在linux的網路編程,特別是TCP的編程中,SIGPIPE信號錯誤是一個比較常見的問題,我猜測你是在使用TCP的socket吧,如果是這樣的話,很有可能是你在向一個已經處於關閉狀態的socket寫數據,因為TCP是面向連接的協議。如果對方將socket給close掉了,而你還繼續往這個socket寫數據,就會觸發這個信號。因此,建議你在write之前檢查一下對方是否已經close掉了這個socket。如果回答得不對,可以繼續追問哈
B. linux python socket怎麼去除
原因是server端關掉了tcp連接,給client發送FIN信號,client的tcp層回了ACK,然後它的socket狀態就處於close_wait狀態。
實驗:
Python中,socket在send之前處於close_wait狀態,那麼該send不會報錯,並且執行完之後socket就closed了。再繼續調用send就會報錯。
推理:
說明python的socket.send在發送數據之前會檢查socket的狀態,如果處於close_wait,就執行close(socket)(應用層感覺不到哦),然後正常退出。所以再次send時,會拋出異常。
為什麼會一直處close_wait狀態?
當socket處於close_wait時,必須由應用層調用close(socket),發送FIN給server端才能變為LAST_ACK,接收到server端回應的ACK後,才變為CLOSED。如果應用層不調用close(),那麼socket會一直處於close_wait。[1]
如果我在python中不斷循環去調用socket.sendall(),那麼在socket變為close_wait後,通過socket.sendall()也會關閉socket,為什麼它還是一直處在close_wait狀態呢?
原因在於當sendall(data)的data比較大,在data被發送一半時,連接被server端斷掉了。那麼sendall(data)會一直卡在那,也就不會執行到sendall的開始處,去判斷socket狀態,確定是否關閉socket了。
簡單而言,就是socket在變為close_wait之後,根本沒有調用sendall()去關閉socket。
C. linux socket 連接超時 怎麼解決
今天發現自己的系統存在很嚴重缺陷,當前台關閉的時候後台就無法正常工作,原因很好定位,後台的socket連接超時時間過長,系統默認時間好像是75秒,於是找資料,根據下邊文章中的內容解決了,把超時時間設為5秒後,感覺好多了。看來還有好多東西需要慢慢挖掘阿!
如何設置socket的Connect超時(linux)
[From]http://dev.cbw.com/c/c/200510195601_4292587.shtml
1.首先將標志位設為Non-blocking模式,准備在非阻塞模式下調用connect函數
2.調用connect,正常情況下,因為TCP三次握手需要一些時間;而非阻塞調用只要不能立即完成就會返回錯誤,所以這里會返回EINPROGRESS,表示在建立連接但還沒有完成。
3.在讀套介面描述符集(fd_set rset)和寫套介面描述符集(fd_set wset)中將當前套介面置位(用FD_ZERO()、FD_SET()宏),並設置好超時時間(struct timeval *timeout)
4.調用select( socket, &rset, &wset, NULL, timeout )
返回0表示connect超時
如果你設置的超時時間大於75秒就沒有必要這樣做了,因為內核中對connect有超時限制就是75秒。
[From]http://www.ycgczj.com.cn/34733.html
網路編程中socket的分量我想大家都很清楚了,socket也就是套介面,在套介面編程中,提到超時的概念,我們一下子就能想到3個:發送超時,接收超時,以及select超時(註: select函數並不是只用於套介面的,但是套介面編程中用的比較多),在connect到目標主機的時候,這個超時是不由我們來設置的。不過正常情況下這個超時都很長,並且connect又是一個阻塞方法,一個主機不能連接,等著connect返回還能忍受,你的程序要是要試圖連接多個主機,恐怕遇到多個不能連接的主機的時候,會塞得你受不了的。我也廢話少說,先說說我的方法,如果你覺得你已掌握這種方法,你就不用再看下去了,如果你還不了解,我願意與你分享。本文是已在Linux下的程序為例子,不過拿到Windows中方法也是一樣,無非是換幾個函數名字罷了。
Linux中要給connect設置超時,應該是有兩種方法的。一種是該系統的一些參數,這個方法我不講,因為我講不清楚:P,它也不是編程實現的。另外一種方法就是變相的實現connect的超時,我要講的就是這個方法,原理上是這樣的:
1.建立socket
2.將該socket設置為非阻塞模式
3.調用connect()
4.使用select()檢查該socket描述符是否可寫(注意,是可寫)
5.根據select()返回的結果判斷connect()結果
6.將socket設置為阻塞模式(如果你的程序不需要用阻塞模式的,這步就省了,不過一般情況下都是用阻塞模式的,這樣也容易管理)
如果你對網路編程很熟悉的話,其實我一說出這個過程你就知道怎麼寫你的程序了,下面給出我寫的一段程序,僅供參考。
/******************************
* Time out for connect()
* Write by Kerl W
******************************/
#include <sys/socket.h>
#include <sys/types.h>
#define TIME_OUT_TIME 20 //connect超時時間20秒
int main(int argc , char **argv)
{
………………
int sockfd = socket(AF_INET, SOCK_STREAM, 0);
if(sockfd < 0) exit(1);
struct sockaddr_in serv_addr;
………//以伺服器地址填充結構serv_addr
int error=-1, len;
len = sizeof(int);
timeval tm;
fd_set set;
unsigned long ul = 1;
ioctl(sockfd, FIONBIO, &ul); //設置為非阻塞模式
bool ret = false;
if( connect(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) == -1)
{
tm.tv_set = TIME_OUT_TIME;
tm.tv_uset = 0;
FD_ZERO(&set);
FD_SET(sockfd, &set);
if( select(sockfd+1, NULL, &set, NULL, &tm) > 0)
{
getsockopt(sockfd, SOL_SOCKET, SO_ERROR, &error, (socklen_t *)&len);
if(error == 0) ret = true;
else ret = false;
} else ret = false;
}
else ret = true;
ul = 0;
ioctl(sockfd, FIONBIO, &ul); //設置為阻塞模式
if(!ret)
{
close( sockfd );
fprintf(stderr , "Cannot Connect the server!n");
return;
}
fprintf( stderr , "Connected!n");
//下面還可以進行發包收包操作
……………
}
以上代碼片段,僅供參考,也是為初學者提供一些提示,主要用到的幾個函數,select, ioctl, getsockopt都可以找到相關資料,具體用法我這里就不贅述了,你只需要在linux中輕輕的敲一個man <函數名>就能夠看到它的用法。
此外我需要說明的幾點是,雖然我們用ioctl把套介面設置為非阻塞模式,不過select本身是阻塞的,阻塞的時間就是其超時的時間由調用select 的時候的最後一個參數timeval類型的變數指針指向的timeval結構變數來決定的,timeval結構由一個表示秒數的和一個表示微秒數(long類型)的成員組成,一般我們設置了秒數就行了,把微妙數設為0(註:1秒等於100萬微秒)。而select函數另一個值得一提的參數就是上面我們用到的fd_set類型的變數指針。調用之前,這個變數裡面存了要用select來檢查的描述符,調用之後,針對上面的程序這裡面是可寫的描述符,我們可以用宏FD_ISSET來檢查某個描述符是否在其中。由於我這里只有一個套介面描述符,我就沒有使用FD_ISSET宏來檢查調用select之後這個sockfd是否在set裡面,其實是需要加上這個判斷的。不過我用了getsockopt來檢查,這樣才可以判斷出這個套介面是否是真的連接上了,因為我們只是變相的用select來檢查它是否連接上了,實際上select檢查的是它是否可寫,而對於可寫,是針對以下三種條件任一條件滿足時都表示可寫的:
1)套介面發送緩沖區中的可用控制項位元組數大於等於套介面發送緩沖區低潮限度的當前值,且或者i)套介面已連接,或者ii)套介面不要求連接(UDP方式的)
2)連接的寫這一半關閉。
3)有一個套介面錯誤待處理。
這樣,我們就需要用getsockopt函數來獲取套介面目前的一些信息來判斷是否真的是連接上了,沒有連接上的時候還能給出發生了什麼錯誤,當然我程序中並沒有標出那麼多狀態,只是簡單的表示可連接/不可連接。
下面我來談談對這個程序測試的結果。我針對3種情形做了測試:
1. 目標機器網路正常的情況
可以連接到目標主機,並能成功以阻塞方式進行發包收包作業。
2. 目標機器網路斷開的情況
在等待設置的超時時間(上面的程序中為20秒)後,顯示目標主機不能連接。
3. 程序運行前斷開目標機器網路,超時時間內,恢復目標機器的網路
在恢復目標主機網路連接之前,程序一隻等待,恢復目標主機後,程序顯示連接目標主機成功,並能成功以阻塞方式進行發包收包作業。
以上各種情況的測試結果表明,這種設置connect超時的方法是完全可行的。我自己是把這種設置了超時的connect封裝到了自己的類庫,用在一套監控系統中,到目前為止,運行還算正常。這種編程實現的connect超時比起修改系統參數的那種方法的有點就在於它只用於你的程序之中而不影響系統。
D. socket編程在windows和linux下的區別
下面大概分幾個方面進行羅列:
Linux要包含
[cpp]
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <arpa/inet.h>
等頭文件,而windows下則是包含
[cpp]
#include <winsock.h>
。
Linux中socket為整形,Windows中為一個SOCKET。
Linux中關閉socket為close,Windows中為closesocket。
Linux中有變數socklen_t,Windows中直接為int。
因為linux中的socket與普通的fd一樣,所以可以在TCP的socket中,發送與接收數據時,直接使用read和write。而windows只能使用recv和send。
設置socet選項,比如設置socket為非阻塞的。Linux下為
[cpp]
flag = fcntl (fd, F_GETFL);
fcntl (fd, F_SETFL, flag | O_NONBLOCK);
,Windows下為
[cpp]
flag = 1;
ioctlsocket (fd, FIONBIO, (unsigned long *) &flag);
。
當非阻塞socket的TCP連接正在進行時,Linux的錯誤號為EINPROGRESS,Windows的錯誤號為WSAEWOULDBLOCK。
file
Linux下面,文件換行是"\n",而windows下面是"\r\n"。
Linux下面,目錄分隔符是"/",而windows下面是"\"。
Linux與Windows下面,均可以使用stat調用來查詢文件信息。但是,Linux只支持2G大小,而Windows只支持4G大小。為了支持更大的文件查詢,可以在Linux環境下加
_FILE_OFFSET_BITS=64定義,在Windows下面使用_stat64調用,入參為struct __stat64。
Linux中可根據stat的st_mode判斷文件類型,有S_ISREG、S_ISDIR等宏。Windows中沒有,需要自己定義相應的宏,如
[cpp]
#define S_ISREG(m) (((m) & 0170000) == (0100000))
#define S_ISDIR(m) (((m) & 0170000) == (0040000))
Linux中刪除文件是unlink,Windows中為DeleteFile。
time
Linux中,time_t結構是長整形。而windows中,time_t結構是64位的整形。如果要在windows始time_t為32位無符號整形,可以加宏定義,_USE_32BIT_TIME_T。
Linux中,sleep的單位為秒。Windows中,Sleep的單位為毫秒。即,Linux下sleep (1),在Windows環境下則需要Sleep (1000)。
Windows中的timecmp宏,不支持大於等於或者小於等於。
Windows中沒有struct timeval結構的加減宏可以使用,需要手動定義:
[cpp]
#define MICROSECONDS (1000 * 1000)
#define timeradd(t1, t2, t3) do { \
(t3)->tv_sec = (t1)->tv_sec + (t2)->tv_sec; \
(t3)->tv_usec = (t1)->tv_usec + (t2)->tv_usec % MICROSECONDS; \
if ((t1)->tv_usec + (t2)->tv_usec > MICROSECONDS) (t3)->tv_sec ++; \
} while (0)
#define timersub(t1, t2, t3) do { \
(t3)->tv_sec = (t1)->tv_sec - (t2)->tv_sec; \
(t3)->tv_usec = (t1)->tv_usec - (t2)->tv_usec; \
if ((t1)->tv_usec - (t2)->tv_usec < 0) (t3)->tv_usec --, (t3)->tv_usec += MICROSECONDS; \
} while (0)
調用進程
Linux下可以直接使用system來調用外部程序。Windows最好使用WinExec,因為WinExec可以支持是打開還是隱藏程序窗口。用WinExec的第二個入參指明,如
SW_SHOW/SW_HIDE。
雜項
Linux為srandom和random函數,Windows為srand和rand函數。
Linux為snprintf,Windows為_snprintf。
同理,Linux中的strcasecmp,Windows為_stricmp。
錯誤處理
Linux下面,通常使用全局變數errno來表示函數執行的錯誤號。Windows下要使用GetLastError ()調用來取得。
Linux環境下僅有的
這些函數或者宏,Windows中完全沒有,需要用戶手動實現。
atoll
[cpp]
long long
atoll (const char *p)
{
int minus = 0;
long long value = 0;
if (*p == '-')
{
minus ++;
p ++;
}
while (*p >= '0' && *p <= '9')
{
value *= 10;
value += *p - '0';
p ++;
}
return minus ? 0 - value : value;
}
gettimeofday
[cpp]
#if defined(_MSC_VER) || defined(_MSC_EXTENSIONS)
#define EPOCHFILETIME 11644473600000000Ui64
#else
#define EPOCHFILETIME 11644473600000000ULL
#endif
struct timezone
{
int tz_minuteswest;
int tz_dsttime;
};
int
gettimeofday (struct timeval *tv, struct timezone *tz)
{
FILETIME ft;
LARGE_INTEGER li;
__int64 t;
static int tzflag;
if (tv)
{
GetSystemTimeAsFileTime (&ft);
li.LowPart = ft.dwLowDateTime;
li.HighPart = ft.dwHighDateTime;
t = li.QuadPart; /* In 100-nanosecond intervals */
t -= EPOCHFILETIME; /* Offset to the Epoch time */
t /= 10; /* In microseconds */
tv->tv_sec = (long) (t / 1000000);
tv->tv_usec = (long) (t % 1000000);
}
if (tz)
{
if (!tzflag)
{
_tzset ();
tzflag++;
}
tz->tz_minuteswest = _timezone / 60;
tz->tz_dsttime = _daylight;
}
return 0;
}
編譯相關
當前函數,Linux用__FUNCTION__表示,Windows用__func__表示。
--------------------------------------------------------------------------------
Socket 編程 windows到Linux代碼移植遇到的問題
1)頭文件
windows下winsock.h/winsock2.h
linux下sys/socket.h
錯誤處理:errno.h
2)初始化
windows下需要用WSAStartup
linux下不需要
3)關閉socket
windows下closesocket(...)
linux下close(...)
4)類型
windows下SOCKET
linux下int
如我用到的一些宏:
#ifdef WIN32
typedef int socklen_t;
typedef int ssize_t;
#endif
#ifdef __LINUX__
typedef int SOCKET;
typedef unsigned char BYTE;
typedef unsigned long DWORD;
#define FALSE 0
#define SOCKET_ERROR (-1)
#endif
5)獲取錯誤碼
windows下getlasterror()/WSAGetLastError()
linux下errno變數
6)設置非阻塞
windows下ioctlsocket()
linux下fcntl() <fcntl.h>
7)send函數最後一個參數
windows下一般設置為0
linux下最好設置為MSG_NOSIGNAL,如果不設置,在發送出錯後有可 能會導致程序退出。
8)毫秒級時間獲取
windows下GetTickCount()
linux下gettimeofday()
3、多線程
多線程: (win)process.h --〉(linux)pthread.h
_beginthread --> pthread_create
_endthread --> pthread_exit
-----------------------------------------------------------------
windows與linux平台使用的socket均繼承自Berkeley socket(rfc3493),他們都支持select I/O模型,均支持使用getaddrinfo與getnameinfo實現協議無關編程。但存在細微差別,
主要有:
頭文件及類庫。windows使用winsock2.h(需要在windows.h前包含),並要鏈接庫ws2_32.lib;linux使用netinet/in.h, netdb.h等。
windows下在使用socket之前與之後要分別使用WSAStartup與WSAClean。
關閉socket,windows使用closesocket,linux使用close。
send*與recv*函數參數之socket長度的類型,windows為int,linux為socklen_t,可預編譯指令中處理這一差異,當平台為windows時#define socklen_t unsigned int。
select函數第一個參數,windows忽略該參數,linux下該參數表示集合中socket的上限值,一般設為sockfd(需select的socket) + 1。
windows下socket函數返回值類型為SOCKET(unsigned int),其中發生錯誤時返回INVALID_SOCKET(0),linux下socket函數返回值類型int, 發生錯誤時返回-1。
另外,如果綁定本機回環地址,windows下sendto函數可以通過,linux下sendto回報錯:errno=22, Invalid arguement。一般情況下均綁定通配地址。
轉載jlins