導航:首頁 > 操作系統 > 基於單片機超聲波測距儀的設計

基於單片機超聲波測距儀的設計

發布時間:2023-03-31 02:36:21

❶ 基於單片機的超聲波測距儀設計需要哪些

需要單片機控制板,超聲波感測器,電源等等。剩下的就是編程序了。如有幫助請採納,手機則點擊右上角的滿意,謝謝!!

❷ 超聲波測距的PCB設計

10mil還是比較緊張的。具體還要看你用的敷銅板厚度和質量。有時候一些經驗數據不太好用,我有一彎察次就出現過80mil的線被最高不超過0.9A的電流燒壞的經歷,按理說,我已經是設置了2倍的裕量了。
所以埋顫茄我覺得你設計的10mil線寬是有些危險的,以後建議在可能的情況下,增加地線和電源的寬度,特別是地線,被燒得可能性比較大。
如果說補救,建議採用二樓的辦法,在電源線和地線上敷上一層焊錫,這樣可以大大增加通過電流的能力。上次被燒得線我後來還是這樣洞豎修復,很好用。

❸ 51單片機控制的超聲波測距儀程序

希望對你有幫助
//超聲波模塊顯示程序
#include <reg52.h> //包括一個52標准內核的頭文件
#define uchar unsigned char //定義一下方便使用
#define uint unsigned int
#define ulong unsigned long
sbit Tx = P3^3; //產生脈沖引腳
sbit Rx = P3^2; //回波引腳
uchar code SEG7[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//數碼管0-9
uint distance[4]; //測距接收緩沖區
uchar ge,shi,,temp,flag,outcomeH,outcomeL,i; //自定義寄存器
bit succeed_flag; //測量成功標志
//********函數聲明
void conversion(uint temp_data);
void delay_20us();
void pai_xu();
void main(void) // 主程序
{ uint distance_data,a,b;
uchar CONT_1;
i=0;
flag=0;
Tx=0; //首先拉低脈沖輸入引腳
TMOD=0x11; //定時器0,定時器1,16位工作方式
TR0=1; //啟動定時器0
IT0=0; //由高電平變低電平,觸發外部中斷
ET0=1; //打開定時器0中斷
EX0=0; //關閉外部中斷
EA=1; //打開總中斷0

while(1) //程序循環
{
EA=0;
Tx=1;
delay_20us();
Tx=0; //產生一個20us的脈沖,在Tx引腳
while(Rx==0); //等待Rx回波引腳變高電平
succeed_flag=0; //清測量成功標志
EX0=1; //打開外部中斷
TH1=0; //定時器1清零
TL1=0; //定時器1清零
TF1=0; //
TR1=1; //啟動定時器1
EA=1;

while(TH1 < 30);//等待測量的結果,周期65.535毫秒(可用中斷實現)
TR1=0; //關閉定時器1
EX0=0; //關閉外部中斷

if(succeed_flag==1)
{
distance_data=outcomeH; //測量結果的高8位
distance_data<<=8; //放入16位的高8位
distance_data=distance_data|outcomeL;//與低8位合並成為16位結果數據
distance_data*=12; //因為定時器默認為12分頻
distance_data/=58; //微秒的單位除以58等於厘米
} //為什麼除以58等於厘米, Y米=(X秒*344)/2
// X秒=( 2*Y米)/344 ==》X秒=0.0058*Y米 ==》厘米=微秒/58
if(succeed_flag==0)
{
distance_data=0; //沒有回波則清零

}

distance[i]=distance_data; //將測量結果的數據放入緩沖區
i++;
if(i==3)
{
distance_data=(distance[0]+distance[1]+distance[2]+distance[3])/4;
pai_xu();
distance_data=distance[1];

a=distance_data;
if(b==a) CONT_1=0;
if(b!=a) CONT_1++;
if(CONT_1>=3)
{ CONT_1=0;
b=a;
conversion(b);
}
i=0;
}
}
}
//***************************************************************
//外部中斷0,用做判斷回波電平
INTO_() interrupt 0 // 外部中斷是0號
{
outcomeH =TH1; //取出定時器的值
outcomeL =TL1; //取出定時器的值
succeed_flag=1; //至成功測量的標志
EX0=0; //關閉外部中斷
}
//****************************************************************
//定時器0中斷,用做顯示
timer0() interrupt 1 // 定時器0中斷是1號
{
TH0=0xfd; //寫入定時器0初始值
TL0=0x77;
switch(flag)
{case 0x00:P0=ge; P2=0x7f;flag++;break;
case 0x01:P0=shi;P2=0xbf;flag++;break;
case 0x02:P0=;P2=0xdf;flag=0;break;
}
}

//顯示數據轉換程序
void conversion(uint temp_data)
{
uchar ge_data,shi_data,_data ;
_data=temp_data/100 ;
temp_data=temp_data%100; //取余運算
shi_data=temp_data/10 ;
temp_data=temp_data%10; //取余運算
ge_data=temp_data;

_data=SEG7[_data];
shi_data=SEG7[shi_data]&0x7f;
ge_data =SEG7[ge_data];

EA=0;
= _data;
shi = shi_data;
ge = ge_data ;
EA=1;
}
//******************************************************************

void delay_20us()
{ uchar bt ;
for(bt=0;bt<60;bt++);
}
void pai_xu()
{ uint t;
if (distance[0]>distance[1])
{t=distance[0];distance[0]=distance[1];distance[1]=t;}
if(distance[0]>distance[2])
{t=distance[2];distance[2]=distance[0];distance[0]=t;}
if(distance[1]>distance[2])
{t=distance[1];distance[1]=distance[2];distance[2]=t;}
}

❹ 基於單片機的超聲波測距儀畢業論文

相關範文:

基於單片機的超聲波測距儀設計及其應用分析

[摘要] 本文利用超聲波傳輸中距離與時間的關系,採用AT89C51單片機進行控制及數據處理,設計出了能精確測量兩點間距離的超聲波測距儀。該測距儀主要由超聲波發射器電路、超聲波接收器電路、單片機控制電路、環境溫度檢測電路及顯示電路構成。利用所設計出的超聲波測距儀,對不同距離進行了測試,並進行了詳盡的誤差分析。

[關鍵詞] 超聲波測距 單片機 溫度感測器

隨著社會的發展,人們對距離或長度測量的要求越來越高。超聲波測距由於其能進行非接觸測量和相對較高的精度,越來越被人們所重視。本設計的超聲波測距儀,可以對不同距離進行測試,並可以進行詳盡的誤差分析。

一、設計原理

超聲測距儀是根據超聲波遇到障礙物反射回來的特性進行測量的。超聲波發射器向某一方向發射超聲波,在發射同時開始計時,超聲波在空氣中傳播,途中碰到障礙物就立即返回來,超聲波接收器收到反射波就立即中斷停止計時。 通過不斷檢測產生波發射後遇到障礙物所反射的回波,從而測出發射超聲波和接收到回波的時間差T,然後求出距離L。基本的測距公式為:L=(△t/2)*C
式中 L——要測的距離
T——發射波和反射波之間的時間間隔
C——超聲波在空氣中的聲速,常溫下取為340m/s
聲速確定後,只要測出超聲波往返的時間,即可求得L。

二、超聲波測距儀設計目標

測量距離: 5米的范圍之內;通過LED能夠正確顯示出兩點間的距離;誤差小於5%。

三、數據測量和分析

1.數據測量與分析
由於實際測量工作的局限性,最後在測量中選取了一米以下的30cm、50cm、70cm、80cm、90cm、100cm 六個距離進行測量,每個距離連續測量七次,得出測量數據(溫度:29℃),如表所示。從表中的數據可以看出,測量值一般都比實際值要大幾厘米,但對於連續測量的准確性還是比較高的。
對所測的每組數據去掉一個最大值和最小值,再求其平均值,用來作為最終的測量數據,最後進行比較分析。這樣處理數據也具有一定的科學性和合理性。從表中的數據來看,雖然對超聲波進行了溫度補償,但在比較近的距離的測量中其相對誤差也比較大。特別是對30cm和50cm的距離測量上,相對誤差分別達到了5%和4.8%。但從全部測量結果看,本設計的絕對誤差都比較小,也比較穩定。本設計盲區在22.6cm左右,基本滿足設計要求。
2.誤差分析
測距誤差主要來源於以下幾個方面:
(1)超聲波發射與接收探頭與被測點存在一定的角度,這個角度直接影響到測量距離的精確值;(2)超聲波回波聲強與待測距離的遠近有直接關系,所以實際測量時,不一定是第一個回波的過零點觸發;(3)由於工具簡陋,實際測量距離也有誤差。影響測量誤差的因素很多,還包括現場環境干擾、時基脈沖頻率等等。

四、應用分析

採用超聲波測量大氣中的地面距離,是近代電子技術發展才獲得正式應用的技術,由於超聲測距是一種非接觸檢測技術,不受光線、被測對象顏色等的影響,在較惡劣的環境(如含粉塵)具有一定的適應能力。因此,用途極度廣泛。例如:測繪地形圖,建造房屋、橋梁、道路、開挖礦山、油井等,利用超聲波測量地面距離的方法,是利用光電技術實現的,超聲測距儀的優點是:儀器造價比光波測距儀低,省力、操作方便。
超聲測距儀在先進的機器人技術上也有應用,把超聲波源安裝在機器人身上,由它不斷向周圍發射超聲波並且同時接收由障礙物反射回波來確定機器人的自身位置,用它作為感測器控制機器人的電腦等等。由於超聲波易於定向發射,方向性好,強度好控制,它的應用價值己被普遍重視。
總之,由以上分析可看出:利用超聲波測距,在許多方面有很多優勢。因此,本課題的研究是非常有實用和商業價值。

五、結論

本設計的測量距離符合市場要求,測量的盲區也控制在23cm以內。針對市場需求,本設計還可以加大發射功率,讓測量的距離更加的遠。在顯示方面,也可以對程序做適當改動,使開始發射超聲波時LED顯示出溫度值,到超聲波回波接收到以後通過計算得出距離值時,LED自動切換顯示距離值,這樣在視覺效果上得到更加直觀的了解。

參考文獻:

[1]孫涵芳徐愛卿:MCS一51/96系列單片機原理及應用(修訂版)[M].北京:北京航空航天大學出版社.2002.46-170
[2]金篆芷王明時:現代感測器技術[M].電子工業出版社.1995.331—335
[3]孫涵芳徐愛卿:MCS一51/96系列單片機原理及應用(修訂版)[M].北京:北京航空航天大學出版社.2002.46-170
[4]路錦正王建勤楊紹國趙珂趙太飛:超聲波測距儀的設計[J].感測器技術.2002

僅供參考,請自借鑒

希望對您有幫助

❺ 急求:基於單片機設計超聲波測距需要哪些元器件謝謝!

發射電路需要兩個三極體,一個電阻,一個電容,一個發射頭。接收需要有四個放大的集成電路一塊,先放大再帶通辯仿銷濾波再經檢測到單片機。 給你推薦一款新型的紅外測距感測攜游器,型號GP2D12,工作電壓為4~5.5V,三腳封裝,輸出為模擬電壓,探測距離為10--80cm,輸出電壓跟距離大塌成反比,對應於80--10cm距離的輸出模擬電壓為0.4~2.4V。

❻ 求C51單片機程序,關於超聲波測距儀

看下這個

原文http://www.elecfans.com/article/87/82/2009/20091219139294.html

基於單片機的倒車防撞預警系統設計和實現

0 引 言
汽車倒車防撞預警系統即是俗稱的倒車雷達,是汽車泊車輔助裝置。在汽車倒車時,倒車雷達採用超聲波測距原理探測汽車尾部離障礙物的距離,當汽車尾部離障礙物的距離達到探測范圍時,倒車雷達通過數碼管實時動態顯示距離。當汽車尾部離障礙物的距離達到設定的安全警告值時,倒車雷達發出報警聲,以警示駕駛員,輔助駕駛員安全倒車。現在生產的中高檔小轎車大多數都配置有倒車雷達,而出於節省成本等方面的考慮,經濟型小轎車、大客車等其他車輛都沒有配置倒車雷達。有市場需求的產品,必然會帶動產品的開發設計。倒車雷達電路種類較多,本文介紹基於單片機控制的倒車雷達系統,該系統採用通用型單片機作為控制電路,方便系統功能擴展。系統電路主要採用集成器件構成,外圍元件少,電路簡潔、調試方便、成本低,利於商品化生產。

1 系統組成及工作原理
倒車防撞預警系統由四路收發一體封閉(防水)型超聲波感測器及其超聲波發射與回波接收電路、超聲波電信號放大電路、單片機控制電路、LED數碼管顯示電路和蜂鳴器聲音報警電路組成。系統組成框圖如圖1所示。

當汽車倒車時由倒車換擋裝置自動接通系統電源,系統上電復位,進入工作狀態。單片機編程產生一串40 kHz的矩形脈沖電壓,經四選一模擬開關加到超聲波發射與回波接收電路,經放大驅動超聲波感測器發射出超聲波,同時單片機開始計時。發射出的超聲波碰到障礙物後形成反射波,部分反射波返回作用於超聲波感測器,經超聲波感測器的聲/電轉換,變成微弱的電信號,該微弱的電信號經放大、整形產生負跳變電壓,向單片機發出中斷申請。單片機收到中斷申請的信號後,立即響應中斷,執行外部中斷服務程序,停止計時,得到超聲波發送和返回的時間T,計算出發射點離障礙物的距離S,即:S=(C·T)/2。C是超聲波在空氣中的傳播速度,在常溫25℃時,C約為346 m/s。若發射出的超聲波在測距范圍內未遇到障礙物,直到單片機定時中斷產生,執行定時中斷服務程序,選擇下一路,依次按後左路、後左中路、後右中路、後右路的順序繼續發射和接收超聲波,並經過計算處理。四路探測處理完畢,選擇四路中測出的最小距離值通過LED數碼管顯示出來。當最小距離值小於預先設定的報警距離時,單片機接通蜂鳴器的電源,蜂鳴器發出報警聲。若四路探測無回波中斷申請,則顯示「-.--」,表明在安全距離內沒有障礙物,再繼續下一輪的循環探測處理。

2 系統硬體電路的設計
2.1 超聲波發射與回波接收電路
超聲波發射與回波接收電路的主要作用是提高驅動超聲波感測器的脈沖電壓幅值,有效地進行電/聲轉換,增大超聲波的發射距離,並通過收發一體的超聲波感測器將返回的超聲波轉變成微弱的電信號。超聲波發射與回波接收電路如圖2所示(畫出一路,其他三路與該路一樣)。

EFR40RS是收發一體封閉(防水)型超聲波感測器,其中心頻率f0=(40.0±1.0)kHz,-3 dB帶寬1 kHz。驅動電壓峰一峰值要求60~150 V。CD4052是雙路四選一模擬開關,單片機的P3.4和P3.5埠輸出選通信號,單片機的P3.3埠輸出一串40 kHz的脈沖電壓,通過CD4052的X路加到選通的開關三極體Q1基極,經脈沖變壓器T1升壓至100 VP-P左右,驅動超聲波感測器EFR40RS發射超聲波。發射時的脈沖電壓幅值大小直接影響測距的遠近,應採用超聲波專用的脈沖變壓器。反射回的超聲波經原收發一體封閉型超聲波感測器變成毫伏級的一串脈沖電信號。由於回波電信號的幅值小,VD3和VD4二極體截止,該信號不會通過T1變壓器副邊線圈形成短路。VD1和VD2二極體也截止,所以回波電信號經R1和C1,通過CD4052的Y路送到超聲波電信號放大與整形電路。R1和VD1,VD2組成雙向限幅電路,避免發射時的大信號造成超聲波放大與整形電路阻塞,甚至損壞電路。

2.2 超聲波電信號放大電路
超聲波電信號放大電路採用集成電路CX20106A構成。CX20106A是日本索尼公司生產的紅外遙控信號接收集成電路。通過外部所接電阻,將其內部帶通濾波電路的中心頻率f0設置為40 kHz,就可以接收放大超聲波電信號,並整形輸出負脈沖電壓。
應用電路如圖3所示。1腳是超聲波電信號輸入端,2腳與地之間連接RC串聯網路,是內部前置放大電路負反饋網路的組成部分。電阻R5的數值確定前置放大電路的增益。R5電阻值減小,負反饋減弱,放大倍數增大;反之,則放大倍數減小。3腳與地之間連接檢波電容C3,適當改變電容C3的大小,可以改變超聲波電信號放大和整形電路的靈敏度和抗干擾能力。C3電容量大,靈敏度低,抗干擾能力強;C3容量小,靈敏度高,抗干擾能力弱,易造成誤動作。5腳與電源間接入一個電阻,用以設置內部帶通濾波電路的中心頻率f0。

當R6=200 kΩ時,f0=40 kHz。6腳與地之間接一個積分電容,標准值為330 pF。如果該電容值取得太大,會使探測距離變短。7腳是電路集電極開路輸出端,R7是該引腳的上拉電阻。集成電路CX20106A無信號輸入時,7腳輸出高電平,當輸入的超聲波電信號經放大、整形後,7腳輸出一個負脈沖電壓。
2.3 單片機控制電路和顯示、報警電路
電路如圖4所示。由於系統用到單片機的輸入/輸出埠不多,在不考慮功能擴展時,從功能夠用和低成本的角度考慮,採用AT89C2051單片機作為控制電路的核心器件。AT89C2051單片機共有20個引腳,其中有15個I/O埠(P3.6無引出腳)。兩個16位定時器/計數器,其體積小、價格低。採用12 MHz高精度的晶振,以獲得較穩定的時鍾頻率,減小測量誤差。單片機的P3.3埠周期性的輸出一串40 kHz的矩形脈沖,通過雙路四選一模擬開關CD4052周期性地加到四路超聲波發射與回波接收電路。單片機的P3.4和P3.5埠輸出雙路四選一模擬開關CD4052的選通信號。單片機的P3.2埠為外部中斷0中斷申請信號輸入端。三位LED數碼管採用動態掃描顯示。U4的小數點常亮,U4的單位為m,U5的單位為dm,U6的單位為cm。採用有源蜂鳴器作為報警發音器件,一是器件成本低,二是便於動態掃描顯示的軟體編程。

3 系統軟體的設計
系統軟體採用模塊化設計,方便擴展移植。採用匯編語言編程。主要有主程序、T0中斷服務程序、外部中斷0服務程序、超聲波發生子程序。

3.1 主程序
本系統有四路測距通道,採用分時工作,按後左一後左中一後右中一後右順序循環測距。每一路發射超聲波後的等待外部中斷時間應大於超聲波在最大有效探測距離內往返時間。所以按最大有效探測距離可以估算出最短的循環間隔時間。因為超聲波在空氣中傳播能量會不斷衰減,所以超聲波測距存在最大有效探測距離。這最大有效探測距離與多種因數有關:
與超聲波感測器性能的好壞、與驅動超聲波感測器的脈沖電壓幅值(功率)的大小、障礙物大小和形狀、障礙物吸波特性以及反射波與入射波之間的夾角、與超聲波放大和整形電路的靈敏度等有關。設定最大有效探測距離為8 m(收發一體封閉型超聲波感測器比較難達到,實際上也沒有必要探測很遠的障礙物,只是設計留有裕量。由於顯示位數有限,也必須對最大探測距離做限制),則循環工作的間隔時間Tm=2S/C=2×8/346A46 ms,加上避免接收超聲波感測器余振的延時和程序執行時間,留足裕量,設定Tm△56 ms。
主程序流程圖如圖5所示。首先是對系統初始化。埠p1.0、P3.3置0;設置堆棧,中斷允許總控制位EA允許中斷(EA=1);允許外部中斷0中斷(EX0=1),採用邊沿觸發方式(IT0=1);設置定時器T0允許中斷(ET0=1),以16位工作方式定時約56 ms;設置定時器T1以16位工作方式定時/計數,計數初值0000H,然後啟動T0定時。設置顯示數據初值為三位BCD碼999(cm),對應字形段碼顯示「---」。四路探測處理完畢後,將四組數據中的最小值送入顯示緩沖區,通過LED數碼管顯示。同時該值與設定的100 cm值比較,若四組數據中的最小值小於100 cm,P3.7埠置0,Q2三極體導通,有源蜂鳴器得電發出報警聲。

由於單片機採用12 MHz的晶振,1個機器周期為1μs,所以計數器每計一個數就是1μs,定時器T1工作模式設置為16位定時/計數器模式,則其最大定時65.536 ms。由於定時器T0每56 ms產生中斷,執行T0中斷服務程序時停止T1計時,所以T1計時不會產生溢出中斷。一輪四路探測處理完畢所用時間大約是56 ms×4=224 ms,用時很短,而倒車速度又比較慢,所以可以做到實時動態顯示。
3.2 T0中斷服務程序
T0中斷服務程序流程圖如圖6所示。每隔56 ms分別按後左→後左中→後右中→後右順序選通下一路超聲波發射與回波接收電路,調用超聲波發生子程序,送出16個40 kHz的超聲波脈沖電壓,定時器T1開始計時,定時器T0開始定時56 ms,使每路工作56 ms。

為了避免接收到超聲波感測器余振的直射波產生的中斷申請,延時2.8 ms後,才允許外部中斷0中斷,等待接收返回的超聲波信號。所以,最小探測距離(盲區)Smin=Ct/2=346×0.002 8/2△0.48 m。四路探測處理完畢,將四路中最小值送入顯示緩沖區。若在四路探測中有些路在有效探測范圍內發射的超聲波未遇障礙物,無返回波,外部中斷0不產生中斷申請信號,或者是進入探測盲區,外部中斷0產生的中斷申請不被受理,則定時器T1計時到定時器T0產生中斷,在T0中斷服務程序中,用三位BCD碼999(三位十進制數最大值999 cm)置夠四組數據。若顯示緩沖區的四組數據都是999時,則對應字形段碼顯示「---」。倒車伊始,LED數碼顯示器就顯示「-.--」,表明在安全距離內沒有障礙物;若發出報警聲後,又顯示「-.--」,表明進入了探測盲區。
3.3 外部中斷0服務程序
外部中斷O服務程序流程圖如圖7所示。單片機一旦接收到返回超聲波信號(即INT0引腳由高電平跳變為低電平),立即進入外部中斷0服務程序。首先停止定時器T1計時,禁止外部中斷0中斷。然後將定時器T1中的數N,也即將超聲波往返所用的時間N(單位:μs),按式S=CT/2=(346 x N×10-6)/2=173×N÷10 000計算,即得被測物的距離(單位:cm),將計算結果以百位、十位、個位BCD碼方式送入比較大小的緩沖區,以備比較大小使用。然後等待定時器T0定時56 ms中斷的產生,繼續下一路的探測處理。

3.4 超聲波發生子程序
超聲波發生子程序通過P3.3埠發送16個周期是25μs(即頻率40 kHz,1個周期內高電平持續13μs、低電平持續12 μs)的矩形脈沖電壓。脈沖串個數在10~20個比較合適。脈沖個數太少,發射強度小,探測距離短;脈沖個數太多,發射持續時間長,在離障礙物距離近時,脈沖串尚未發射完畢,先發射出去的脈沖產生的回波就到達接收端,影響測距結果,造成測距盲區增大。

4 實現應用分析
本系統在實驗室條件下進行了可行性的研究設計,要實際應用中就必須考慮測量精度和工作穩定性的問題。因此,本系統可採取幾項措施來提高測量精度和工作穩定性。
(1)超聲波的傳播速度與溫度有關。為了適應不同環境溫度下的測距需要,提高測量精度,硬體電路上可增加檢測車外環境溫度的環節。單片機根據實測的溫度值,再計算確定超聲波的傳播速度,即C=331.4+0.6lt。t是環境溫度。或者在不增加硬體成本情況下,可考慮通過實驗數據分析,找到測量值與實際值偏差特點和規律,通過軟體編程對測量數據進行校正處理。
(2)軟體設計中採用數字濾波中的算術平均濾波程序對每個測距點進行連續多次測量,取平均值作為該測距點的測量數據,以提高數據采樣的可靠性。要盡量減小探測盲區,所設定的延時時間可根據實際所用超聲波感測器余振時間而定,可在實際調試中確定最小延時時間。
(3)倒車雷達安裝在車上,倒車雷達的工作環境非常惡劣,汽車倒車工作時,高壓點火產生很強的電磁輻射,會影響電路正常工作。所以在硬體及軟體方面要考慮採取抗干擾措施,提高系統工作的可靠性。如用金屬殼屏蔽電路,採用屏蔽線連接超聲波感測器;在滿足測量距離的情況下,可適當調大超聲波電信號放大和整形電路中檢波電容C3的容量。硬體上可增加「看門狗」電路,軟體設計添加指令冗餘、軟體陷阱、或設置軟體「看門狗」,防止程序「跑飛」或者進入死循環。對於駕駛員來說,倒車時主要關心的是車後方有無障礙物、以及障礙物離車大約有多遠等問題。由於車子制動時存在慣性,倒車遇到障礙物時,駕駛員總要提前制動。考慮性價比,倒車雷達測量精度不必很高。但從倒車安全考慮,此時的測量顯示值寧大勿小。

5 結 語
本系統充分利用了單片機的內部資源,用軟體編程產生超聲波矩形脈沖,代替硬體的超聲波發生電路,節省了硬體成本。採用一塊集成器件實現超聲波接收放大和整形,避免了採用多級集成運放組成高增益放大電路易產生自激等問題。實驗表明設計可行。在不增加硬體成本時,通過完善軟體設計,可提高系統測量精度和工作的可靠性,能夠滿足使用要求。在考慮功能擴展時,可以採用帶「看門狗」的AT89S52單片機,以增加擴展埠。在超聲波測距的基礎上,如可增加防盜報警功能、車載蓄電池電壓檢測功能等,若增加微型攝像頭和小型液晶顯示器,便成為可直接觀察車後方的可視倒車雷達。本系統實用性強,性價比高。

❼ 我在做基於單片機89C51的超聲波測距儀,如果接受電路不用CX20106A可以用什麼晶元替代,或者不用晶元,求解

用NE5532或者TL082吧,TL072也行。這些都是雙運放,四運放也可以使用TL084、TL074。用雙電源供電,把接收的信號放大1萬倍左右即可,別忘了中加一個帶通濾波器,注意小信號和信噪比,如果不考慮溫飄問題,LC濾波器是個很簡單有效的辦法。
放大後的超聲波信號,可以通過一個比較器或者檢波電路,接進單片機的IO口或AD口,剩下的就是您的軟體工作了。
以上的建議只能幫助您在實驗室里完成這個替代CX20106的電路。如果您要設計產品,考慮到可靠性方面,那麼工作量要比這個多很多,需要考慮到介面的保護、探頭老化、空氣在不同條件下的損耗、抗干擾、溫飄處理等等,可能要用上DSP,開發周期至少得1年,完善產品恐怕還得1年。

❽ 單片機超聲波測距系統原理

超聲波測距學習板,可應用於汽車倒車、建築施工工地以及一些工業現場的位置監控,也可用於如液位、井深、管道長度的測量等場合。要求測量范圍在0.27~4.00m,測量精度1cm,測量時與被測物體無直接接觸,能夠清晰穩定地顯示測量結果。超聲波測距原理
超聲波發生器內部結構有兩個壓電晶片和一個共振板。當它的兩極外加脈沖信號,其頻率等於壓電晶片的固有振盪頻時,壓電晶片將會發生共振,並帶動共振板振動,便產生超聲波。反之,如果兩電極間未外加電壓,當共振板接收到超聲波本時,將壓迫壓電晶片作振動,將機械能轉換為電信號,就成為超聲波接收器。在超聲探測電路中,發射端得到輸出脈沖為一系列方波,其寬度為發射超聲的時間間隔,被測物距離越大,脈沖寬度越大,輸出脈沖個數與被測距離成正比。超聲測距大致有以下方法:① 取輸出脈沖的平均值電壓,該電壓 (其幅值基本固定 )與距離成正比,測量電壓即可測得距離;② 測量輸出脈沖的寬度,即發射超聲波與接收超聲波的時間間隔 t,故被測距離為 S=1/2vt。本測量電路採用第二種方案。由於超 聲波 的聲速 與溫度有關,如果溫度變化不大,則可認為聲速基本不變 。如果測距精度要求很高,則應通 過溫度補償 的方法加以校正。超聲波測距適用於高精度的中長距離測量。因為超聲波在標准空氣中的傳播速度為331.45米/秒,由單片機負責計時,單片機使用12.0M晶振,所以此系統的測量精度理論上可以達到毫米級。
採用AT89C51或AT89S51單片機,晶振:12M,單片機用P1.0口輸出超聲波換能器所需的40K方波信號,利用外中斷0口監測超聲波接收電路輸出的返回信號,顯示電路採用簡單的4位共陽LED數碼管,斷碼用74LS244,位碼用8550驅動.
超聲波測距的演算法設計: 超聲波在空氣中傳播速度為每秒鍾340米(15℃時)。X2是聲波返回的時刻,X1是聲波發聲的時刻,X2-X1得出的是一個時間差的絕對值,假定X2-X1=0.03S,則有340m×0.03S=10.2m。由於在這10.2m的時間里,超聲波發出到遇到返射物返回的距離。
硬體部分採用AT89C51或AT89S51單片機,晶振:12M,單片機用P1.0口輸出超聲波換能器所需的40K方波信號,利用外中斷0口監測超聲波接收電路輸出的返回信號,顯示電路採用簡單的4位共陽LED數碼管,斷碼用74LS244,位碼用8550驅動. 主要由單片機系統及顯示電路、超聲波發射電路和超聲波檢測接收電路三部分組成。採用AT89S51來實現對CX20106A紅外接收晶元和TCT40-10系列超聲波轉換模塊的控制。單片機通過P1.0引腳經反相器來控制超聲波的發送,然後單片機不停的檢測INT0引腳,當INT0引腳的電平由高電平變為低電平時就認為超聲波已經返回。計數器所計的數據就是超聲波所經歷的時間,通過換算就可以得到感測器與障礙物之間的距離。

1.單片機系統及顯示電路
單片機採用89S51或其兼容系列。採用12MHz高精度的晶振,以獲得較穩定的時鍾頻率,減小測量誤差。
單片機用P1.0埠輸出超聲波轉化器所需的40KHz方波信號,利用外中斷0口檢測超聲波接受電路輸出的返回信號。顯示電路採用簡單實用的4位共陽LED數碼管,段碼用74LS244驅動,位碼用PNP三極體驅動。單片機系統及顯示電路如下圖所示.
使用CX20106A集成電路對接收探頭受到的信號進行放大、濾波。其總放大增益80db。以下是CX20106A的引腳注釋。

1腳:超聲信號輸入端,該腳的輸入阻抗約為40kΩ。
2腳:該腳與地之間連接RC串聯網路,它們是負反饋串聯網路的一個組成部分,改變它們的數值能改變前置放大器的增益和頻率特性。增大電阻R1或減小C1,將使負反饋量增大,放大倍數下降,反之則放大倍數增大。但C1的改變會影響到頻率特性,一般在實際使用中不必改動,推薦選用參數為R1=4.7Ω,C1=1μF。
3腳:該腳與地之間連接檢波電容,電容量大為平均值檢波,瞬間相應靈敏度低;若容量小,則為峰值檢波,瞬間相應靈敏度高,但檢波輸出的脈沖寬度變動大,易造成誤動作,推薦參數為3.3μf。
4腳:接地端。
5腳:該腳與電源間接入一個電阻,用以設置帶通濾波器的中心頻率f0,阻值越大,中心頻率越低。例如,取R=200kΩ時,f0≈42kHz,若取R=220kΩ,則中心頻率f0≈38kHz。
6腳: 該腳與地之間接一個積分電容,標准值為330pF,如果該電容取得太大,會使探測距離變短。
7腳:遙控命令輸出端,它是集電極開路輸出方式,因此該引腳必須接上一個上拉電阻到電源端,推薦阻值為22kΩ,沒有接受信號是該端輸出為高電平,有信號時則產生下降。 8腳:電源正極,4.5~5V。
軟硬體調試及性能
超聲波測距儀的製作和調試,其中超聲波發射和接收採用Φ16的超聲波換能器TCT40-16F1(T發射)和TCT40-16S1(R接收),中心頻率為40kHz,安裝時應保持兩換能器中心軸線平行並相距4~8cm,其餘元件無特殊要求。若能將超聲波接收電路用金屬殼屏蔽起來,則可提高抗干擾能力。根據測量范圍要求不同,可適當調整與接收換能器並接的濾波電容C4的大小,以獲得合適的接收靈敏度和抗干擾能力。
硬體電路製作完成並調試好後,便可將程序編譯好下載到單片機試運行。根據實際情況可以修改超聲波發生子程序每次發送的脈沖寬度和兩次測量的間隔時間,以適應不同距離的測量需要。根據所設計的電路參數和程序,測距儀能測的范圍為0.07~5.5m,測距儀最大誤差不超過1cm。系統調試完後應對測量誤差和重復一致性進行多次實驗分析,不斷優化系統使其達到實際使用的測量要求。後續工作需實驗後才能驗證 根據參考電路和集成的電路器件測距范圍有限10m以內為好。

❾ 畢業論文資料收集(採納追加1000分)

單片機類畢業設計
·電子時鍾的設計
·全自動節水灌溉系統--硬體部分
·數字式溫度計的設計
·溫度監控系統設計
·基於單片機的語音提示測溫系統的研究
·簡易無線電遙控系統
·數字流量計
·基於單片機的全自動洗衣機
·水塔智能水位控制系統
·溫度箱模擬控制系統
·超聲波測距儀的設計
·基於51單片機的LED點陣顯示屏系統的設計與實現 16×16點陣顯示屏
·基於AT89S51單片機的數字電子時鍾
·基於單片機的步進電機的控制
·基於單片機的交流調功器設計
·基於單片機的數字電壓表的設計
·單片機的數字鍾設計
·智能散熱器控制器的設計
·單片機打鈴系統設計
·基於單片機的交通信號燈控制電路設計
·基於單片機的電話遠程式控制制家用電器系統設計
·基於單片機的安全報警器
·基於單片機的八路搶答器設計
·基於單片機的超聲波測距系統的設計
·基於MCS-51數字溫度表的設計
·電子體溫計的設計
·基於AT89C51的電話遠程式控制制系統
·基於AVR單片機幅度可調的DDS信號發生器
·基於單片機的數控穩壓電源的設計
·基於單片機的室內一氧化碳監測及報警系統的研究
·基於單片機的空調溫度控制器設計
·基於單片機的可編程多功能電子定時器
·單片機的數字溫度計設計
·紅外遙控密碼鎖的設計
·基於61單片機的語音識別系統設計
·家用可燃氣體報警器的設計
·基於數字溫度計的多點溫度檢測系統
·基於凌陽單片機的語音實時採集系統設計
·基於單片機的數字頻率計的設計
·基於單片機的數字電子鍾設計
·設施環境中溫度測量電路設計
·汽車倒車防撞報警器的設計
·籃球賽計時記分器
·基於單片機的家用智能匯流排式開關設計
·設施環境中濕度檢測電路設計
·基於單片機的音樂合成器設計
·設施環境中二氧化碳檢測電路設計
·基於單片機的水溫控制系統設計
·基於單片機的數字溫度計的設計
·基於單片機的火災報警器
·基於單片機的紅外遙控開關設計
·基於單片機的電子鍾設計
·基於單片機的紅外遙控電子密碼鎖
·大棚溫濕度自動監控系統
·基於單片機的電器遙控器的設計
·單片機的語音存儲與重放的研究
·基於單片機的電加熱爐溫度控制系統設計
·紅外遙控電源開關
·基於單片機的低頻信號發生器設計
·基於單片機的呼叫系統的設計
·基於PIC16F876A單片機的超聲波測距儀
·基於單片機的密碼鎖設計
·單片機步進電機轉速控制器的設計
·由AT89C51控制的太陽能熱水器
·防盜與恆溫系統的設計與製作
·AT89S52單片機實驗系統的開發與應用
·基於單片機控制的數字氣壓計的設計與實現
·智能壓力感測器系統設計
·智能定時器
·基於單片機的智能火災報警系統
·基於單片機的電子式轉速里程錶的設計
·公交車漢字顯示系統
·單片機數字電壓表的設計
·精密VF轉換器與MCS-51單片機的介面技術
·基於單片機的居室安全報警系統設計
·基於89C2051 IC卡讀/寫器的設計
·PC機與單片機串列通信畢業論文
·球賽計時計分器 畢業設計論文
·松下系列PCL五層電梯控制系統
·自動起閉光控窗簾畢業設計論文
·單片機控制交通燈系統設計
·基於單片機的電子密碼鎖
·基於51單片機的多路溫度採集控制系統
·點陣電子顯示屏--畢業設計
·超聲波測距儀--畢業設計
·單片機對玩具小車的智能控制畢業設計論文
·基於單片機控制的電機交流調速畢業設計論文
·單片機智能火災報警器畢業設計論文
·基於單片機的鎖相頻率合成器畢業設計論文
·單片機控制的數控電流源畢業設計論文
·基於單片機的數字顯示溫度系統畢業設計論文
·單片機串列通信發射部分畢業設計論文
·基於單片機控制直流電機調速系統畢業設計論文
·單片機控制步進電機 畢業設計論文
·基於MCS51單片機溫度控制畢業設計論文
·基於單片機的自行車測速系統設計
·單片機汽車倒車測距儀
·基於單片機的數字電壓表
·單片機脈搏測量儀
·單片機控制的全自動洗衣機畢業設計論文
·基於單片機的電器遙控器設計
·單片機控制的微型頻率計設計
·基於單片機的音樂噴泉控制系統設計
·等精度頻率計的設計
·自行車里程,速度計的設計
·基於單片機的數字電壓表設計
·自行車車速報警系統
·大棚倉庫溫濕度自動控制系統
·自動剪板機單片機控制系統設計
·單片機電器遙控器的設計
·基於單片機技術的自動停車器的設計
·基於單片機的金屬探測器設計
·ATMEIL AT89系列通用單片機編程器的設計
·單片機水溫控制系統
·基於單片機的IC卡智能水表控制系統設計
·基於MP3格式的單片機音樂播放系統
·節能型電冰箱研究
·基於單片機控制的PWM調速系統
·交流非同步電動機變頻調速設計
·基於單片機的數字溫度計的電路設計
·基於Atmel89系列晶元串列編程器設計
·基於MCS-51通用開發平台設計
·基於單片機的實時時鍾
·用單片機實現電話遠程式控制制家用電器
·中頻感應加熱電源的設計
·家用豆漿機全自動控制裝置
·基於ATmega16單片機的高爐透氣性監測儀表的設計
·用單片機控制的多功能門鈴
·基於8051單片機的數字鍾
·紅外快速檢測人體溫度裝置的設計與研製
·三層電梯的單片機控制電路
·交通燈89C51控制電路設計
·基於單片機的簡訊收發系統設計 ――硬體設計
·大棚溫濕度自動控制系統
·串列顯示的步進電機單片機控制系統
·微機型高壓電網繼電保護系統的設計
·基於單片機mega16L的煤氣報警器的設計
·智能毫伏表的設計
·基於單片機的波形發生器設計
·基於單片機的電子時鍾控制系統
·火災自動報警系統
·基於PIC16F74單片機串列通信中繼控制器
·遙控小汽車的設計研究
·基於單片機對氧氣濃度檢測控制系統
·單片機的數字電壓表設計
·基於單片機的壓電智能懸臂梁振動控制系統設計
·單片機的列印機的驅動設計
·單片機音樂演奏控制器設計
·自動選台立體聲調頻收音機
·直流數字電壓表的設計
·具有紅外保護的溫度自動控制系統的設計
·基於單片機的機械通風控制器設計
·音頻信號分析儀
·單片機波形記錄器的設計
·公交車站自動報站器的設計
·基於單片機的溫度測量系統的設計
·龍門刨床的可逆直流調速系統的設計
·電子秤設計與製作
·智能型充電器的電源和顯示的設計
·80C196MC控制的交流變頻調速系統設計
·步進電機運行控制器的設計
·自動車庫門的設計
·家庭智能緊急呼救系統的設計
·單片機病房呼叫系統設計
·電子鬧鍾設計
·電子萬年歷設計
·定時鬧鍾設計
·計算器模擬系統設計
·數字電壓表設計
·數字定時鬧鍾設計
·數字溫度計設計
·數字音樂盒設計
·智能定時鬧鍾設計
·電子風壓表設計
·8×8LED點陣設計
·可編程的LED(16×64)點陣顯示屏
·無線智能報警系統
·溫濕度智能測控系統
·單片機電量測量與分析系統
·多通道數據採集記錄系統
·單片機控制直流電動機調速系統
·步進電動機驅動器設計
·DS18B20溫度檢測控制
·6KW電磁採暖爐電氣設計
·基於電流型逆變器的中頻冶煉電氣設計
·新型電磁開水爐設計
·新型洗浴器設計
·中頻淬火電氣控制系統設計
·中型電弧爐單片機控制系統設計
·基於單片機的電火箱調溫器
·LCD數字式溫度濕度測量計
·單片機與計算機USB介面通信
·萬年歷的設計
·基於單片機的家電遠程式控制制系統設計
·超聲波測距器設計
·多路溫度採集系統設計
·交通燈控制系統設計
·數字電容表的設計
·100路數字搶答器設計
·單片機與PC串列通信設計
·基於DS18B20溫度感測器的數字溫度計設計
·基於單片機的大棚溫、濕度的檢測系統
·基於MCS-96單片機的雙向加力式電子天平
·智能型客車超載檢測系統的設計
·語音控制小汽車控制系統設計
·萬年歷可編程電子鍾控電鈴
·基於單片機的步進電機控制系統
·基於MCS-51單片機溫控系統設計的電阻爐
·基於單片機89C52的啤酒發酵溫控系統
·基於單片機的溫度採集系統設計
·PIC單片機在空調中的應用
·列車測速報警系統
·多點溫度數據採集系統的設計
·遙控窗簾電路的設計
·基於單片機的數字式溫度計設計
·87C196MC單片機最小系統單板電路模板的設計與開發
·基於87C196MC交流調速實驗系統軟體的設計與開發
·基於87C196MC交流調速系統主電路軟體的設計與開發
·基於80C196MC交流調速實驗系統軟體的設計與開發
·基於單片機的水位控制系統設計
·基於單片機的液位檢測
·基於單片機的定量物料自動配比系統
·智能恆壓充電器設計
·單片機的水溫控制系統
·基於單片機的車載數字儀表的設計
·基於單片機的室溫控制系統設計
·基於MAX134與單片機的數字萬用表設計
·基於單片機防盜報警系統的設計
·18B20多路溫度採集介面模塊
·基於單片機的乳粉包裝稱重控制系統設計
·基於單片機的戶式中央空調器溫度測控系統設計
·步進電機實現的多軸運動控制系統
·IC卡讀寫系統的單片機實現
·單片機電阻爐溫度控制系統設計
·單片機控制PWM直流可逆調速系統設計
·單片機自動找幣機械手控制系統設計
·基於89C52的多通道採集卡的設計
·基於AT89C51單片機控制的雙閉環直流調速系統設計
·單片機控制的PWM直流電機調速系統的設計
·基於單片機的電阻爐溫度控制系統設計
·公交車報站系統的設計
·智能多路數據採集系統設計
·基於單片機控制的紅外防盜報警器的設計
·籃球比賽計時器設計
·超聲波測距儀的設計及其在倒車技術上的應用
·汽車側滑測量系統的設計
·自動門控制系統設計
·基於51單片機的液晶顯示器設計
·基於AT89C51單片機的電源切換控制器的設計
·基於單片機的普通銑床數控化設計
·基於AT89C51單片機的號音自動播放器設計
·基於單片機的玻璃管加熱控制系統設計
·中央冷卻水溫控制系統
·基於單片機的無刷直流電機控制系統設計
·鍋爐汽包水位控制系統
·基於單片機的魚用投餌機自動控制系統的設計
·空調溫度控制單元的設計
·軟膠囊的單片機溫度控制(硬體設計)
·小型戶用風力發電機控制器設計
·自動售報機的設計
·無線表決系統的設計
·微電腦時間控制器的軟體設計
·基於單片機AT89S52的超聲波測距儀的研製
·單片機教學實驗板——軟體設計
·基於16位單片機的串口數據採集
·單片機太陽能熱水器測控儀的設計
·基於單片機的簡單數字採集系統設計
·多電量採集系統的設計與實現
·PWM及單片機在按摩機中的應用
·基於單片機的簡易GPS定位信息顯示系統設計
·基於單片機的溫濕度測量系統設計
·基於單片機的電子音樂門鈴的設計
·開關電源的設計
·鍋爐控制系統的研究與設計
·基於ARM的嵌入式溫度控制系統的設計
·基於DS18B20的多點溫度巡迴檢測系統的設計
·基於單片機的頻率計設計
·倉儲用多點溫濕度測量系統
·基於單片機的超聲波液位測量系統的設計
·基於單片機的多功能函數信號發生器設計
·噪音檢測報警系統的設計與研究
·轉速、電流雙閉環直流調速系統設計
·基於單片機程式控制精密直流穩壓電源的設計
·模擬電梯的製作
·基於AT89C51單片機的步進電機控制系統
·超聲波倒車雷達系統硬體設計
·基於單片機實現汽車報警電路的設計
·採用單片機技術的脈沖頻率測量設計
·智能豆漿機的設計
·電話遠程監控系統的研究與製作
·分立式生活環境表的研究與製作(多功能電子萬年歷)
·高效智能汽車調節器
·全自動汽車模型的製作
·智能紅外遙控暖風機設計
·蔬菜公司恆溫庫微機監控系統
·數字觸發提升機控制系統
·基於單片控制的交流調速設計
·基於單片機的多點無線溫度監控系統
·單片機控制的霓虹燈控制器
·基於單片機的數碼錄音與播放系統
·全自動洗衣機控制器
·空調器微電腦控制系統
·自動存包櫃的設計
·基於單片機的數字鍾設計
·電子萬年歷
·多路數據採集系統的設計
·基於單片機步進電機控制系統設計
·基於單片機的雞雛恆溫孵化器的設計
·基於FPGA和單片機的多功能等精度頻率計
·基於單片機的水溫控制系統
·基於單片機的智能電子負載系統設計
·智能電話報警器
·基於ADE7758的電能監測系統的設計
·基於單片機PIC16F877的環境監測系統的設計
·基於單片機控制動態掃描文字顯示系統的設計
·基於單片機控制發生的數字音樂盒
·基於單片機控制文字的顯示
·基於單片機控制音樂門鈴
·智能電子密碼鎖設計
·單片機電鈴系統設計
·單片機演奏音樂歌曲裝置的設計
·大功率電器智能識別與用電安全控制器的設計
·單片機交通燈控制系統的設計
·智能立體倉庫系統的設計
·智能火災報警監測系統
·基於單片機的多點溫度檢測系統
·單片機定時鬧鍾設計
·濕度感測器單片機檢測電路製作
·智能小車自動定址設計--小車懸掛運動控制系統
·單片機呼叫系統的設計
·基於單片機的帶智能自動化的紅外遙控小車
·基於單片機AT89C51的語音溫度計的設計
·基於TMS320VC33DSP開發板製作
·16×16點陣LED電子顯示屏的設計
·單片機實驗教學平台分析
·基於USB匯流排的設計與開發
·基於單片機設計的自動售貨機系統設計
·數字溫度計的設計
·生產流水線產品產量統計顯示系統
·水位報警顯時控制系統的設計
·紅外遙控電子密碼鎖的設計
·基於MCU溫控智能風扇控制系統的設計
·數字電容測量儀的設計
·基於單片機的遙控器的設計
·200電話卡代撥器的設計
·數字式心電信號發生器硬體設計及波形輸出實現
·全氫罩式退火爐溫度控制系統
·單片機控制單閉環直流電動機的調速控制系統
·單片機電加熱爐溫度控制系統
·單片機大型建築火災監控系統
·點陣式漢字電子顯示屏的設計與製作
·基於AT89C51的路燈控制系統設計
·基於AT89C51的寬范圍高精度的電機轉速測量系統
·基於DSP的電機控制
·汽車倒車雷達
·基於光纖的汽車CAN匯流排研究
·基於AT89C51SND1C的MP3播放器
·多功能頻率計的設計
·基於單片機的數字直流調速系統設計
·單片機的智能電源管理系統
·基於單片機的多功能智能小車設計
·汽車防撞主控系統設計
·單片機控制電梯系統的設計
·電子密碼鎖的電路設計與製作
·高精度超聲波感測器信號調理電路的設計
·數字電子鍾的設計與製作
·銀行自動報警系統

❿ 幫忙詳細解答一下基於單片機的超聲波測距儀的匯編源程序(急求啊)

我可以負責的告訴你,用C吧,完全可以勝任。
2003年的時候我們為了確保MCU的效率(時效性),強制使用匯編寫的超聲波程序,結果程序寫不大,匯編你也知道,寫百八十行可以,代碼多了,這程序就沒法看了,更談不上程序升級和維護了。因此,那一代超聲波產品的功能很弱。
2006年,我們要重新設計第二代超聲波產品,要求可靠性好、功能強大,自然的代碼量也要多了,當時我們仍然固執的使用匯編、絕不用C,可匯編的代碼仍然寫不長,為了方便技術人員管理和後續的產品升級,我把這一套復雜的系統代碼分成了4級,也就是4套匯編代碼,分別在32個MCU里運行(同一個設備里),這4套代碼分別交給4個人來編寫和維護,這4個人中若有人跳槽走了,由於他掌握的代碼量小,功能又單一,接替他的人也很容易接手。(否則,這4套匯編程序,集中在一個冗長的代碼里,那麼這套代碼將很難維護,而且幾乎只能有1個人才能完全看懂它,一旦這個人走了,別人很難接手這套『爛』程序,這對於產品的持續改進非常不利)
2008年,我們試探性的,在DSP(TMS320F28335)上用C完成了所有的功能,而且程序量比匯編要少得多,可讀性、可維護性也要好得多。後來,我們在單片機上,也用C完成了絕大部分功能,原來擔心的時效性問題從沒有發生,這才領悟:2003-2008這5年,我們繞了一個大圈。
從此以後,我們就不再用匯編了,用C寫超聲波程序一直至今(偶爾嵌入匯編代碼),算一下也有5年了,從沒覺得C有任何局限性。
那麼,你是還覺得必須要用匯編么?

閱讀全文

與基於單片機超聲波測距儀的設計相關的資料

熱點內容
安卓手機微信發不出視頻怎麼弄 瀏覽:229
壓縮機專用工具 瀏覽:575
qtcreator可以編譯cp嗎 瀏覽:405
小項目是雲伺服器還是本地好 瀏覽:14
墨痕齋是什麼游戲的伺服器 瀏覽:942
word文件如何壓縮大小 瀏覽:279
遵義聯通伺服器地址是什麼 瀏覽:29
ansys約束命令流 瀏覽:814
解壓軟體電腦版如何下載 瀏覽:791
閃電匕首演算法球 瀏覽:692
linuxredis停止命令 瀏覽:670
大麥賬號怎麼加密 瀏覽:113
穿越火線怎麼找伺服器 瀏覽:526
秘密加密社交軟體app 瀏覽:256
c語言編譯器怎麼找文件 瀏覽:835
數學不好能編程嗎 瀏覽:254
微雲里的視頻加密 瀏覽:41
3大加密貨幣交易平台 瀏覽:647
鈑金激光切割機編程 瀏覽:496
vivo手機手電筒app在哪裡 瀏覽:787