導航:首頁 > 操作系統 > linux多線程開發

linux多線程開發

發布時間:2023-05-30 14:48:05

A. 關於linux下多線程編程

pthread_join 線程停止等待函數沒有調用

pthread_create 線程生成後,沒有等子線程停止,主線程就先停止了。

主線程停止後,整個程序停止,子線程在沒有printf的時候就被結束了。

結論:不是你沒有看到結果,而是在子線程printf("..................\n");之前整個程序就已經停止了。

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>

#define FALSE -1
#define TRUE 0

void *shuchu( void *my )
{
int j;
printf("..................\n");
}
int main()
{
int i = 0;
int rc = 0;
int ret1;
pthread_t p_thread1;
if(0!=(ret1 = pthread_create(&p_thread1, NULL, shuchu, NULL)))printf("sfdfsdfi\n");
printf("[%d]\n",p_thread1);
pthread_join(p_thread1, NULL);
return TRUE;

}

B. linux下多進程或者多線程編程的問題。新手,望指教!

你好,多進程或多線程,都不會阻塞當前語句代碼。為了您的理解,我就大膽舉下面兩個例子:
多進程:你可以看成是本來是一條路的,現在從中間拆成兩條,然後每一條路都有屬於自己這條路的代碼在運行。
多線程:你可以看成是一條路,然後分出車道,比如左車道和右車道甚至是停車道,然後每條車道都單獨通車,其他車道的不能對這條車道進行干擾。

所以,把一條路從中間拆成兩條,成本是很高的。但是把一條路分車道,成本就不是很高了。
對於您提出的main函數的疑問,當main函數最後執行完畢,程序退出後,所有的進程包括線程,都會被關閉的,哪怕你的程序中沒有關閉,操作系統也會幫你關閉的,現在的操作系統都非常的完善了。當然,也存在有線程或進程不被釋放的特殊情況,最好在編程中要記得釋放。

C. Linux 多線程編程(二)2019-08-10

三種專門用於線程同步的機制:POSIX信號量,互斥量和條件變數.

在Linux上信號量API有兩組,一組是System V IPC信號量,即PV操作,另外就是POSIX信號量,POSIX信號量的名字都是以sem_開頭.

phshared參數指定信號量的類型,若其值為0,就表示這個信號量是當前進程的局部信號量,否則該信號量可以在多個進程之間共享.value值指定信號量的初始值,一般與下面的sem_wait函數相對應.

其中比較重要的函數sem_wait函數會以原子操作的方式將信號量的值減一,如果信號量的值為零,則sem_wait將會阻塞,信號量的值可以在sem_init函數中的value初始化;sem_trywait函數是sem_wait的非阻塞版本;sem_post函數將以原子的操作對信號量加一,當信號量的值大於0時,其他正在調用sem_wait等待信號量的線程將被喚醒.
這些函數成功時返回0,失敗則返回-1並設置errno.

生產者消費者模型:
生產者對應一個信號量:sem_t procer;
消費者對應一個信號量:sem_t customer;
sem_init(&procer,2)----生產者擁有資源,可以工作;
sem_init(&customer,0)----消費者沒有資源,阻塞;

在訪問公共資源前對互斥量設置(加鎖),確保同一時間只有一個線程訪問數據,在訪問完成後再釋放(解鎖)互斥量.
互斥鎖的運行方式:串列訪問共享資源;
信號量的運行方式:並行訪問共享資源;
互斥量用pthread_mutex_t數據類型表示,在使用互斥量之前,必須使用pthread_mutex_init函數對它進行初始化,注意,使用完畢後需調用pthread_mutex_destroy.

pthread_mutex_init用於初始化互斥鎖,mutexattr用於指定互斥鎖的屬性,若為NULL,則表示默認屬性。除了用這個函數初始化互斥所外,還可以用如下方式初始化:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER。
pthread_mutex_destroy用於銷毀互斥鎖,以釋放佔用的內核資源,銷毀一個已經加鎖的互斥鎖將導致不可預期的後果。

pthread_mutex_lock以原子操作給一個互斥鎖加鎖。如果目標互斥鎖已經被加鎖,則pthread_mutex_lock則被阻塞,直到該互斥鎖佔有者把它給解鎖.
pthread_mutex_trylock和pthread_mutex_lock類似,不過它始終立即返回,而不論被操作的互斥鎖是否加鎖,是pthread_mutex_lock的非阻塞版本.當目標互斥鎖未被加鎖時,pthread_mutex_trylock進行加鎖操作;否則將返回EBUSY錯誤碼。注意:這里討論的pthread_mutex_lock和pthread_mutex_trylock是針對普通鎖而言的,對於其他類型的鎖,這兩個加鎖函數會有不同的行為.
pthread_mutex_unlock以原子操作方式給一個互斥鎖進行解鎖操作。如果此時有其他線程正在等待這個互斥鎖,則這些線程中的一個將獲得它.


三個列印機輪流列印:

輸出結果:

如果說互斥鎖是用於同步線程對共享數據的訪問的話,那麼條件變數就是用於在線程之間同步共享數據的值.條件變數提供了一種線程之間通信的機制:當某個共享數據達到某個值時,喚醒等待這個共享數據的線程.
條件變數會在條件不滿足的情況下阻塞線程.且條件變數和互斥量一起使用,允許線程以無競爭的方式等待特定的條件發生.

其中pthread_cond_broadcast函數以廣播的形式喚醒所有等待目標條件變數的線程,pthread_cond_signal函數用於喚醒一個等待目標條件變數線程.但有時候我們可能需要喚醒一個固定的線程,可以通過間接的方法實現:定義一個能夠唯一標識目標線程的全局變數,在喚醒等待條件變數的線程前先設置該變數為目標線程,然後採用廣播的方式喚醒所有等待的線程,這些線程被喚醒之後都檢查該變數以判斷是否是自己.

採用條件變數+互斥鎖實現生產者消費者模型:

運行結果:

阻塞隊列+生產者消費者

運行結果:

D. 如何看懂《Linux多線程服務端編程

一:進程和線程
每個進程有自己獨立的地址空間。「在同一個進程」還是「不在同一個進程」是系統功能劃分的重要決策點。《Erlang程序設計》[ERL]把進程比喻為人:
每個人有自己的記憶(內存),人與人通過談話(消息傳遞)來交流,談話既可以是面談(同一台伺服器),也可以在電話里談(不同的伺服器,有網路通信)。面談和電話談的區別在於,面談可以立即知道對方是否死了(crash,SIGCHLD),而電話談只能通過周期性的心跳來判斷對方是否還活著。
有了這些比喻,設計分布式系統時可以採取「角色扮演」,團隊里的幾個人各自扮演一個進程,人的角色由進程的代碼決定(管登錄的、管消息分發的、管買賣的等等)。每個人有自己的記憶,但不知道別人的記憶,要想知道別人的看法,只能通過交談(暫不考慮共享內存這種IPC)。然後就可以思考:
·容錯:萬一有人突然死了
·擴容:新人中途加進來
·負載均衡:把甲的活兒挪給乙做
·退休:甲要修復bug,先別派新任務,等他做完手上的事情就把他重啟
等等各種場景,十分便利。

線程的特點是共享地址空間,從而可以高效地共享數據。一台機器上的多個進程能高效地共享代碼段(操作系統可以映射為同樣的物理內存),但不能共享數據。如果多個進程大量共享內存,等於是把多進程程序當成多線程來寫,掩耳盜鈴。
「多線程」的價值,我認為是為了更好地發揮多核處理器(multi-cores)的效能。在單核時代,多線程沒有多大價值(個人想法:如果要完成的任務是CPU密集型的,那多線程沒有優勢,甚至因為線程切換的開銷,多線程反而更慢;如果要完成的任務既有CPU計算,又有磁碟或網路IO,則使用多線程的好處是,當某個線程因為IO而阻塞時,OS可以調度其他線程執行,雖然效率確實要比任務的順序執行效率要高,然而,這種類型的任務,可以通過單線程的」non-blocking IO+IO multiplexing」的模型(事件驅動)來提高效率,採用多線程的方式,帶來的可能僅僅是編程上的簡單而已)。Alan Cox說過:」A computer is a state machine.Threads are for people who can』t program state machines.」(計算機是一台狀態機。線程是給那些不能編寫狀態機程序的人准備的)如果只有一塊CPU、一個執行單元,那麼確實如Alan Cox所說,按狀態機的思路去寫程序是最高效的。

二:單線程伺服器的常用編程模型
據我了解,在高性能的網路程序中,使用得最為廣泛的恐怕要數」non-blocking IO + IO multiplexing」這種模型,即Reactor模式。
在」non-blocking IO + IO multiplexing」這種模型中,程序的基本結構是一個事件循環(event loop),以事件驅動(event-driven)和事件回調的方式實現業務邏輯:
[cpp] view plain
//代碼僅為示意,沒有完整考慮各種情況
while(!done)
{
int timeout_ms = max(1000, getNextTimedCallback());
int retval = poll(fds, nfds, timeout_ms);
if (retval<0){
處理錯誤,回調用戶的error handler
}else{
處理到期的timers,回調用戶的timer handler
if(retval>0){
處理IO事件,回調用戶的IO event handler
}
}
}

這里select(2)/poll(2)有伸縮性方面的不足(描述符過多時,效率較低),Linux下可替換為epoll(4),其他操作系統也有對應的高性能替代品。
Reactor模型的優點很明顯,編程不難,效率也不錯。不僅可以用於讀寫socket,連接的建立(connect(2)/accept(2)),甚至DNS解析都可以用非阻塞方式進行,以提高並發度和吞吐量(throughput),對於IO密集的應用是個不錯的選擇。lighttpd就是這樣,它內部的fdevent結構十分精妙,值得學習。
基於事件驅動的編程模型也有其本質的缺點,它要求事件回調函數必須是非阻塞的。對於涉及網路IO的請求響應式協議,它容易割裂業務邏輯,使其散布於多個回調函數之中,相對不容易理解和維護。

三:多線程伺服器的常用編程模型
大概有這么幾種:
a:每個請求創建一個線程,使用阻塞式IO操作。在Java 1.4引人NIO之前,這是Java網路編程的推薦做法。可惜伸縮性不佳(請求太多時,操作系統創建不了這許多線程)。
b:使用線程池,同樣使用阻塞式IO操作。與第1種相比,這是提高性能的措施。
c:使用non-blocking IO + IO multiplexing。即Java NIO的方式。
d:Leader/Follower等高級模式。
在默認情況下,我會使用第3種,即non-blocking IO + one loop per thread模式來編寫多線程C++網路服務程序。

1:one loop per thread
此種模型下,程序里的每個IO線程有一個event loop,用於處理讀寫和定時事件(無論周期性的還是單次的)。代碼框架跟「單線程伺服器的常用編程模型」一節中的一樣。
libev的作者說:
One loop per thread is usually a good model. Doing this is almost never wrong, some times a better-performance model exists, but it is always a good start.

這種方式的好處是:
a:線程數目基本固定,可以在程序啟動的時候設置,不會頻繁創建與銷毀。
b:可以很方便地在線程間調配負載。
c:IO事件發生的線程是固定的,同一個TCP連接不必考慮事件並發。

Event loop代表了線程的主循環,需要讓哪個線程幹活,就把timer或IO channel(如TCP連接)注冊到哪個線程的loop里即可:對實時性有要求的connection可以單獨用一個線程;數據量大的connection可以獨佔一個線程,並把數據處理任務分攤到另幾個計算線程中(用線程池);其他次要的輔助性connections可以共享一個線程。
比如,在dbproxy中,一個線程用於專門處理客戶端發來的管理命令;一個線程用於處理客戶端發來的MySQL命令,而與後端資料庫通信執行該命令時,是將該任務分配給所有事件線程處理的。

對於non-trivial(有一定規模)的服務端程序,一般會採用non-blocking IO + IO multiplexing,每個connection/acceptor都會注冊到某個event loop上,程序里有多個event loop,每個線程至多有一個event loop。
多線程程序對event loop提出了更高的要求,那就是「線程安全」。要允許一個線程往別的線程的loop里塞東西,這個loop必須得是線程安全的。
在dbproxy中,線程向其他線程分發任務,是通過管道和隊列實現的。比如主線程accept到連接後,將表示該連接的結構放入隊列,並向管道中寫入一個位元組。計算線程在自己的event loop中注冊管道的讀事件,一旦有數據可讀,就嘗試從隊列中取任務。

2:線程池
不過,對於沒有IO而光有計算任務的線程,使用event loop有點浪費。可以使用一種補充方案,即用blocking queue實現的任務隊列:
[cpp] view plain
typedef boost::functionFunctor;
BlockingQueue taskQueue; //線程安全的全局阻塞隊列

//計算線程
void workerThread()
{
while (running) //running變數是個全局標志
{
Functor task = taskQueue.take(); //this blocks
task(); //在產品代碼中需要考慮異常處理
}
}

// 創建容量(並發數)為N的線程池
int N = num_of_computing_threads;
for (int i = 0; i < N; ++i)
{
create_thread(&workerThread); //啟動線程
}

//向任務隊列中追加任務
Foo foo; //Foo有calc()成員函數
boost::function task = boost::bind(&Foo::calc,&foo);
taskQueue.post(task);

除了任務隊列,還可以用BlockingQueue實現數據的生產者消費者隊列,即T是數據類型而非函數對象,queue的消費者從中拿到數據進行處理。其實本質上是一樣的。

3:總結
總結而言,我推薦的C++多線程服務端編程模式為:one (event) loop per thread + thread pool:
event loop用作IO multiplexing,配合non-blockingIO和定時器;
thread pool用來做計算,具體可以是任務隊列或生產者消費者隊列。

以這種方式寫伺服器程序,需要一個優質的基於Reactor模式的網路庫來支撐,muo正是這樣的網路庫。比如dbproxy使用的是libevent。
程序里具體用幾個loop、線程池的大小等參數需要根據應用來設定,基本的原則是「阻抗匹配」(解釋見下),使得CPU和IO都能高效地運作。所謂阻抗匹配原則:
如果池中線程在執行任務時,密集計算所佔的時間比重為 P (0 < P <= 1),而系統一共有 C 個 CPU,為了讓這 C 個 CPU 跑滿而又不過載,線程池大小的經驗公式 T = C/P。(T 是個 hint,考慮到 P 值的估計不是很准確,T 的最佳值可以上下浮動 50%)
以後我再講這個經驗公式是怎麼來的,先驗證邊界條件的正確性。
假設 C = 8,P = 1.0,線程池的任務完全是密集計算,那麼T = 8。只要 8 個活動線程就能讓 8 個 CPU 飽和,再多也沒用,因為 CPU 資源已經耗光了。
假設 C = 8,P = 0.5,線程池的任務有一半是計算,有一半等在 IO 上,那麼T = 16。考慮操作系統能靈活合理地調度 sleeping/writing/running 線程,那麼大概 16 個「50%繁忙的線程」能讓 8 個 CPU 忙個不停。啟動更多的線程並不能提高吞吐量,反而因為增加上下文切換的開銷而降低性能。
如果 P < 0.2,這個公式就不適用了,T 可以取一個固定值,比如 5*C。

另外,公式里的 C 不一定是 CPU 總數,可以是「分配給這項任務的 CPU 數目」,比如在 8 核機器上分出 4 個核來做一項任務,那麼 C=4。

四:進程間通信只用TCP
Linux下進程間通信的方式有:匿名管道(pipe)、具名管道(FIFO)、POSIX消息隊列、共享內存、信號(signals),以及Socket。同步原語有互斥器(mutex)、條件變數(condition variable)、讀寫鎖(reader-writer lock)、文件鎖(record locking)、信號量(semaphore)等等。

進程間通信我首選Sockets(主要指TCP,我沒有用過UDP,也不考慮Unix domain協議)。其好處在於:
可以跨主機,具有伸縮性。反正都是多進程了,如果一台機器的處理能力不夠,很自然地就能用多台機器來處理。把進程分散到同一區域網的多台機器上,程序改改host:port配置就能繼續用;
TCP sockets和pipe都是操作文件描述符,用來收發位元組流,都可以read/write/fcntl/select/poll等。不同的是,TCP是雙向的,Linux的pipe是單向的,進程間雙向通信還得開兩個文件描述符,不方便;而且進程要有父子關系才能用pipe,這些都限制了pipe的使用;
TCP port由一個進程獨占,且進程退出時操作系統會自動回收文件描述符。因此即使程序意外退出,也不會給系統留下垃圾,程序重啟之後能比較容易地恢復,而不需要重啟操作系統(用跨進程的mutex就有這個風險);而且,port是獨占的,可以防止程序重復啟動,後面那個進程搶不到port,自然就沒法初始化了,避免造成意料之外的結果;
與其他IPC相比,TCP協議的一個天生的好處是「可記錄、可重現」。tcpmp和Wireshark是解決兩個進程間協議和狀態爭端的好幫手,也是性能(吞吐量、延遲)分析的利器。我們可以藉此編寫分布式程序的自動化回歸測試。也可以用tcp之類的工具進行壓力測試。TCP還能跨語言,服務端和客戶端不必使用同一種語言。

分布式系統的軟體設計和功能劃分一般應該以「進程」為單位。從宏觀上看,一個分布式系統是由運行在多台機器上的多個進程組成的,進程之間採用TCP長連接通信。
使用TCP長連接的好處有兩點:一是容易定位分布式系統中的服務之間的依賴關系。只要在機器上運行netstat -tpna|grep 就能立刻列出用到某服務的客戶端地址(Foreign Address列),然後在客戶端的機器上用netstat或lsof命令找出是哪個進程發起的連接。TCP短連接和UDP則不具備這一特性。二是通過接收和發送隊列的長度也較容易定位網路或程序故障。在正常運行的時候,netstat列印的Recv-Q和Send-Q都應該接近0,或者在0附近擺動。如果Recv-Q保持不變或持續增加,則通常意味著服務進程的處理速度變慢,可能發生了死鎖或阻塞。如果Send-Q保持不變或持續增加,有可能是對方伺服器太忙、來不及處理,也有可能是網路中間某個路由器或交換機故障造成丟包,甚至對方伺服器掉線,這些因素都可能表現為數據發送不出去。通過持續監控Recv-Q和Send-Q就能及早預警性能或可用性故障。以下是服務端線程阻塞造成Recv-Q和客戶端Send-Q激增的例子:
[cpp] view plain
$netstat -tn
Proto Recv-Q Send-Q Local Address Foreign
tcp 78393 0 10.0.0.10:2000 10.0.0.10:39748 #服務端連接
tcp 0 132608 10.0.0.10:39748 10.0.0.10:2000 #客戶端連接
tcp 0 52 10.0.0.10:22 10.0.0.4:55572

五:多線程伺服器的適用場合
如果要在一台多核機器上提供一種服務或執行一個任務,可用的模式有:
a:運行一個單線程的進程;
b:運行一個多線程的進程;
c:運行多個單線程的進程;
d:運行多個多線程的進程;

考慮這樣的場景:如果使用速率為50MB/s的數據壓縮庫,進程創建銷毀的開銷是800微秒,線程創建銷毀的開銷是50微秒。如何執行壓縮任務?
如果要偶爾壓縮1GB的文本文件,預計運行時間是20s,那麼起一個進程去做是合理的,因為進程啟動和銷毀的開銷遠遠小於實際任務的耗時。
如果要經常壓縮500kB的文本數據,預計運行時間是10ms,那麼每次都起進程 似乎有點浪費了,可以每次單獨起一個線程去做。
如果要頻繁壓縮10kB的文本數據,預計運行時間是200微秒,那麼每次起線程似 乎也很浪費,不如直接在當前線程搞定。也可以用一個線程池,每次把壓縮任務交給線程池,避免阻塞當前線程(特別要避免阻塞IO線程)。
由此可見,多線程並不是萬靈丹(silver bullet)。

1:必須使用單線程的場合
據我所知,有兩種場合必須使用單線程:
a:程序可能會fork(2);
實際編程中,應該保證只有單線程程序能進行fork(2)。多線程程序不是不能調用fork(2),而是這么做會遇到很多麻煩:
fork一般不能在多線程程序中調用,因為Linux的fork只克隆當前線程的thread of control,不可隆其他線程。fork之後,除了當前線程之外,其他線程都消失了。
這就造成一種危險的局面。其他線程可能正好處於臨界區之內,持有了某個鎖,而它突然死亡,再也沒有機會去解鎖了。此時如果子進程試圖再對同一個mutex加鎖,就會立即死鎖。因此,fork之後,子進程就相當於處於signal handler之中(因為不知道調用fork時,父進程中的線程此時正在調用什麼函數,這和信號發生時的場景一樣),你不能調用線程安全的函數(除非它是可重入的),而只能調用非同步信號安全的函數。比如,fork之後,子進程不能調用:
malloc,因為malloc在訪問全局狀態時幾乎肯定會加鎖;
任何可能分配或釋放內存的函數,比如snprintf;
任何Pthreads函數;
printf系列函數,因為其他線程可能恰好持有stdout/stderr的鎖;
除了man 7 signal中明確列出的信號安全函數之外的任何函數。

因此,多線程中調用fork,唯一安全的做法是fork之後,立即調用exec執行另一個程序,徹底隔斷子進程與父進程的聯系。

在多線程環境中調用fork,產生子進程後。子進程內部只存在一個線程,也就是父進程中調用fork的線程的副本。
使用fork創建子進程時,子進程通過繼承整個地址空間的副本,也從父進程那裡繼承了所有互斥量、讀寫鎖和條件變數的狀態。如果父進程中的某個線程佔有鎖,則子進程同樣佔有這些鎖。問題是子進程並不包含佔有鎖的線程的副本,所以子進程沒有辦法知道它佔有了哪些鎖,並且需要釋放哪些鎖。
盡管Pthread提供了pthread_atfork函數試圖繞過這樣的問題,但是這回使得代碼變得混亂。因此《Programming With Posix Threads》一書的作者說:」Avoid using fork in threaded code except where the child process will immediately exec a new program.」。

b:限製程序的CPU佔用率;
這個很容易理解,比如在一個8核的伺服器上,一個單線程程序即便發生busy-wait,占滿1個core,其CPU使用率也只有12.5%,在這種最壞的情況下,系統還是有87.5%的計算資源可供其他服務進程使用。
因此對於一些輔助性的程序,如果它必須和主要服務進程運行在同一台機器的話,那麼做成單線程的能避免過分搶奪系統的計算資源。

E. 一個Linux多進程編程

1 引言
對於沒有接觸過Unix/Linux操作系統的人來說,fork是最難理解的概念之一:它執行一次卻返回兩個值。fork函數是Unix系統最傑出的成就之一,它是七十年代UNIX早期的開發者經過長期在理論和實踐上的艱苦探索後取得的成果,一方面,它使操作系統在進程管理上付出了最小的代價,另一方面,又為程序員提供了一個簡潔明了的多進程方法。與DOS和早期的Windows不同,Unix/Linux系統是真正實現多任務操作的系統,可以說,不使用多進程編程,就不能算是真正的Linux環境下編程。
多線程程序設計的概念早在六十年代就被提出,但直到八十年代中期,Unix系統中才引入多線程機制,如今,由於自身的許多優點,多線程編程已經得到了廣泛的應用。
下面,我們將介紹在Linux下編寫多進程和多線程程序的一些初步知識。

2 多進程編程
什麼是一個進程?進程這個概念是針對系統而不是針對用戶的,對用戶來說,他面對的概念是程序。當用戶敲入命令執行一個程序的時候,對系統而言,它將啟動一個進程。但和程序不同的是,在這個進程中,系統可能需要再啟動一個或多個進程來完成獨立的多個任務。多進程編程的主要內容包括進程式控制制和進程間通信,在了解這些之前,我們先要簡單知道進程的結構。

2.1 Linux下進程的結構
Linux下一個進程在內存里有三部分的數據,就是"代碼段"、"堆棧段"和"數據段"。其實學過匯編語言的人一定知道,一般的CPU都有上述三種段寄存器,以方便操作系統的運行。這三個部分也是構成一個完整的執行序列的必要的部分。
"代碼段",顧名思義,就是存放了程序代碼的數據,假如機器中有數個進程運行相同的一個程序,那麼它們就可以使用相同的代碼段。"堆棧段"存放的就是子程序的返回地址、子程序的參數以及程序的局部變數。而數據段則存放程序的全局變數,常數以及動態數據分配的數據空間(比如用malloc之類的函數取得的空間)。這其中有許多細節問題,這里限於篇幅就不多介紹了。系統如果同時運行數個相同的程序,它們之間就不能使用同一個堆棧段和數據段。

2.2 Linux下的進程式控制制
在傳統的Unix環境下,有兩個基本的操作用於創建和修改進程:函數fork( )用來創建一個新的進程,該進程幾乎是當前進程的一個完全拷貝;函數族exec( )用來啟動另外的進程以取代當前運行的進程。Linux的進程式控制制和傳統的Unix進程式控制制基本一致,只在一些細節的地方有些區別,例如在Linux系統中調用vfork和fork完全相同,而在有些版本的Unix系統中,vfork調用有不同的功能。由於這些差別幾乎不影響我們大多數的編程,在這里我們不予考慮。
2.2.1 fork( )
fork在英文中是"分叉"的意思。為什麼取這個名字呢?因為一個進程在運行中,如果使用了fork,就產生了另一個進程,於是進程就"分叉"了,所以這個名字取得很形象。下面就看看如何具體使用fork,這段程序演示了使用fork的基本框架:

void main(){
int i;
if ( fork() == 0 ) {
/* 子進程程序 */
for ( i = 1; i <1000; i ++ ) printf("This is child process\n");
}
else {
/* 父進程程序*/
for ( i = 1; i <1000; i ++ ) printf("This is process process\n");
}
}
程序運行後,你就能看到屏幕上交替出現子進程與父進程各列印出的一千條信息了。如果程序還在運行中,你用ps命令就能看到系統中有兩個它在運行了。
那麼調用這個fork函數時發生了什麼呢?fork函數啟動一個新的進程,前面我們說過,這個進程幾乎是當前進程的一個拷貝:子進程和父進程使用相同的代碼段;子進程復制父進程的堆棧段和數據段。這樣,父進程的所有數據都可以留給子進程,但是,子進程一旦開始運行,雖然它繼承了父進程的一切數據,但實際上數據卻已經分開,相互之間不再有影響了,也就是說,它們之間不再共享任何數據了。它們再要交互信息時,只有通過進程間通信來實現,這將是我們下面的內容。既然它們如此相象,系統如何來區分它們呢?這是由函數的返回值來決定的。對於父進程,fork函數返回了子程序的進程號,而對於子程序,fork函數則返回零。在操作系統中,我們用ps函數就可以看到不同的進程號,對父進程而言,它的進程號是由比它更低層的系統調用賦予的,而對於子進程而言,它的進程號即是fork函數對父進程的返回值。在程序設計中,父進程和子進程都要調用函數fork()下面的代碼,而我們就是利用fork()函數對父子進程的不同返回值用if...else...語句來實現讓父子進程完成不同的功能,正如我們上面舉的例子一樣。我們看到,上面例子執行時兩條信息是交互無規則的列印出來的,這是父子進程獨立執行的結果,雖然我們的代碼似乎和串列的代碼沒有什麼區別。
讀者也許會問,如果一個大程序在運行中,它的數據段和堆棧都很大,一次fork就要復制一次,那麼fork的系統開銷不是很大嗎?其實UNIX自有其解決的辦法,大家知道,一般CPU都是以"頁"為單位來分配內存空間的,每一個頁都是實際物理內存的一個映像,象INTEL的CPU,其一頁在通常情況下是4086位元組大小,而無論是數據段還是堆棧段都是由許多"頁"構成的,fork函數復制這兩個段,只是"邏輯"上的,並非"物理"上的,也就是說,實際執行fork時,物理空間上兩個進程的數據段和堆棧段都還是共享著的,當有一個進程寫了某個數據時,這時兩個進程之間的數據才有了區別,系統就將有區別的"頁"從物理上也分開。系統在空間上的開銷就可以達到最小。
下面演示一個足以"搞死"Linux的小程序,其源代碼非常簡單:
void main()
{
for( ; ; ) fork();
}
這個程序什麼也不做,就是死循環地fork,其結果是程序不斷產生進程,而這些進程又不斷產生新的進程,很快,系統的進程就滿了,系統就被這么多不斷產生的進程"撐死了"。當然只要系統管理員預先給每個用戶設置可運行的最大進程數,這個惡意的程序就完成不了企圖了。
2.2.2 exec( )函數族
下面我們來看看一個進程如何來啟動另一個程序的執行。在Linux中要使用exec函數族。系統調用execve()對當前進程進行替換,替換者為一個指定的程序,其參數包括文件名(filename)、參數列表(argv)以及環境變數(envp)。exec函數族當然不止一個,但它們大致相同,在Linux中,它們分別是:execl,execlp,execle,execv,execve和execvp,下面我只以execlp為例,其它函數究竟與execlp有何區別,請通過manexec命令來了解它們的具體情況。
一個進程一旦調用exec類函數,它本身就"死亡"了,系統把代碼段替換成新的程序的代碼,廢棄原有的數據段和堆棧段,並為新程序分配新的數據段與堆棧段,唯一留下的,就是進程號,也就是說,對系統而言,還是同一個進程,不過已經是另一個程序了。(不過exec類函數中有的還允許繼承環境變數之類的信息。)
那麼如果我的程序想啟動另一程序的執行但自己仍想繼續運行的話,怎麼辦呢?那就是結合fork與exec的使用。下面一段代碼顯示如何啟動運行其它程序:

char command[256];
void main()
{
int rtn; /*子進程的返回數值*/
while(1) {
/* 從終端讀取要執行的命令 */
printf( ">" );
fgets( command, 256, stdin );
command[strlen(command)-1] = 0;
if ( fork() == 0 ) {
/* 子進程執行此命令 */
execlp( command, command );
/* 如果exec函數返回,表明沒有正常執行命令,列印錯誤信息*/
perror( command );
exit( errorno );
}
else {
/* 父進程, 等待子進程結束,並列印子進程的返回值 */
wait ( &rtn );
printf( " child process return %d\n",. rtn );
}
}
}

此程序從終端讀入命令並執行之,執行完成後,父進程繼續等待從終端讀入命令。熟悉DOS和WINDOWS系統調用的朋友一定知道DOS/WINDOWS也有exec類函數,其使用方法是類似的,但DOS/WINDOWS還有spawn類函數,因為DOS是單任務的系統,它只能將"父進程"駐留在機器內再執行"子進程",這就是spawn類的函數。WIN32已經是多任務的系統了,但還保留了spawn類函數,WIN32中實現spawn函數的方法同前述UNIX中的方法差不多,開設子進程後父進程等待子進程結束後才繼續運行。UNIX在其一開始就是多任務的系統,所以從核心角度上講不需要spawn類函數。
在這一節里,我們還要講講system()和popen()函數。system()函數先調用fork(),然後再調用exec()來執行用戶的登錄shell,通過它來查找可執行文件的命令並分析參數,最後它么使用wait()函數族之一來等待子進程的結束。函數popen()和函數system()相似,不同的是它調用pipe()函數創建一個管道,通過它來完成程序的標准輸入和標准輸出。這兩個函數是為那些不太勤快的程序員設計的,在效率和安全方面都有相當的缺陷,在可能的情況下,應該盡量避免。

2.3 Linux下的進程間通信
詳細的講述進程間通信在這里絕對是不可能的事情,而且筆者很難有信心說自己對這一部分內容的認識達到了什麼樣的地步,所以在這一節的開頭首先向大家推薦著名作者Richard Stevens的著名作品:《Advanced Programming in the UNIX Environment》,它的中文譯本《UNIX環境高級編程》已有機械工業出版社出版,原文精彩,譯文同樣地道,如果你的確對在Linux下編程有濃厚的興趣,那麼趕緊將這本書擺到你的書桌上或計算機旁邊來。說這么多實在是難抑心中的景仰之情,言歸正傳,在這一節里,我們將介紹進程間通信最最初步和最最簡單的一些知識和概念。
首先,進程間通信至少可以通過傳送打開文件來實現,不同的進程通過一個或多個文件來傳遞信息,事實上,在很多應用系統里,都使用了這種方法。但一般說來,進程間通信(IPC:InterProcess Communication)不包括這種似乎比較低級的通信方法。Unix系統中實現進程間通信的方法很多,而且不幸的是,極少方法能在所有的Unix系統中進行移植(唯一一種是半雙工的管道,這也是最原始的一種通信方式)。而Linux作為一種新興的操作系統,幾乎支持所有的Unix下常用的進程間通信方法:管道、消息隊列、共享內存、信號量、套介面等等。下面我們將逐一介紹。
2.3.1 管道
管道是進程間通信中最古老的方式,它包括無名管道和有名管道兩種,前者用於父進程和子進程間的通信,後者用於運行於同一台機器上的任意兩個進程間的通信。
無名管道由pipe()函數創建:
#include <unistd.h>
int pipe(int filedis[2]);
參數filedis返回兩個文件描述符:filedes[0]為讀而打開,filedes[1]為寫而打開。filedes[1]的輸出是filedes[0]的輸入。下面的例子示範了如何在父進程和子進程間實現通信。

#define INPUT 0
#define OUTPUT 1

void main() {
int file_descriptors[2];
/*定義子進程號 */
pid_t pid;
char buf[256];
int returned_count;
/*創建無名管道*/
pipe(file_descriptors);
/*創建子進程*/
if((pid = fork()) == -1) {
printf("Error in fork\n");
exit(1);
}
/*執行子進程*/
if(pid == 0) {
printf("in the spawned (child) process...\n");
/*子進程向父進程寫數據,關閉管道的讀端*/
close(file_descriptors[INPUT]);
write(file_descriptors[OUTPUT], "test data", strlen("test data"));
exit(0);
} else {
/*執行父進程*/
printf("in the spawning (parent) process...\n");
/*父進程從管道讀取子進程寫的數據,關閉管道的寫端*/
close(file_descriptors[OUTPUT]);
returned_count = read(file_descriptors[INPUT], buf, sizeof(buf));
printf("%d bytes of data received from spawned process: %s\n",
returned_count, buf);
}
}
在Linux系統下,有名管道可由兩種方式創建:命令行方式mknod系統調用和函數mkfifo。下面的兩種途徑都在當前目錄下生成了一個名為myfifo的有名管道:
方式一:mkfifo("myfifo","rw");
方式二:mknod myfifo p
生成了有名管道後,就可以使用一般的文件I/O函數如open、close、read、write等來對它進行操作。下面即是一個簡單的例子,假設我們已經創建了一個名為myfifo的有名管道。
/* 進程一:讀有名管道*/
#include <stdio.h>
#include <unistd.h>
void main() {
FILE * in_file;
int count = 1;
char buf[80];
in_file = fopen("mypipe", "r");
if (in_file == NULL) {
printf("Error in fdopen.\n");
exit(1);
}
while ((count = fread(buf, 1, 80, in_file)) > 0)
printf("received from pipe: %s\n", buf);
fclose(in_file);
}
/* 進程二:寫有名管道*/
#include <stdio.h>
#include <unistd.h>
void main() {
FILE * out_file;
int count = 1;
char buf[80];
out_file = fopen("mypipe", "w");
if (out_file == NULL) {
printf("Error opening pipe.");
exit(1);
}
sprintf(buf,"this is test data for the named pipe example\n");
fwrite(buf, 1, 80, out_file);
fclose(out_file);
}

2.3.2 消息隊列
消息隊列用於運行於同一台機器上的進程間通信,它和管道很相似,事實上,它是一種正逐漸被淘汰的通信方式,我們可以用流管道或者套介面的方式來取代它,所以,我們對此方式也不再解釋,也建議讀者忽略這種方式。

2.3.3 共享內存
共享內存是運行在同一台機器上的進程間通信最快的方式,因為數據不需要在不同的進程間復制。通常由一個進程創建一塊共享內存區,其餘進程對這塊內存區進行讀寫。得到共享內存有兩種方式:映射/dev/mem設備和內存映像文件。前一種方式不給系統帶來額外的開銷,但在現實中並不常用,因為它控制存取的將是實際的物理內存,在Linux系統下,這只有通過限制Linux系統存取的內存才可以做到,這當然不太實際。常用的方式是通過shmXXX函數族來實現利用共享內存進行存儲的。
首先要用的函數是shmget,它獲得一個共享存儲標識符。
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmget(key_t key, int size, int flag);
這個函數有點類似大家熟悉的malloc函數,系統按照請求分配size大小的內存用作共享內存。Linux系統內核中每個IPC結構都有的一個非負整數的標識符,這樣對一個消息隊列發送消息時只要引用標識符就可以了。這個標識符是內核由IPC結構的關鍵字得到的,這個關鍵字,就是上面第一個函數的key。數據類型key_t是在頭文件sys/types.h中定義的,它是一個長整形的數據。在我們後面的章節中,還會碰到這個關鍵字。
當共享內存創建後,其餘進程可以調用shmat()將其連接到自身的地址空間中。
void *shmat(int shmid, void *addr, int flag);
shmid為shmget函數返回的共享存儲標識符,addr和flag參數決定了以什麼方式來確定連接的地址,函數的返回值即是該進程數據段所連接的實際地址,進程可以對此進程進行讀寫操作。
使用共享存儲來實現進程間通信的注意點是對數據存取的同步,必須確保當一個進程去讀取數據時,它所想要的數據已經寫好了。通常,信號量被要來實現對共享存儲數據存取的同步,另外,可以通過使用shmctl函數設置共享存儲內存的某些標志位如SHM_LOCK、SHM_UNLOCK等來實現。

F. Linux 的多線程編程中,如何給線程發信號

不管是在進程還是線程,很多時候我們都會使用一些定時器之類的功能,這里就定時器在多線程的使用說一下。首先在linux編程中定時器函數有alarm()和setitimer(),alarm()可以提供一個基於秒的定時功能,而setitimer可以提供一個基於微妙的定時功能。

alarm()原型:
#include <unistd.h>
unsigned int alarm(unsigned int seconds);

這個函數在使用上很簡單,第一次調用這個函數的時候是設置定時器的初值,下一次調用是重新設置這個值,並會返回上一次定時的剩餘時間。

setitimer()原型:
#include <sys/time.h>
int setitimer(int which, const struct itimerval *value,struct itimerval *ovalue);

這個函數使用起來稍微有點說法,首先是第一個參數which的值,這個參數設置timer的計時策略,which有三種狀態分別是:

ITIMER_REAL:使用系統時間來計數,時間為0時發出SIGALRM信號,這種定時能夠得到一個精準的定時,當然這個定時是相對的,因為到了微秒級別我們的處理器本身就不夠精確。

ITIMER_VIRTUAL:使用進程時間也就是進程分配到的時間片的時間來計數,時間為0是發出SIGVTALRM信號,這種定時顯然不夠准確,因為系統給進程分配時間片不由我們控制。

ITIMER_PROF:上面兩種情況都能夠觸發

第二個參數參數value涉及到兩個結構體:

struct itimerval {
struct timeval it_interval; /* next value */
struct timeval it_value; /* current value */
};

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */
};

在結構體itimerval中it_value是定時器當前的值,it_interval是當it_value的為0後重新填充的值。而timeval結構體中的兩個變數就簡單了一個是秒一個是微秒。

上面是這兩個定時函數的說明,這個函數使用本不是很難,可以說是很簡單,但是碰到具體的應用的時候可能就遇到問題了,在多進程編程中使用一般不會碰到什麼問題,這里說的這些問題主要體現在多線程編程中。比如下面這個程序:

#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/time.h>

void sig_handler(int signo)
{
alarm(2);
printf("alarm signal\n");
}

void *pthread_func()
{
alarm(2);
while(1)
{
pause();
}
}

int main(int argc, char **argv)
{
pthread_t tid;
int retval;

signal(SIGALRM, sig_handler);

if((retval = pthread_create(&tid, NULL, pthread_func, NULL)) < 0)
{
perror("pthread_create");
exit(-1);
}

while(1)
{
printf("main thread\n");
sleep(10);
}
return 0;
}
這個程序的理想結果是:
main thread
alarm signal
alarm signal
alarm signal
alarm signal
alarm signal
main thread
可事實上並不是這樣的,它的結果是:
main pthread
alarm signal
main pthread
alarm signal
main pthread

G. Linux下如何實現shell多線程編程以提高應用程序的響應

Linux中多線程編程擁有提高應用程序的響應、使多cpu系統更加有效等優點,下面小編將通過Linux下shell多線程編程的例子給大家講解下多線程編程的過程,一起來了解下吧。

#!/bin/bash

#———————————————————————————–

# 此例子說明了一種用wait、read命令模擬多線程的一種技巧

# 此技巧往往用於多主機檢查,比如ssh登錄、ping等等這種單進程比較慢而不耗費cpu的情況

# 還說明了多線程的控制

#———————————————————————————–

function a_sub

{

# 此處定義一個函數,作為一個線程(子進程)

sleep 3 # 線程的作用是sleep 3s

}

tmp_fifofile=「/tmp/$.fifo」 mkfifo $tmp_fifofile # 新建一個fifo類型的文件

exec 6《》$tmp_fifofile # 將fd6指向fifo類型

rm $tmp_fifofile thread=15 # 此處定義線程數

for

((i=0;i《$thread;i++));do echo

done 》&6 # 事實上就是在fd6中放置了$thread個回車符

for

((i=0;i《50;i++));do # 50次循環,可以理解為50個主機,或其他

read -u6 # 一個read -u6命令執行一次,就從fd6中減去一個回車符,然後向下執行,

# fd6中沒有回車符的時候,就停在這了,從而實現了線程數量控制

{ # 此處子進程開始執行,被放到後台

a_sub &&

{ # 此處可以用來判斷子進程的邏輯

echo 「a_sub is finished」

}

||

{ echo 「sub error」

}

echo 》&6 # 當進程結束以後,再向fd6中加上一個回車符,即補上了read -u6減去的那個

}

& done wait # 等待所有的後檯子進程結束

exec 6》&- # 關閉df6 exit 0

說明:

此程序中的命令

mkfifo tmpfile

和linux中的命令

mknod tmpfile p

效?果相同。區別是mkfifo為POSIX標准,因此推薦使用它。該命令創建了一個先入先出的管道文件,並為其分配文件標志符6。管道文件是進程之間通信的一種方式,注意這一句很重要

exec 6《》$tmp_fifofile # 將fd6指向fifo類型

如果沒有這句,在向文件$tmp_fifofile或者&6寫入數據時,程序會被阻塞,直到有read讀出了管道文件中的數據為止。而執行了上面這一句後就可以在程序運行期間不斷向fifo類型的文件寫入數據而不會阻塞,並且數據會被保存下來以供read程序讀出。

通過運行命令:

time 。/multithread.sh 》/dev/null

最終運算時間: 50/15 = 3組(每組15)+1組(5個《15 組成一個組)= 4組,每組花費時間:3秒,

則 3 * 4 = 12 秒。

傳統非多線程的代碼 運算時間: 50 * 3 = 150 秒。

上面就是Linux下shell多線程編程的實例介紹了,使用多線程編程還能夠改善程序結構,有興趣的朋友不妨試試看吧。

H. Linux多線程編程

編譯時要用到pthread 庫:gcc -lpthread

錯誤碼位置:/usr/include/asm-generic/errno.h

gcc pthread_create.c -lpthread

思考:主子線程交替列印奇數偶數。

思考:證明線程可以自己取消自己。

思考:證明SIGKILL和SIGSTOP 是無法阻塞的。

/usr/include/bits/pthreadtypes.h中查看pthread_mutex_t

思考:用多線程將一個文件1.c拷貝3個副本,11.c,12.c,13.c

思考:多個生產者和消費者

思考:將互斥量等初始化使用pthread_once實現。

思考:設置線程的分離屬性,然後在新縣城中獲取自己的分離屬性。

I. C++在linux下怎麼多線程

#ifndefTHREAD_H_
#defineTHREAD_H_
#include<unistd.h>
#include<pthread.h>
classRunnable
{
public:
//運行實體
virtualvoidrun()=0;
};
//線程類
classThread:publicRunnable
{
private:
//線程初始化號
staticintthread_init_number;
//當前線程初始化序號
intcurrent_thread_init_number;
//線程體
Runnable*target;
//當前線程的線程ID
pthread_ttid;
//線程的狀態
intthread_status;
//線程屬性
pthread_attr_tattr;
//線程優先順序
sched_paramparam;
//獲取執行方法的指針
staticvoid*run0(void*pVoid);
//內部執行方法
void*run1();
//獲取線程序號
staticintget_next_thread_num();
public:
//線程的狀態-新建
staticconstintTHREAD_STATUS_NEW=0;
//線程的狀態-正在運行
staticconstintTHREAD_STATUS_RUNNING=1;
//線程的狀態-運行結束
staticconstintTHREAD_STATUS_EXIT=-1;
//構造函數
Thread();
//構造函數
Thread(Runnable*target);
//析構
~Thread();
//線程的運行體
voidrun();
//開始執行線程
boolstart();
//獲取線程狀態
intget_state();
//等待線程直至退出
voidjoin();
//等待線程退出或者超時
voidjoin(unsignedlongmillis_time);
//比較兩個線程時候相同,通過current_thread_init_number判斷
booloperator==(constThread*other_pthread);
//獲取this線程ID
pthread_tget_thread_id();
//獲取當前線程ID
staticpthread_tget_current_thread_id();
//當前線程是否和某個線程相等,通過tid判斷
staticboolis_equals(Thread*iTarget);
//設置線程的類型:綁定/非綁定
voidset_thread_scope(boolisSystem);
//獲取線程的類型:綁定/非綁定
boolget_thread_scope();
//設置線程的優先順序,1-99,其中99為實時,意外的為普通
voidset_thread_priority(intpriority);
//獲取線程的優先順序
intget_thread_priority();
};
intThread::thread_init_number=1;
inlineintThread::get_next_thread_num()
{
returnthread_init_number++;
}
void*Thread::run0(void*pVoid)
{
Thread*p=(Thread*)pVoid;
p->run1();
returnp;
}
void*Thread::run1()
{
thread_status=THREAD_STATUS_RUNNING;
tid=pthread_self();
run();
thread_status=THREAD_STATUS_EXIT;
tid=0;
pthread_exit(NULL);
}
voidThread::run()
{
if(target!=NULL)
{
(*target).run();
}
}
Thread::Thread()
{
tid=0;
thread_status=THREAD_STATUS_NEW;
current_thread_init_number=get_next_thread_num();
pthread_attr_init(&attr);
}
Thread::Thread(Runnable*iTarget)
{
target=iTarget;
tid=0;
thread_status=THREAD_STATUS_NEW;
current_thread_init_number=get_next_thread_num();
pthread_attr_init(&attr);
}
Thread::~Thread()
{
pthread_attr_destroy(&attr);
}
boolThread::start()
{
returnpthread_create(&tid,&attr,run0,this);
}
inlinepthread_tThread::get_current_thread_id()
{
returnpthread_self();
}
inlinepthread_tThread::get_thread_id()
{
returntid;
}
inlineintThread::get_state()
{
returnthread_status;
}
voidThread::join()
{
if(tid>0)
{
pthread_join(tid,NULL);
}
}
voidThread::join(unsignedlongmillis_time)
{
if(tid==0)
{
return;
}
if(millis_time==0)
{
join();
}
else
{
unsignedlongk=0;
while(thread_status!=THREAD_STATUS_EXIT&&k<=millis_time)
{
usleep(100);
k++;
}
}
}
boolThread::operator==(constThread*other_pthread)
{
if(other_pthread==NULL)
{
returnfalse;
}if(current_thread_init_number==(*other_pthread).current_thread_init_number)
{
returntrue;
}
returnfalse;
}
boolThread::is_equals(Thread*iTarget)
{
if(iTarget==NULL)
{
returnfalse;
}
returnpthread_self()==iTarget->tid;
}
voidThread::set_thread_scope(boolisSystem)
{
if(isSystem)
{
pthread_attr_setscope(&attr,PTHREAD_SCOPE_SYSTEM);
}
else
{
pthread_attr_setscope(&attr,PTHREAD_SCOPE_PROCESS);
}
}
voidThread::set_thread_priority(intpriority)
{
pthread_attr_getschedparam(&attr,&param);
param.__sched_priority=priority;
pthread_attr_setschedparam(&attr,&param);
}
intThread::get_thread_priority(){
pthread_attr_getschedparam(&attr,&param);
returnparam.__sched_priority;
}
#endif/*THREAD_H_*/

J. 淺談linux 多線程編程和 windows 多線程編程的異同

很早以前就想寫寫linux下多線程編程和windows下的多線程編程了,但是每當寫時又不知道從哪個地方寫起,怎樣把自己知道的東西都寫出來,下面我就談談linux多線程及線程同步,並將它和windows的多線程進行比較,看看他們之間有什麼相同點和不同的地方。
其實最開始我是搞windows下編程的,包括windows編程,windows 驅動,包括usb驅動,ndis驅動,pci驅動,1394驅動等等,同時也一條龍服務,做windows下的應用程序開發,後面慢慢的我又對linux開發產生比較深的興趣和愛好,就轉到搞linux開發了。在接下來的我還會寫一些博客,主要是寫linux編程和windows編程的區別吧,現在想寫的是linux下usb驅動和windows下usb驅動開發的區別,這些都是後話,等我將linux多線程和windows多線程講解完後,我再寫一篇usb驅動,談談windows 和linux usb驅動的東東。好了,言歸正傳。開始將多線程了。
首先我們講講為什麼要採用多線程編程,其實並不是所有的程序都必須採用多線程,有些時候採用多線程,性能還沒有單線程好。所以我們要搞清楚,什麼時候採用多線程。採用多線程的好處如下:
(1)因為多線程彼此之間採用相同的地址空間,共享大部分的數據,這樣和多進程相比,代價比較節儉,因為多進程的話,啟動新的進程必須分配給它獨立的地址空間,這樣需要數據表來維護代碼段,數據段和堆棧段等等。
(2)多線程和多進程相比,一個明顯的優點就是線程之間的通信了,對不同進程來說,它們具有獨立的數據空間,要進行數據的傳遞只能通過通信的方式進行,這種方式不僅費時,而且很不方便。但是對於多線程就不一樣了。他們之間可以直接共享數據,比如最簡單的方式就是共享全局變數。但是共享全部變數也要注意哦,呵呵,必須注意同步,不然後果你知道的。呵呵。
(3)在多cpu的情況下,不同的線程可以運行不同的cpu下,這樣就完全並行了。
反正我覺得在這種情況下,採用多線程比較理想。比如說你要做一個任務分2個步驟,你為提高工作效率,你可以多線程技術,開辟2個線程,第一個線程就做第一步的工作,第2個線程就做第2步的工作。但是你這個時候要注意同步了。因為只有第一步做完才能做第2步的工作。這時,我們可以採用同步技術進行線程之間的通信。
針對這種情況,我們首先講講多線程之間的通信,在windows平台下,多線程之間通信採用的方法主要有:
(1)共享全局變數,這種方法是最容易想到的,呵呵,那就首先講講吧,比如說吧,上面的問題,第一步要向第2步傳遞收據,我們可以之間共享全局變數,讓兩個線程之間傳遞數據,這時主要考慮的就是同步了,因為你後面的線程在對數據進行操作的時候,你第一個線程又改變了數據的內容,你不同步保護,後果很嚴重的。你也知道,這種情況就是讀臟數據了。在這種情況下,我們最容易想到的同步方法就是設置一個bool flag了,比如說在第2個線程還沒有用完數據前,第一個線程不能寫入。有時在2個線程所需的時間不相同的時候,怎樣達到最大效率的同步,就比較麻煩了。咱們可以多開幾個緩沖區進行操作。就像生產者消費者一樣了。如果是2個線程一直在跑的,由於時間不一致,緩沖區遲早會溢出的。在這種情況下就要考慮了,是不讓數據寫入還是讓數據覆蓋掉老的數據,這時候就要具體問題具體分析了。就此打住,呵呵。就是用bool變數控制同步,linux 和windows是一樣的。
既然講道了這里,就再講講其它同步的方法。同樣 針對上面的這個問題,共享全局變數同步問題。除了採用bool變數外,最容易想到的方法就是互斥量了。呵呵,也就是傳說中的加鎖了。windows下加鎖和linux下加鎖是類似的。採用互斥量進行同步,要想進入那段代碼,就先必須獲得互斥量。
linux上互斥量的函數是:
windows下互斥量的函數有:createmutex 創建一個互斥量,然後就是獲得互斥量waitforsingleobject函數,用完了就釋放互斥量ReleaseMutex(hMutex),當減到0的時候 內核會才會釋放其對象。下面是windows下與互斥的幾個函數原型。
HANDLE WINAPI CreateMutex(
__in LPSECURITY_ATTRIBUTES lpMutexAttributes,
__in BOOL bInitialOwner,
__in LPCTSTR lpName
);
可以可用來創建一個有名或無名的互斥量對象
第一參數 可以指向一個結構體SECURITY_ATTRIBUTES一般可以設為null;
第二參數 指當時的函數是不是感應感應狀態 FALSE為當前擁有者不會創建互斥
第三參數 指明是否是有名的互斥對象 如果是無名 用null就好。
DWORD WINAPI WaitForSingleObject(
__in HANDLE hHandle,
__in DWORD dwMilliseconds
);
第一個是 創建的互斥對象的句柄。第二個是 表示將在多少時間之後返回 如果設為宏INFINITE 則不會返回 直到用戶自己定義返回。
對於linux操作系統,互斥也是類似的,只是函數不同罷了。在linux下,和互斥相關的幾個函數也要閃亮登場了。
pthread_mutex_init函數:初始化一個互斥鎖;
pthread_mutex_destroy函數:注銷一個互斥鎖;
pthread_mutex_lock函數:加鎖,如果不成功,阻塞等待;
pthread_mutex_unlock函數:解鎖;
pthread_mutex_trylock函數:測試加鎖,如果不成功就立即返回,錯誤碼為EBUSY;
至於這些函數的用法,google上一搜,就出來了,呵呵,在這里不多講了。windows下還有一個可以用來保護數據的方法,也是線程同步的方式
就是臨界區了。臨界區和互斥類似。它們之間的區別是,臨界區速度快,但是它只能用來同步同一個進程內的多個線程。臨界區的獲取和釋放函數如下:
EnterCriticalSection() 進入臨界區; LeaveCriticalSection()離開臨界區。 對於多線程共享內存的東東就講到這里了。
(2)採用消息機制進行多線程通信和同步,windows下面的的消息機制的函數用的多的就是postmessage了。Linux下的消息機制,我用的較少,就不在這里說了,如果誰熟悉的,也告訴我,呵呵。
(3)windows下的另外一種線程通信方法就是事件和信號量了。同樣針對我開始舉得例子,2個線程同步,他們之間傳遞信息,可以採用事件(Event)或信號量(Semaphore),比如第一個線程完成生產的數據後,就必須告訴第2個線程,他已經把數據准備好了,你可以來取走了。第2個線程就把數據取走。呵呵,這里可以採用消息機制,當第一個線程准備好數據後,就直接postmessage給第2個線程,按理說採用postmessage一個線程就可以搞定這個問題了。呵呵,不是重點,省略不講了。
對於linux,也有類似的方法,就是條件變數了,呵呵,這里windows和linux就有不同了。要特別講講才行。
對於windows,採用事件和信號量同步時候,都會使用waitforsingleobject進行等待的,這個函數的第一個參數是一個句柄,在這里可以是Event句柄,或Semaphore句柄,第2個參數就是等待的延遲,最終等多久,單位是ms,如果這個參數為INFINITE,那麼就是無限等待了。釋放信號量的函數為ReleaseSemaphore();釋放事件的函數為SetEvent。當然使用這些東西都要初始化的。這里就不講了。Msdn一搜,神馬都出來了,呵呵。神馬都是浮雲!
對於linux操作系統,是採用條件變數來實現類似的功能的。Linux的條件變數一般都是和互斥鎖一起使用的,主要的函數有:
pthread_mutex_lock ,
pthread_mutex_unlock,
pthread_cond_init
pthread_cond_signal
pthread_cond_wait
pthread_cond_timewait
為了和windows操作系統進行對比,我用以下表格進行比較:

對照以上表格,總結如下:
(1) Pthread_cleanup_push,Pthread_cleanup_pop:
這一對函數push和pop的作用是當出現異常退出時,做一些清除操作,即當在push和pop函數之間異常退出,包括調用pthread_exit退出,都會執行push裡面的清除函數,如果有多個push,注意是是棧,先執行後面的那個函數,在執行前面的函數,但是注意當在這2個函數之間通過return 退出的話,執不執行push後的函數就看pop函數中的參數是不是為0了。還有當沒有異常退出時,等同於在這裡面return退出的情況,即:當pop函數參數不為0時,執行清除操作,當pop函數參數為0時,不執行push函數中的清除函數。
(2)linux的pthread_cond_signal和SetEvent的不同點
Pthread_cond_singal釋放信號後,當沒有Pthread_cond_wait,信號馬上復位了,這點和SetEvent不同,SetEvent是不會復位的。詳解如下:
條件變數的置位和復位有2種常用模型:第一種模型是當條件變數置位時(signaled)以後,如果當前沒有線程在等待,其狀態會保持為置位(signaled),直到有等待的線程進入被觸發,其狀態才會變為unsignaled,這種模型以採用Windows平台上的Auto-set Event 為代表。
第2種模型則是Linux平台的pthread所採用的模型,當條件變數置位(signaled)以後,即使當前沒有任何線程在等待,其狀態也會恢復為復位(unsignaled)狀態。
條件變數在Linux平台上的這種模型很難說好壞,在實際應用中,我們可以對
代碼稍加改進就可以避免這種差異的發生。由於這種差異只會發生在觸發沒有被線程等待在條件變數的時刻,因此我們只需要掌握好觸發的時機即可。最簡單的做法是增加一個計數器記錄等待線程的個數,在決定觸發條件變數前檢查該變數即可。
示例 使用 pthread_cond_wait() 和 pthread_cond_signal()
pthread_mutex_t count_lock;
pthread_cond_t count_nonzero;
unsigned count;
decrement_count()
{
pthread_mutex_lock(&count_lock);
while (count == 0)
pthread_cond_wait(&count_nonzero, &count_lock);
count = count - 1;
pthread_mutex_unlock(&count_lock);
}
increment_count()
{
pthread_mutex_lock(&count_lock);
if (count == 0)
pthread_cond_signal(&count_nonzero);
count = count + 1;
pthread_mutex_unlock(&count_lock);
}
(3) 注意Pthread_cond_wait條件返回時互斥鎖的解鎖問題
extern int pthread_cond_wait __P ((pthread_cond_t *__cond,pthread_mutex_t *__mutex));
調用這個函數時,線程解開mutex指向的鎖並被條件變數cond阻塞。線程可以被函數pthread_cond_signal和函數 pthread_cond_broadcast喚醒線程被喚醒後,它將重新檢查判斷條件是否滿足,如果還不滿足,一般說來線程應該仍阻塞在這里,被等待被下一次喚醒。如果在多線程中採用pthread_cond_wait來等待時,會首先釋放互斥鎖,當等待的信號到來時,再次獲得互斥鎖,因此在之後要注意手動解鎖。舉例如下:
#include
#include
#include
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; /*初始化互斥鎖*/
pthread_cond_t cond = PTHREAD_COND_INITIALIZER; //初始化條件變數
void *thread1(void *);
void *thread2(void *);
int i=1;
int main(void)
{
pthread_t t_a;
pthread_t t_b;
pthread_create(&t_a,NULL,thread1,(void *)NULL);/*創建進程t_a*/
pthread_create(&t_b,NULL,thread2,(void *)NULL); /*創建進程t_b*/
pthread_join(t_b, NULL);/*等待進程t_b結束*/
pthread_mutex_destroy(&mutex);
pthread_cond_destroy(&cond);
exit(0);
}
void *thread1(void *junk)
{
for(i=1;i<=9;i++)
{
printf("IN one\n");
pthread_mutex_lock(&mutex);//
if(i%3==0)
pthread_cond_signal(&cond);/*,發送信號,通知t_b進程*/
else
printf("thead1:%d\n",i);
pthread_mutex_unlock(&mutex);//*解鎖互斥量*/
printf("Up Mutex\n");
sleep(3);
}
}
void *thread2(void *junk)
{
while(i<9)
{
printf("IN two \n");
pthread_mutex_lock(&mutex);
if(i%3!=0)
pthread_cond_wait(&cond,&mutex);/*等待*/
printf("thread2:%d\n",i);
pthread_mutex_unlock(&mutex);
printf("Down Mutex\n");
sleep(3);
}
}
輸出如下:
IN one
thead1:1
Up Mutex
IN two
IN one
thead1:2
Up Mutex
IN one
thread2:3
Down Mutex
Up Mutex
IN one
thead1:4
Up Mutex
IN two
IN one
thead1:5
Up Mutex
IN one
Up Mutex
thread2:6
Down Mutex
IN two
thread2:6
Down Mutex
IN one
thead1:7
Up Mutex
IN one
thead1:8
Up Mutex
IN two
IN one
Up Mutex
thread2:9
Down Mutex
注意藍色的地方,有2個thread2:6,其實當這個程序多執行幾次,i=3和i=6時有可能多列印幾個,這里就是競爭鎖造成的了。
(4)另外要注意的Pthread_cond_timedwait等待的是絕對時間,這個和WaitForSingleObject是不同的,Pthread_cond_timedwait在網上也有討論。如下:這個問題比較經典,我把它搬過來。
thread_a :
pthread_mutex_lock(&mutex);
//do something
pthread_mutex_unlock(&mutex)
thread_b:
pthread_mutex_lock(&mutex);
//do something
pthread_cond_timedwait(&cond, &mutex, &tm);
pthread_mutex_unlock(&mutex)
有如上兩個線程thread_a, thread_b,現在如果a已經進入了臨界區,而b同時超時了,那麼b會從pthread_cond_timedwait返回嗎?如果能返回,那豈不是a,b都在臨界區?如果不能返回,那pthread_cond_timedwait的定時豈不是就不準了?
大家討論有價值的2點如下:
(1) pthread_cond_timedwait (pthread_cond_t *cv, pthread_mutex_t *external_mutex, const struct timespec *abstime) -- This function is a time-based variant of pthread_cond_wait. It waits up to abstime amount of time for cv to be notified. If abstime elapses before cv is notified, the function returns back to the caller with an ETIME result, signifying that a timeout has occurred. Even in the case of timeouts, the external_mutex will be locked when pthread_cond_timedwait returns.
(2) 2.1 pthread_cond_timedwait行為和pthread_cond_wait一樣,在返回的時候都要再次lock mutex.
2 .2pthread_cond_timedwait所謂的如果沒有等到條件變數,超時就返回,並不確切。
如果pthread_cond_timedwait超時到了,但是這個時候不能lock臨界區,pthread_cond_timedwait並不會立即返回,但是在pthread_cond_timedwait返回的時候,它仍在臨界區中,且此時返回值為ETIMEDOUT。
關於pthread_cond_timedwait超時返回的問題,我也認同觀點2。
附錄:
int pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict_attr,void*(*start_rtn)(void*),void *restrict arg);
返回值:若成功則返回0,否則返回出錯編號
返回成功時,由tidp指向的內存單元被設置為新創建線程的線程ID。attr參數用於制定各種不同的線程屬性。新創建的線程從start_rtn函數的地址開始運行,該函數只有一個無指針參數arg,如果需要向start_rtn函數傳遞的參數不止一個,那麼需要把這些參數放到一個結構中,然後把這個結構的地址作為arg的參數傳入。
linux下用C開發多線程程序,Linux系統下的多線程遵循POSIX線程介面,稱為pthread。
由 restrict 修飾的指針是最初唯一對指針所指向的對象進行存取的方法,僅當第二個指針基於第一個時,才能對對象進行存取。對對象的存取都限定於基於由 restrict 修飾的指針表達式中。 由 restrict 修飾的指針主要用於函數形參,或指向由 malloc() 分配的內存空間。restrict 數據類型不改變程序的語義。 編譯器能通過作出 restrict 修飾的指針是存取對象的唯一方法的假設,更好地優化某些類型的常式。
第一個參數為指向線程標識符的指針。
第二個參數用來設置線程屬性。
第三個參數是線程運行函數的起始地址。
第四個參數是運行函數的參數。
因為pthread不是linux系統的庫,所以在編譯時注意加上-lpthread參數,以調用靜態鏈接庫。
終止線程:
如果在進程中任何一個線程中調用exit或_exit,那麼整個進行會終止,線程正常的退出方式有:
(1) 線程從啟動常式中返回(return)
(2) 線程可以被另一個進程終止(kill);
(3) 線程自己調用pthread_exit函數
#include
pthread_exit
線程等待:
int pthread_join(pthread_t tid,void **rval_ptr)
函數pthread_join用來等待一個線程的結束。函數原型為:
extern int pthread_join __P (pthread_t __th, void **__thread_return);
第一個參數為被等待的線程標識符,第二個參數為一個用戶定義的指針,它可以用來存儲被等待線程的返回值。這個函數是一個線程阻塞的函數,調用它的函數將一直等待到被等待的線程結束為止,當函數返回時,被等待線程的資源被收回。
對於windows線程的創建東西,就不列舉了,msdn上 一搜就出來了。呵呵。今天就講到這里吧,希望是拋磚引玉,大家一起探討,呵呵。部分內容我也是參考internet的,特此對原作者表示感謝!

閱讀全文

與linux多線程開發相關的資料

熱點內容
配置路由器默認路由的命令是 瀏覽:591
加密計算器是什麼 瀏覽:120
伺服器怎麼執行sql 瀏覽:974
小孩子命令 瀏覽:708
貸款申請系統源碼 瀏覽:268
windowsxp文件夾打開後怎麼返回 瀏覽:664
怎麼把pdf變成圖片 瀏覽:797
17年程序員事件 瀏覽:496
iishttp壓縮 瀏覽:31
公司文件加密後拷走能打開嗎 瀏覽:186
headfirstjava中文 瀏覽:894
騰訊雲伺服器怎麼放在電腦桌面 瀏覽:8
批量生成圖片的app哪個好 瀏覽:496
小米10電池校準命令 瀏覽:96
移動商城系統app如何開發 瀏覽:692
用安卓手機如何發高清短視頻 瀏覽:339
怎樣運行java程序運行 瀏覽:553
海南根伺服器鏡像雲伺服器 瀏覽:536
weka聚類演算法 瀏覽:452
視頻伺服器修復是什麼意思 瀏覽:498