㈠ linux unmount使丟失數據嗎
把 SSD 轉為 GPT 模式與機械硬碟無關。 但是,將帶有系統的 MBR 磁碟轉為 GPT 磁碟,雖然是無損轉換,但系統將無法啟動。因為: 1、只有能夠啟用 UEFI BIOS 的新型主板,才能夠在 GPT 磁碟上安裝系統,且只能安裝64位系統。 2、GPT 磁碟上的系統...
㈡ oraclelinux沒有unmount命令,如何取消掛載
/bin/umount,不是unmount
㈢ Ubuntu編譯了新的內核,進入新內核時一直顯示載入Linux 5.6.7,載入初始化內存檔咋回事
概述====1)當內核配置了內存檔時, 內核在初始化時可以將軟盤載入到內存檔中作為根盤.當同時配置了初始化內存檔(Initail RAM Disk)時, 內核在初始化時可以在安裝主盤之前,通過引導程序所載入的initrd文件建立一個內存初始化盤, 首先將它安裝成根文件系統, 然後執行其根目錄下的linuxrc 文件,可用於在安裝主盤之前載入一些內核模塊. 等到linuxrc 程序退出後, 再將主盤安裝成根文件系統,並將內存初始化盤轉移安裝到其/initrd目錄下.2)當主盤就是initrd所生成的內存初始化盤時, 不再進行重新安裝,在DOS下用loadlin載入的搶救盤就是這種工作方式.3)引導程序所載入的initrd為文件系統的映象文件, 可以是gzip壓縮的, 也可以是不壓縮的.能夠識別的文件系統有minix,ext2,romfs三種.4)當內核的根盤為軟盤時,內核初始化時會測試軟盤的指定部位是否存在文件系統或壓縮文件映象, 然後將之載入或解壓到內存檔中作為根盤. 這是單張搶救軟盤的工作方式.有關代碼========; init/main.c#ifdef CONFIG_BLK_DEV_INITRDkdev_t real_root_dev; 啟動參數所設定的根盤設備#endifasmlinkage void __init start_kernel(void){ char * command_line; unsigned long mempages; extern char saved_command_line[]; lock_kernel(); printk(linux_banner); setup_arch(&command_line);arch/i386/kernel/setup.c中,初始化initrd_start和initrd_end兩個變數 ...#ifdef CONFIG_BLK_DEV_INITRD if (initrd_start && !initrd_below_start_ok && initrd_start < min_low_pfn << PAGE_SHIFT) { ; min_low_pfn為內核末端_end所開始的物理頁號,initrd_start,initrd_end在rd.c中定義 printk(KERN_CRIT "initrd overwritten (0x%08lx < 0x%08lx) - " "disabling it./n",initrd_start,min_low_pfn << PAGE_SHIFT); initrd_start = 0; }#endif ... kernel_thread(init, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); 創建init進程 unlock_kernel(); current->need_resched = 1; cpu_idle();}static int init(void * unused){ lock_kernel(); do_basic_setup(); /* * Ok, we have completed the initial bootup, and * we're essentially up and running. Get rid of the * initmem segments and start the user-mode stuff.. */ free_initmem(); unlock_kernel(); if (open("/dev/console", O_RDWR, 0) < 0) printk("Warning: unable to open an initial console./n"); (void) p(0); (void) p(0); /* * We try each of these until one succeeds. * * The Bourne shell can be used instead of init if we are * trying to recover a really broken machine. */ if (execute_command) execve(execute_command,argv_init,envp_init); execve("/sbin/init",argv_init,envp_init); execve("/etc/init",argv_init,envp_init); execve("/bin/init",argv_init,envp_init); execve("/bin/sh",argv_init,envp_init); panic("No init found. Try passing init= option to kernel.");}static void __init do_basic_setup(void){#ifdef CONFIG_BLK_DEV_INITRD int real_root_mountflags;#endif ...#ifdef CONFIG_BLK_DEV_INITRD real_root_dev = ROOT_DEV; ROOT_DEV為所請求根文件系統的塊設備 real_root_mountflags = root_mountflags; if (initrd_start && mount_initrd) root_mountflags &= ~MS_RDONLY; else mount_initrd =0; #endif start_context_thread(); do_initcalls(); 會調用partition_setup()中載入內存檔 /* .. filesystems .. */ filesystem_setup(); /* Mount the root filesystem.. */ mount_root(); mount_devfs_fs ();#ifdef CONFIG_BLK_DEV_INITRD root_mountflags = real_root_mountflags; if (mount_initrd && ROOT_DEV != real_root_dev && MAJOR(ROOT_DEV) == RAMDISK_MAJOR && MINOR(ROOT_DEV) == 0) { ; 如果當前根盤為initrd所建立的內存檔 int error; int i, pid; pid = kernel_thread(do_linuxrc, "/linuxrc", SIGCHLD); 創建新的任務去執行程序/linuxrc if (pid>0) while (pid != wait(&i)); 等待linuxrc進程退出 if (MAJOR(real_root_dev) != RAMDISK_MAJOR || MINOR(real_root_dev) != 0) { ; 如果原來的根盤不是0號內存檔,則使用原來的根文件系統, ; 並且將內存檔轉移到其/initrd目錄下 error = change_root(real_root_dev,"/initrd"); if (error) printk(KERN_ERR "Change root to /initrd: " "error %d/n",error); } }#endif}#ifdef CONFIG_BLK_DEV_INITRDstatic int do_linuxrc(void * shell){ static char *argv[] = { "linuxrc", NULL, }; close(0);close(1);close(2); setsid(); 設置新的session號 (void) open("/dev/console",O_RDWR,0); (void) p(0); (void) p(0); return execve(shell, argv, envp_init);}#endif; arch/i386/kernel/setup.c#define RAMDISK_IMAGE_START_MASK 0x07FF#define RAMDISK_PROMPT_FLAG 0x8000#define RAMDISK_LOAD_FLAG 0x4000 #define PARAM ((unsigned char *)empty_zero_page)#define RAMDISK_FLAGS (*(unsigned short *) (PARAM+0x1F8)) 可用rdev設置的參數#define LOADER_TYPE (*(unsigned char *) (PARAM+0x210))#define INITRD_START (*(unsigned long *) (PARAM+0x218)) 初始化盤映象起始物理地址#define INITRD_SIZE (*(unsigned long *) (PARAM+0x21c)) 初始化盤位元組數void __init setup_arch(char **cmdline_p){ ...#ifdef CONFIG_BLK_DEV_RAM rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 以塊為單位 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);#endif ...#ifdef CONFIG_BLK_DEV_INITRD if (LOADER_TYPE && INITRD_START) { if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { ; max_low_pfn表示內核空間1G范圍以下最大允許的物理頁號 reserve_bootmem(INITRD_START, INITRD_SIZE); initrd_start = INITRD_START ? INITRD_START + PAGE_OFFSET : 0; 轉變為內核邏輯地址 initrd_end = initrd_start+INITRD_SIZE; } else { printk("initrd extends beyond end of memory " "(0x%08lx > 0x%08lx)/ndisabling initrd/n", INITRD_START + INITRD_SIZE, max_low_pfn << PAGE_SHIFT); initrd_start = 0; } }#endif ...}; fs/partitions/check.c:int __init partition_setup(void){ device_init(); 包含ramdisk設備的初始化#ifdef CONFIG_BLK_DEV_RAM#ifdef CONFIG_BLK_DEV_INITRD if (initrd_start && mount_initrd) initrd_load(); ;如果啟動時載入了initrd文件,則用它去初始化根內存檔 else#endif rd_load(); 如果內核配置了內存檔並且根盤指定為軟盤則試圖將軟盤載入為根內存檔#endif return 0;}__initcall(partition_setup);; drivers/block/rd.c:int rd_doload; /* 1 = load RAM disk, 0 = don't load */int rd_prompt = 1; /* 1 = prompt for RAM disk, 0 = don't prompt */int rd_image_start; /* starting block # of image */#ifdef CONFIG_BLK_DEV_INITRDunsigned long initrd_start, initrd_end;int mount_initrd = 1; /* zero if initrd should not be mounted */int initrd_below_start_ok;void __init rd_load(void){ rd_load_disk(0); 載入到0號內存檔}void __init rd_load_secondary(void){ rd_load_disk(1); 載入到1號內存檔}static void __init rd_load_disk(int n){#ifdef CONFIG_BLK_DEV_INITRD extern kdev_t real_root_dev;#endif if (rd_doload == 0) return; if (MAJOR(ROOT_DEV) != FLOPPY_MAJOR 如果根盤是不軟盤#ifdef CONFIG_BLK_DEV_INITRD && MAJOR(real_root_dev) != FLOPPY_MAJOR#endif ) return; if (rd_prompt) {#ifdef CONFIG_BLK_DEV_FD floppy_eject();#endif#ifdef CONFIG_MAC_FLOPPY if(MAJOR(ROOT_DEV) == FLOPPY_MAJOR) swim3_fd_eject(MINOR(ROOT_DEV)); else if(MAJOR(real_root_dev) == FLOPPY_MAJOR) swim3_fd_eject(MINOR(real_root_dev));#endif printk(KERN_NOTICE "VFS: Insert root floppy disk to be loaded into RAM disk and press ENTER/n"); wait_for_keypress(); } rd_load_image(ROOT_DEV,rd_image_start, n); 將根軟盤載入到n號內存檔}void __init initrd_load(void){ ; 使用initrd設備盤作為源盤去建立內存根盤 rd_load_image(MKDEV(MAJOR_NR, INITRD_MINOR),rd_image_start,0);}static void __init rd_load_image(kdev_t device, int offset, int unit){ struct inode *inode, *out_inode; struct file infile, outfile; struct dentry in_dentry, out_dentry; mm_segment_t fs; kdev_t ram_device; int nblocks, i; char *buf; unsigned short rotate = 0; unsigned short devblocks = 0; char rotator[4] = { '|' , '/' , '-' , '//' }; ram_device = MKDEV(MAJOR_NR, unit); 建立輸出內存檔設備號 if ((inode = get_empty_inode()) == NULL) return; memset(&infile, 0, sizeof(infile)); memset(&in_dentry, 0, sizeof(in_dentry)); infile.f_mode = 1; /* read only */ infile.f_dentry = &in_dentry; in_dentry.d_inode = inode; infile.f_op = &def_blk_fops; init_special_inode(inode, S_IFBLK | S_IRUSR, kdev_t_to_nr(device)); if ((out_inode = get_empty_inode()) == NULL) goto free_inode; memset(&outfile, 0, sizeof(outfile)); memset(&out_dentry, 0, sizeof(out_dentry)); outfile.f_mode = 3; /* read/write */ outfile.f_dentry = &out_dentry; out_dentry.d_inode = out_inode; outfile.f_op = &def_blk_fops; init_special_inode(out_inode, S_IFBLK | S_IRUSR | S_IWUSR, kdev_t_to_nr(ram_device)); if (blkdev_open(inode, &infile) != 0) 打開輸入盤文件 goto free_inode; if (blkdev_open(out_inode, &outfile) != 0) 打開輸出內存檔文件 goto free_inodes; fs = get_fs(); set_fs(KERNEL_DS); nblocks = identify_ramdisk_image(device, &infile, offset); 鑒定輸入盤的文件類型 if (nblocks < 0) 出錯 goto done; if (nblocks == 0) { 表示輸入盤是gzip文件#ifdef BUILD_CRAMDISK if (crd_load(&infile, &outfile) == 0) 將輸入盤文件解壓到輸出盤文件中去 goto successful_load;#else printk(KERN_NOTICE "RAMDISK: Kernel does not support compressed " "RAM disk images/n");#endif goto done; } /* * NOTE NOTE: nblocks suppose that the blocksize is BLOCK_SIZE, so * rd_load_image will work only with filesystem BLOCK_SIZE wide! * So make sure to use 1k blocksize while generating ext2fs * ramdisk-images. */ if (nblocks > (rd_length[unit] >> BLOCK_SIZE_BITS)) { ; 如果輸入盤的尺寸超過了輸出內存檔的允許尺寸 printk("RAMDISK: image too big! (%d/%ld blocks)/n", nblocks, rd_length[unit] >> BLOCK_SIZE_BITS); goto done; } /* * OK, time to in the data */ buf = kmalloc(BLOCK_SIZE, GFP_KERNEL); if (buf == 0) { printk(KERN_ERR "RAMDISK: could not allocate buffer/n"); goto done; } if (blk_size[MAJOR(device)]) devblocks = blk_size[MAJOR(device)][MINOR(device)]; 取輸入盤的容量#ifdef CONFIG_BLK_DEV_INITRD if (MAJOR(device) == MAJOR_NR && MINOR(device) == INITRD_MINOR) devblocks = nblocks; 如果輸入是初始化內存檔,則盤的容量為它的實際尺寸#endif if (devblocks == 0) { printk(KERN_ERR "RAMDISK: could not determine device size/n"); goto done; } printk(KERN_NOTICE "RAMDISK: Loading %d blocks [%d disk%s] into ram disk... ", nblocks, ((nblocks-1)/devblocks)+1, nblocks>devblocks ? "s" : ""); for (i=0; i < nblocks; i++) { if (i && (i % devblocks == 0)) { printk("done disk #%d./n", i/devblocks); rotate = 0; invalidate_buffers(device); 使輸入盤設備緩沖區無效 if (infile.f_op->release) infile.f_op->release(inode, &infile); printk("Please insert disk #%d and press ENTER/n", i/devblocks+1); wait_for_keypress(); if (blkdev_open(inode, &infile) != 0) { printk("Error opening disk./n"); goto done; } infile.f_pos = 0; printk("Loading disk #%d... ", i/devblocks+1); } infile.f_op->read(&infile, buf, BLOCK_SIZE, &infile.f_pos); outfile.f_op->write(&outfile, buf, BLOCK_SIZE, &outfile.f_pos);#if !defined(CONFIG_ARCH_S390) if (!(i % 16)) { printk("%c/b", rotator[rotate & 0x3]); rotate++; }#endif } printk("done./n"); kfree(buf);successful_load: invalidate_buffers(device); ROOT_DEV = MKDEV(MAJOR_NR, unit); 將根盤設備設置為當前載入的內存檔 if (ROOT_DEVICE_NAME != NULL) strcpy (ROOT_DEVICE_NAME, "rd/0");done: if (infile.f_op->release) infile.f_op->release(inode, &infile); set_fs(fs); return;free_inodes: /* free inodes on error */ iput(out_inode); blkdev_put(inode->i_bdev, BDEV_FILE);free_inode: iput(inode);}int __init identify_ramdisk_image(kdev_t device, struct file *fp, int start_block){ const int size = 512; struct minix_super_block *minixsb; struct ext2_super_block *ext2sb; struct romfs_super_block *romfsb; int nblocks = -1; unsigned char *buf; buf = kmalloc(size, GFP_KERNEL); if (buf == 0) return -1; minixsb = (struct minix_super_block *) buf; ext2sb = (struct ext2_super_block *) buf; romfsb = (struct romfs_super_block *) buf; memset(buf, 0xe5, size); /* * Read block 0 to test for gzipped kernel */ if (fp->f_op->llseek) fp->f_op->llseek(fp, start_block * BLOCK_SIZE, 0); fp->f_pos = start_block * BLOCK_SIZE; fp->f_op->read(fp, buf, size, &fp->f_pos); ; 讀取offset開始的512位元組 /* * If it matches the gzip magic numbers, return -1 */ if (buf[0] == 037 && ((buf[1] == 0213) || (buf[1] == 0236))) { printk(KERN_NOTICE "RAMDISK: Compressed image found at block %d/n", start_block); nblocks = 0; goto done; } /* romfs is at block zero too */ if (romfsb->word0 == ROMSB_WORD0 && romfsb->word1 == ROMSB_WORD1) { printk(KERN_NOTICE "RAMDISK: romfs filesystem found at block %d/n", start_block); nblocks = (ntohl(romfsb->size)+BLOCK_SIZE-1)>>BLOCK_SIZE_BITS; goto done; } /* * Read block 1 to test for minix and ext2 superblock */ if (fp->f_op->llseek) fp->f_op->llseek(fp, (start_block+1) * BLOCK_SIZE, 0); fp->f_pos = (start_block+1) * BLOCK_SIZE; fp->f_op->read(fp, buf, size, &fp->f_pos); /* Try minix */ if (minixsb->s_magic == MINIX_SUPER_MAGIC || minixsb->s_magic == MINIX_SUPER_MAGIC2) { printk(KERN_NOTICE "RAMDISK: Minix filesystem found at block %d/n", start_block); nblocks = minixsb->s_nzones << minixsb->s_log_zone_size; goto done; } /* Try ext2 */ if (ext2sb->s_magic == cpu_to_le16(EXT2_SUPER_MAGIC)) { printk(KERN_NOTICE "RAMDISK: ext2 filesystem found at block %d/n", start_block); nblocks = le32_to_cpu(ext2sb->s_blocks_count); goto done; } printk(KERN_NOTICE "RAMDISK: Couldn't find valid RAM disk image starting at %d./n", start_block);done: if (fp->f_op->llseek) fp->f_op->llseek(fp, start_block * BLOCK_SIZE, 0); fp->f_pos = start_block * BLOCK_SIZE; kfree(buf); return nblocks;}; fs/super.cvoid __init mount_root(void){ struct file_system_type * fs_type; struct super_block * sb; struct vfsmount *vfsmnt; struct block_device *bdev = NULL; mode_t mode; int retval; void *handle; char path[64]; int path_start = -1;#ifdef CONFIG_BLK_DEV_FD if (MAJOR(ROOT_DEV) == FLOPPY_MAJOR) { 當根盤還是軟盤,表示沒有載入過內存檔#ifdef CONFIG_BLK_DEV_RAM extern int rd_doload; extern void rd_load_secondary(void);#endif floppy_eject();#ifndef CONFIG_BLK_DEV_RAM printk(KERN_NOTICE "(Warning, this kernel has no ramdisk support)/n");#else /* rd_doload is 2 for a al initrd/ramload setup */ ; 只有當載入了initrd但沒有釋放到內存檔中(mount_inird=0)才有可能到這一步 if(rd_doload==2) rd_load_secondary(); 載入另一張軟盤到1號內存檔作為根盤 else#endif { printk(KERN_NOTICE "VFS: Insert root floppy and press ENTER/n"); wait_for_keypress(); } }#endif devfs_make_root (root_device_name); handle = devfs_find_handle (NULL, ROOT_DEVICE_NAME, MAJOR (ROOT_DEV), MINOR (ROOT_DEV), DEVFS_SPECIAL_BLK, 1); if (handle) /* Sigh: bd*() functions only paper over the cracks */ { unsigned major, minor; devfs_get_maj_min (handle, &major, &minor); ROOT_DEV = MKDEV (major, minor); } /* * Probably pure paranoia, but I'm less than happy about delving into * devfs crap and checking it right now. Later. */ if (!ROOT_DEV) panic("I have no root and I want to scream"); bdev = bdget(kdev_t_to_nr(ROOT_DEV)); if (!bdev) panic(__FUNCTION__ ": unable to allocate root device"); bdev->bd_op = devfs_get_ops (handle); path_start = devfs_generate_path (handle, path + 5, sizeof (path) - 5); mode = FMODE_READ; if (!(root_mountflags & MS_RDONLY)) mode |= FMODE_WRITE; retval = blkdev_get(bdev, mode, 0, BDEV_FS); if (retval == -EROFS) { root_mountflags |= MS_RDONLY; retval = blkdev_get(bdev, FMODE_READ, 0, BDEV_FS); } if (retval) { /* * Allow the user to distinguish between failed open * and bad superblock on root device. */ printk ("VFS: Cannot open root device /"%s/" or %s/n", root_device_name, kdevname (ROOT_DEV)); printk ("Please append a correct /"root=/" boot option/n"); panic("VFS: Unable to mount root fs on %s", kdevname(ROOT_DEV)); } check_disk_change(ROOT_DEV); sb = get_super(ROOT_DEV); 取根盤的超級塊 if (sb) { fs_type = sb->s_type; goto mount_it; } read_lock(&file_systems_lock); for (fs_type = file_systems ; fs_type ; fs_type = fs_type->next) { if (!(fs_type->fs_flags & FS_REQUIRES_DEV)) continue; 根文件系統必須依賴於塊設備 if (!try_inc_mod_count(fs_type->owner)) continue; 當文件系統模塊正在刪除過程中 read_unlock(&file_systems_lock); sb = read_super(ROOT_DEV,bdev,fs_type,root_mountflags,NULL,1);建立根盤的超級塊結構 if (sb) goto mount_it; read_lock(&file_systems_lock); put_filesystem(fs_type); 釋放對文件系統模塊的引用 } read_unlock(&file_systems_lock); panic("VFS: Unable to mount root fs on %s", kdevname(ROOT_DEV));mount_it: printk ("VFS: Mounted root (%s filesystem)%s./n", fs_type->name, (sb->s_flags & MS_RDONLY) ? " readonly" : ""); if (path_start >= 0) { devfs_mk_symlink (NULL, "root", DEVFS_FL_DEFAULT, path + 5 + path_start, NULL, NULL); memcpy (path + path_start, "/dev/", 5); vfsmnt = add_vfsmnt(NULL, sb->s_root, path + path_start); } else vfsmnt = add_vfsmnt(NULL, sb->s_root, "/dev/root"); 建立根盤的安裝結構 /* FIXME: if something will try to umount us right now... */ if (vfsmnt) { set_fs_root(current->fs, vfsmnt, sb->s_root); 設置當前進程的根盤和根目錄 set_fs_pwd(current->fs, vfsmnt, sb->s_root); 設置當前進程的當前盤和當前目錄 if (bdev) bdput(bdev); /* sb holds a reference */ return; } panic("VFS: add_vfsmnt failed for root fs");}#ifdef CONFIG_BLK_DEV_INITRDint __init change_root(kdev_t new_root_dev,const char *put_old){ 以new_root_dev作為根盤重新安裝根文件系統,原來的根轉移到put_old目錄下 struct vfsmount *old_rootmnt; struct nameidata devfs_nd, nd; int error = 0; read_lock(¤t->fs->lock); old_rootmnt = mntget(current->fs->rootmnt); 取當前進程的根盤安裝結構 read_unlock(¤t->fs->lock); /* First unmount devfs if mounted */ if (path_init("/dev", LOOKUP_FOLLOW|LOOKUP_POSITIVE, &devfs_nd)) error = path_walk("/dev", &devfs_nd); if (!error) { if (devfs_nd.mnt->mnt_sb->s_magic == DEVFS_SUPER_MAGIC && devfs_nd.dentry == devfs_nd.mnt->mnt_root) { dput(devfs_nd.dentry); down(&mount_sem); /* puts devfs_nd.mnt */ do_umount(devfs_nd.mnt, 0, 0); up(&mount_sem); } else path_release(&devfs_nd); } ROOT_DEV = new_root_dev; mount_root(); 改變根盤設備重新安裝根文件系統#if 1 shrink_dcache(); 清除目錄項緩沖中所有自由的目錄項 printk("change_root: old root has d_count=%d/n", atomic_read(&old_rootmnt->mnt_root->d_count));#endif mount_devfs_fs (); /* * Get the new mount directory */ error = 0; if (path_init(put_old, LOOKUP_FOLLOW|LOOKUP_POSITIVE|LOOKUP_DIRECTORY, &nd)) error = path_walk(put_old, &nd); 在新的根盤中尋找put_old目錄 if (error) { int blivet; printk(KERN_NOTICE "Trying to unmount old root ... "); blivet = do_umount(old_rootmnt, 1, 0); 卸載原始的根盤 if (!blivet) { printk("okay/n"); return 0; } printk(KERN_ERR "error %d/n", blivet); return error; } /* FIXME: we should hold i_zombie on nd.dentry */ move_vfsmnt(old_rootmnt, nd.dentry, nd.mnt, "/dev/root.old"); mntput(old_rootmnt); path_release(&nd); return 0;}#endifstatic struct vfsmount *add_vfsmnt(struct nameidata *nd, 在虛擬文件系統中的安裝點 struct dentry *root, 安裝盤的根目錄項 const char *dev_name) 安裝盤名稱{ struct vfsmount *mnt;
————————————————
版權聲明:本文為CSDN博主「huanghaibin」的原創文章,遵循 CC 4.0 BY-SA 版權協議,轉載請附上原文出處鏈接及本聲明。
原文鏈接:https://blog.csdn.net/huanghaibin/java/article/details/478215
㈣ Linux命令diskutil的unmount和eject的區別是什麼
eject:退出可抽取式設備,這當然包括所有可熱插拔的設備如scsi硬碟。若設備已掛入,則eject會先將該設備卸除再退出。
umount:是mount的反操作,這個是系統的強制操作,因為使用umount命令可以卸載文件系統。
㈤ linux下所謂的掛載是什麼意思請給一個很詳細的回答。謝謝
掛載的含義:一般,掛載是指linux系統掛載一個iso文件到系統中,然後自動概念。這個概念值得是在開機的時候系統自動將一些工作做完。
一、自動掛載如何實現
1、查看系統開機啟動文件是哪個(不同的系統,啟動文件位置不同)
2、寫一個shell腳本,給這個腳本root許可權,然後將這個shell腳本歷經添加到步驟1中的開機文件中去,這樣系統開機就會執行你的shll腳本
3、腳本中應該做什麼事:該腳本應該找到你的iso文件位置,然後使用mount命令將該文件mount到指定目錄(掛載).
二、掛載中應該注意的問題有
1、掛載點必須是一個目錄。
2、一個分區掛載在一個已存在的目錄上,這個目錄可以不為空,但掛載後這個目錄下以前的內容將不可用。對於其他操作系統建立的文件系統的掛載也是這樣。
掛載命令
1、掛載時使用mount命令:
2、格式:mount [-參數] [設備名稱] [掛載點]
3、其中常用的參數有:
(1)-t<文件系統類型> 指定設備的文件系統類型,
(2)常見的有: minix linux最早使用的文件系統
4、ext2 linux目前常用的文件系統:
(1)msdosMS-DOS的fat,就是fat16
(2)vfat windows98常用的fat32
(3)nfs網路文件系統
資料來源:網路—掛載
㈥ linux下mount一個非空目錄,原目錄內容是如何被隱藏的,當unmount時原目錄是如何建立與內容的關聯關系的呢
被蓋上了而已。
mount 之後,系統遇到這個目錄的訪問,就自動轉換到新的文件系統上了。
㈦ linux下如何安全彈出USB介面設備
可以用umonut卸載USB。
代碼如下:
umount /mnt/usb。
linux下掛哪笑載USB的方法如下:
假設U盤掛載到/mnt/usb目錄(沒有的話,新建)中,就是mount -t msdos /dev/sdb1 /mnt/usb
如果是fat32:
㈧ Linux裡面文件掛載點是什麼
1.提一句Windows下,mount掛載,就是給磁碟分區提供一個盤符(C,D,E,...)。比如插入U盤後系統自動分配給了它I:盤符其實就是掛載,退優盤的時候進行安全彈出,其實就是卸載unmount。
2.Linux下,不像Windows可以有C,D,E,多個目錄,Linux只有一個根目錄/。在裝系統時,我們分配給linux的所有區都在/下的某個位置,比如/home等等。
3.提問者插入了新硬碟,分了新磁碟區sdb1。它現在還不屬於/。
4.我們雖然可以在一些圖形桌面系統里找到他的位置,瀏覽管理裡面的文件,但在命令行卻不知怎麼訪問它的目錄,比如無法使用cd或者ls。也無法在編程時指定一個目錄對它操作。
5.這時提問者使用了 mount /dev/sdb1 ~/Share/ ,把新硬碟的區sdb1掛載到工作目錄的~/Share/文件夾下,之後訪問這個~/Share/文件夾就相當於訪問這個硬碟2的sdb1分區了。對/Share/的任何操作,都相當於對sdb1里文件的操作。
6.所以Linux下,mount掛載的作用,就是將一個設備(通常是存儲設備)掛接到一個已存在的目錄上。訪問這個目錄就是訪問該存儲設備。
7.linux操作系統將所有的設備都看作文件,它將整個計算機的資源都整合成一個大的文件目錄。我們要訪問存儲設備中的文件,必須將文件所在的分區掛載到一個已存在的目錄上,然後通過訪問這個目錄來訪問存儲設備。掛載就是把設備放在一個目錄下,讓系統知道怎麼管理這個設備里的文件,了解這個存儲設備的可讀寫特性之類的過程。
8.我們不是有/dev/sdb1 嗎,直接對它操作不就行了?這不是它的目錄嗎?
9.這不是它的目錄。雖然/dev是個目錄,但/dev/sdb1不是目錄。可以發現ls/dev/sdb1無法執行。/dev/sdb1,是一個類似指針的東西,指向這個分區的原始數據塊。mount前,系統並不知道這個數據塊哪部分數據代表文件,如何對它們操作。
10.插入CD,系統其實自動執行了 mount /dev/cdrom /media/cdrom。所以可以直接在/media/cdrom中對CD中的內容進行管理。