以從 execute() 方法開始我們的分析:
看到 @MainThread 註解了嗎?所以 execute() 方法需要在主線程執行哦!
進而又調用了 executeOnExecutor() :
可以看到,當任務正在執行或者已經完成,如果又被執行會拋出異常!回調方法 onPreExecute() 最先被執行了。
傳入的 sDefaultExecutor 參數,是一個自定義的串列線程池對象,所有任務在該線程池中排隊執行:
可以看到 SerialExecutor 線程池僅用於任務的排隊, THREAD_POOL_EXECUTOR 線程池才是用於執行真正的任務,就是我們線程池部分講到的 ThreadPoolExecutor :
再回到 executeOnExecutor() 方法中,那麼 exec.execute(mFuture) 就是觸發線程池開始執行任務的操作了。
那 executeOnExecutor() 方法中的 mWorker 是什麼? mFuture 是什麼?答案在 AsyncTask 的構造函數中:
原來 mWorker 是一個 Callable 對象, mFuture 是一個 FutureTask 對象,繼承了 Runnable 介面。所以 mWorker 的 call() 方法會在 mFuture 的 run() 方法中執行,所以 mWorker 的 call() 方法在線程池得到執行!
同時 doInBackground() 方法就在 call() 中方法,所以我們自定義的耗時任務邏輯得到執行,不就是我們第二部分講的那一套嗎!
doInBackground() 的返回值會傳遞給 postResult() 方法:
就是通過 Handler 將最終的耗時任務結果從子線程發送到主線程,具體的過程是這樣的, getHandler() 得到的就是 AsyncTask 構造函數中初始化的 mHandler , mHander 又是通過 getMainHandler() 賦值的:
可以在看到 sHandler 是一個 InternalHandler 類對象:
所以 getHandler() 就是在得到在主線程創建的 InternalHandler 對象,所以
就可以完成耗時任務結果從子線程到主線程的切換,進而可以進行相關UI操作了。
當消息是 MESSAGE_POST_RESULT 時,代表任務執行完成, finish() 方法被調用:
如果任務沒有被取消的話執行 onPostExecute() ,否則執行 onCancelled() 。
如果消息是 MESSAGE_POST_PROGRESS , onProgressUpdate() 方法被執行,根據之前的用法可以 onProgressUpdate() 的執行需要我們手動調用 publishProgress() 方法,就是通過 Handler 來發送進度數據:
進行中的任務如何取消呢?AsyncTask 提供了一個 cancel(boolean mayInterruptIfRunning) ,參數代表是否中斷正在執行的線程任務,但是呢並不靠譜, cancel() 的方法注釋中有這么一段:
大致意思就是調用 cancel() 方法後, onCancelled(Object) 回調方法會在 doInBackground() 之後被執行而 onPostExecute() 將不會被執行,同時你應該 doInBackground() 回調方法中通過 isCancelled() 來檢查任務是否已取消,進而去終止任務的執行!
所以只能自己動手了:
AsyncTask 整體的實現流程就這些了,源碼是最好的老師,自己跟著源碼走一遍有些問題可能就豁然開朗了!
⑶ android判斷一個線程是否存在
線程如果是一直運行的,就檢測service是否已經啟動,啟動了就不開啟線程。每次開啟程序就啟動服務,線程也新建,建議看一下service的生命周期。。
⑷ Android進程和線程的區別
Android進程和線程的區別
下面我先介紹下Android進程和線程各是什麼,然後再一一比較區別下
Android進程基本知識:
當一個程序第一次啟動的時候,Android會啟動一個LINUX進程和一個主線程。默認的情況下,所有該程序的組件都將在該進程和線程中運行。 同時,Android會為每個應用程序分配一個單獨的LINUX用戶。Android會盡量保留一個正在運行進程,只在內存資源出現不足時,Android會嘗試停止一些進程從而釋放足夠的資源給其他新的進程使用, 也能保證用戶正在訪問的當前進程有足夠的資源去及時地響應用戶的事件。
我們可以將一些組件運行在其他進程中,並且可以為任意的進程添加線程。組件運行在哪個進程中是在manifest文件里設置的,其中<Activity>,<Service>,<receiver>和<provider>都有一個process屬性來指定該組件運行在哪個進程之中。我們可以設置這個屬性,使得每個組件運行在它們自己的進程中,或是幾個組件共同享用一個進程,或是不共同享用。<application>元素也有一個process屬性,用來指定所有的組件的默認屬性。
Android中的所有組件都在指定的進程中的主線程中實例化的,對組件的系統調用也是由主線程發出的。每個實例不會建立新的線程。對系統調用進行響應的方法——例如負責執行用戶動作的View.onKeyDown()和組件的生命周期函數——都是運行在這個主線程中的。這意味著當系統調用這個組件時,這個組件不能長時間的阻塞主線程。例如進行網路操作時或是更新UI時,如果運行時間較長,就不能直接在主線程中運行,因為這樣會阻塞這個進程中其他的組件,我們可以將這樣的組件分配到新建的線程中或是其他的線程中運行。
Android會根據進程中運行的組件類別以及組件的狀態來判斷該進程的重要性,Android會首先停止那些不重要的進程。按照重要性從高到低一共有五個級別:
1.1前台進程
前台進程是用戶當前正在使用的進程。只有一些前台進程可以在任何時候都存在。他們是最後一個被結束的,當內存低到根本連他們都不能運行的時候。一般來說, 在這種情況下,設備會進行內存調度,中止一些前台進程來保持對用戶交互的響應。
1.2可見進程
可見進程不包含前台的組件但是會在屏幕上顯示一個可見的進程是的重要程度很高,除非前台進程需要獲取它的資源,不然不會被中止。
1.3服務進程
運行著一個通過startService() 方法啟動的service,這個service不屬於上面提到的2種更高重要性的。service所在的進程雖然對用戶不是直接可見的,但是他們執行了用戶非常關注的任務(比如播放mp3,從網路下載數據)。只要前台進程和可見進程有足夠的內存,系統不會回收他們。
1.4後台進程
運行著一個對用戶不可見的activity(調用過 onStop() 方法).這些進程對用戶體驗沒有直接的影響,可以在服務進程、可見進程、前台進 程需要內存的時候回收。通常,系統中會有很多不可見進程在運行,他們被保存在LRU (least recently used) 列表中,以便內存不足的時候被第一時間回收。如果一個activity正 確的執行了它的生命周期,關閉這個進程對於用戶體驗沒有太大的影響。
1.5空進程
未運行任何程序組件。運行這些進程的唯一原因是作為一個緩存,縮短下次程序需要重新使用的啟動時間。系統經常中止這些進程,這樣可以調節程序緩存和系統緩存的平衡。
單線程模型
線程在代碼是使用標準的java Thread對象來建立,那麼在Android系統中提供了一系列方便的類來管理線程——Looper用來在一個線程中執行消息循環,Handler用來處理消息,HandlerThread創建帶有消息循環的線程。具體可以看下面的詳細介紹。
當一個程序第一次啟動時,Android會同時啟動一個對應的主線程(Main Thread),主線程主要負責處理與UI相關的事件,如用戶的按鍵事件,用戶接觸屏幕的事件以及屏幕繪圖事件,並把相關的事件分發到對應的組件進行處理。所以主線程通常又被叫做UI線程。
在開發Android應用時必須遵守單線程模型的原則: Android UI操作並不是線程安全的並且這些操作必須在UI線程中執行。
2.1 子線程更新UI Android的UI是單線程(Single-threaded)的。
為了避免拖住GUI,一些較費時的對象應該交給獨立的線程去執行。如果幕後的線程來執行UI對象,Android就會發出錯誤訊息 。以後遇到這樣的異常拋出時就要知道怎麼回事了!
2.2 Message Queue
在單線程模型下,為了解決類似的問題,Android設計了一個Message Queue(消息隊列), 線程間可以通過該Message Queue並結合Handler和Looper組件進行信息交換。下面將對它們進行分別介紹:
2..3 Message 消息
理解為線程間交流的信息,處理數據後台線程需要更新UI,則發送Message內含一些數據給UI線程。
2.4. Handler 處理者
是Message的主要處理者,負責Message的發送,Message內容的執行處理。後台線程就是通過傳進來的Handler對象引用來sendMessage(Message)。而使用Handler,需要implement 該類的 handleMessage(Message) 方法,它是處理這些Message的操作內容,例如Update UI。通常需要子類化Handler來實現handleMessage方法。
2.5. Message Queue 消息隊列
用來存放通過Handler發布的消息,按照先進先出執行。 每個message queue都會有一個對應的Handler。Handler會向message queue通過兩種方法發送消息:sendMessage或post。這兩種消息都會插在message queue隊尾並按先進先出執行。但通過這兩種方法發送的消息執行的方式略有不同:通過sendMessage發送的是一個message對象,會被Handler的handleMessage()函數處理;而通過post方法發送的是一個runnable對象,則會自己執行。
2.6 Looper Looper是每條線程里的Message Queue的管家。
Android沒有Global的Message Queue,而Android會自動替主線程(UI線程)建立Message Queue,但在子線程里並沒有建立Message Queue。所以調用Looper.getMainLooper()得到的主線程的Looper不為NULL,但調用Looper.myLooper()得到當前線程的Looper就有可能為NULL。
從以上幾點,不難看出Android進程和線程的二者的區別所在。
⑸ Android開發之路-多線程
多線程作為Android開發中相對而言較為高階的知識,其中用到相關的知識點是非常的多,所以在我們需要進行設計或者寫多線程的代碼就必須要進行相對謹慎的處理,這樣就由必要對其要有著比較系統化的認知
我們一般將Android應用分成為兩種:主線程和工作線程;主線程主要是用來進行初始化UI,而工作線程主要是進行耗時操作,例如讀取資料庫,網路連接等
Android系統是以進程為單位來對應用程序資源進行限制,這個問題的可以解釋為:一個進程最多能夠開幾個線程?最好能開幾個?但實則這個是沒有上限這一說,主要是因為資源的限制
Android中關於主線程的理解:Android的主線程是UI線程,在Android中,四大組件運行在主線程中,在主線程中做耗時操作會導致程序出現卡頓甚至出現ANR異常,一個.
在一個程序中,這些獨立運行的程序片斷叫作「線程」(Thread),利用它編程的概念就叫作「多線程處理」。多線程處理一個常見的例子就是用戶界面。
線程總的來就是進程的一個實體,是CPU進行分派和調度的基本單位,擁有著比進程更小且能夠獨立運行的基本單位,線程本身基本上是不擁有系統資源,僅擁有一點在運行過程中必須擁有的資源,但它可與同屬一個進程中的其他進程進行共享其所擁有的所有資源
線程狀態有些地方將之分為5中狀態,而且在Java Jdk中線程被其定義為6中狀態,我們可以對其進行類比
普遍定義的5中狀態:新建,就緒,運行,阻塞, 死亡
Java Jdk 定義狀態
線程阻塞是指在某一時刻的某一個線程在進行運行一段代碼的情況下,突然另一個線程也要進行運行,但在運行過程中,那個線程執行完全運行之前,另一個線程是不可能獲取到CPU的執行權,就會導致線路阻塞的出現
死鎖也稱之為抱死,意思就是說一個進程鎖定了另外一個進程所需要的頁或表是,但第二個進程同時又鎖定了第一個進程所需的一頁,這樣就會出現死鎖現象
簡要介紹實現線程的三種方式:繼承Thread,實現runnable,實現callable。這里有一點需要注意的是,實現callable是與線程池相關聯的而callable很重要的一個特性是其帶有返回值。當我們只需實現單線程時實現runnable更加利於線程程序的拓展
在線程開啟之前進行調用 thread.setDaemon(true); 將thread設定成當前線程中的守護線程 使用案例
線程讓步【yield方法】讓當前線程釋放CPU資源,讓其他線程搶占
這種具體某個對象鎖 wait & notify 方法與Condition 的 await以及signal方法類似; 全面這種方法的阻塞等待都可以是釋放鎖,而且在喚醒後,這種線程都是能夠獲取鎖資源的,而這個門栓就跟閥門類似
⑹ android中什麼是主線程什麼是子線程
一個app開始運行就會創建一個主線程,其他子線程都是在主線程中創建的。每個app都有一個主線程,但每個app並不一定有子線程。