導航:首頁 > 操作系統 > linux使用信號量

linux使用信號量

發布時間:2023-06-13 19:51:00

① c語言實例,linux線程同步的信號量方式 謝謝

這么高的懸賞,實例放後面。信號量(sem),如同進程一樣,線程也可以通過信號量來實現通信,雖然是輕量級的。信號量函數的名字都以"sem_"打頭。線程使用的基本信號量函數有四個。

信號量初始化。
intsem_init(sem_t*sem,intpshared,unsignedintvalue);
這是對由sem指定的信號量進行初始化,設置好它的共享選項(linux只支持為0,即表示它是當前進程的局部信號量),然後給它一個初始值VALUE。
等待信號量。給信號量減1,然後等待直到信號量的值大於0。
intsem_wait(sem_t*sem);
釋放信號量。信號量值加1。並通知其他等待線程。
intsem_post(sem_t*sem);
銷毀信號量。我們用完信號量後都它進行清理。歸還佔有的一切資源。
intsem_destroy(sem_t*sem);
#include<stdlib.h>
#include<stdio.h>
#include<unistd.h>
#include<pthread.h>
#include<semaphore.h>
#include<errno.h>
#definereturn_if_fail(p)if((p)==0){printf("[%s]:funcerror!/n",__func__);return;}
typedefstruct_PrivInfo
{
sem_ts1;
sem_ts2;
time_tend_time;
}PrivInfo;
staticvoidinfo_init(PrivInfo*thiz);
staticvoidinfo_destroy(PrivInfo*thiz);
staticvoid*pthread_func_1(PrivInfo*thiz);
staticvoid*pthread_func_2(PrivInfo*thiz);
intmain(intargc,char**argv)
{
pthread_tpt_1=0;
pthread_tpt_2=0;
intret=0;
PrivInfo*thiz=NULL;
thiz=(PrivInfo*)malloc(sizeof(PrivInfo));
if(thiz==NULL)
{
printf("[%s]:Failedtomallocpriv./n");
return-1;
}
info_init(thiz);
ret=pthread_create(&pt_1,NULL,(void*)pthread_func_1,thiz);
if(ret!=0)
{
perror("pthread_1_create:");
}
ret=pthread_create(&pt_2,NULL,(void*)pthread_func_2,thiz);
if(ret!=0)
{
perror("pthread_2_create:");
}
pthread_join(pt_1,NULL);
pthread_join(pt_2,NULL);
info_destroy(thiz);
return0;
}
staticvoidinfo_init(PrivInfo*thiz)
{
return_if_fail(thiz!=NULL);
thiz->end_time=time(NULL)+10;
sem_init(&thiz->s1,0,1);
sem_init(&thiz->s2,0,0);
return;
}
staticvoidinfo_destroy(PrivInfo*thiz)
{
return_if_fail(thiz!=NULL);
sem_destroy(&thiz->s1);
sem_destroy(&thiz->s2);
free(thiz);
thiz=NULL;
return;
}
staticvoid*pthread_func_1(PrivInfo*thiz)
{
return_if_fail(thiz!=NULL);
while(time(NULL)<thiz->end_time)
{
sem_wait(&thiz->s2);
printf("pthread1:pthread1getthelock./n");
sem_post(&thiz->s1);
printf("pthread1:pthread1unlock/n");
sleep(1);
}
return;
}
staticvoid*pthread_func_2(PrivInfo*thiz)
{
return_if_fail(thiz!=NULL);
while(time(NULL)<thiz->end_time)
{
sem_wait(&thiz->s1);
printf("pthread2:pthread2gettheunlock./n");
sem_post(&thiz->s2);
printf("pthread2:pthread2unlock./n");
sleep(1);
}
return;
}

② linux下信號量和互斥鎖的區別

信號量用在多線程多任務同步的,一個線程完成了某一個動作就通過信號量告訴別的線程,別的線程再進行某些動作(大家都在semtake的時候,就阻塞在哪裡)。
而互斥鎖是用在多線程多任務互斥的,一個線程佔用了某一個資源,那麼別的線程就無法訪問,直到這個線程unlock,其他的線程才開始可以利用這個資源。比如對全局變數的訪問,有時要加鎖,操作完了,在解鎖。
有的時候鎖和信號量會同時使用的。我記得以前做的一個項目就是既有semtake,又有lock。

③ Linux信號量

信號量是包含一個非負整數型的變數,並且帶有兩個原子操作wait和signal。Wait還可以被稱為down、P或lock,signal還可以被稱為up、V、unlock或post。在UNIX的API中(POSIX標准)用的是wait和post。

對於wait操作,如果信號量的非負整形變數S大於0,wait就將其減1,如果S等於0,wait就將調用線程阻塞;對於post操作,如果有線程在信號量上阻塞(此時S等於0),post就會解除對某個等待線程的阻塞,使其從wait中返回,如果沒有線程阻塞在信號量上,post就將S加1.

由此可見,S可以被理解為一種資源的數量,信號量即是通過控制這種資源的分配來實現互斥和同步的。如果把S設為1,那麼信號量即可使多線程並發運行。另外,信號量不僅允許使用者申請和釋放資源,而且還允許使用者創造資源,這就賦予了信號量實現同步的功能。可見信號量的功能要比互斥量豐富許多。

POSIX信號量是一個sem_t類型的變數,但POSIX有兩種信號量的實現機制: 無名信號量 命名信號量 。無名信號量只可以在共享內存的情況下,比如實現進程中各個線程之間的互斥和同步,因此無名信號量也被稱作基於內存的信號量;命名信號量通常用於不共享內存的情況下,比如進程間通信。

同時,在創建信號量時,根據信號量取值的不同,POSIX信號量還可以分為:

下面是POSIX信號量函數介面:

信號量的函數都以sem_開頭,線程中使用的基本信號函數有4個,他們都聲明在頭文件semaphore.h中,該頭文件定義了用於信號量操作的sem_t類型:

【sem_init函數】:

該函數用於創建信號量,原型如下:

該函數初始化由sem指向的信號對象,設置它的共享選項,並給它一個初始的整數值。pshared控制信號量的類型,如果其值為0,就表示信號量是當前進程的局部信號量,否則信號量就可以在多個進程間共享,value為sem的初始值。

該函數調用成功返回0,失敗返回-1。

【sem_destroy函數】:

該函數用於對用完的信號量進行清理,其原型如下:

成功返回0,失敗返回-1。

【sem_wait函數】:

該函數用於以原子操作的方式將信號量的值減1。原子操作就是,如果兩個線程企圖同時給一個信號量加1或減1,它們之間不會互相干擾。其原型如下:

sem指向的對象是sem_init調用初始化的信號量。調用成功返回0,失敗返回-1。

sem_trywait()則是sem_wait()的非阻塞版本,當條件不滿足時(信號量為0時),該函數直接返回EAGAIN錯誤而不會阻塞等待。

sem_timedwait()功能與sem_wait()類似,只是在指定的abs_timeout時間內等待,超過時間則直接返回ETIMEDOUT錯誤。

【sem_post函數】:

該函數用於以原子操作的方式將信號量的值加1,其原型如下:

與sem_wait一樣,sem指向的對象是由sem_init調用初始化的信號量。調用成功時返回0,失敗返回-1。

【sem_getvalue函數】:

該函數返回當前信號量的值,通過restrict輸出參數返回。如果當前信號量已經上鎖(即同步對象不可用),那麼返回值為0,或為負數,其絕對值就是等待該信號量解鎖的線程數。

【實例1】:

【實例2】:

之所以稱為命名信號量,是因為它有一個名字、一個用戶ID、一個組ID和許可權。這些是提供給不共享內存的那些進程使用命名信號量的介面。命名信號量的名字是一個遵守路徑名構造規則的字元串。

【sem_open函數】:

該函數用於創建或打開一個命名信號量,其原型如下:

參數name是一個標識信號量的字元串。參數oflag用來確定是創建信號量還是連接已有的信號量。

oflag的參數可以為0,O_CREAT或O_EXCL:如果為0,表示打開一個已存在的信號量;如果為O_CREAT,表示如果信號量不存在就創建一個信號量,如果存在則打開被返回,此時mode和value都需要指定;如果為O_CREAT|O_EXCL,表示如果信號量存在則返回錯誤。

mode參數用於創建信號量時指定信號量的許可權位,和open函數一樣,包括:S_IRUSR、S_IWUSR、S_IRGRP、S_IWGRP、S_IROTH、S_IWOTH。

value表示創建信號量時,信號量的初始值。

【sem_close函數】:

該函數用於關閉命名信號量:

單個程序可以用sem_close函數關閉命名信號量,但是這樣做並不能將信號量從系統中刪除,因為命名信號量在單個程序執行之外是具有持久性的。當進程調用_exit、exit、exec或從main返回時,進程打開的命名信號量同樣會被關閉。

【sem_unlink函數】:

sem_unlink函數用於在所有進程關閉了命名信號量之後,將信號量從系統中刪除:

【信號量操作函數】:

與無名信號量一樣,操作信號量的函數如下:

命名信號量是隨內核持續的。當命名信號量創建後,即使當前沒有進程打開某個信號量,它的值依然保持,直到內核重新自舉或調用sem_unlink()刪除該信號量。

無名信號量的持續性要根據信號量在內存中的位置確定:

很多時候信號量、互斥量和條件變數都可以在某種應用中使用,那這三者的差異有哪些呢?下面列出了這三者之間的差異:

④ linux多線程編程多個信號量怎麼使用

生產者消費者訪問的都是同一個共享對象,這個共享對象提供讀寫操作,然後生產者線程調用寫操作,消費者線程調用同一對象讀操作,在這個共享對象里定義一個信號量,在讀寫成員函數中保證互斥就行了。估計你用的是Win32 API 或者 Pthread API吧。。。。呵呵,那些東西太底層了。

⑤ Linux下信號量的加減操作問題

void down(struct semaphore *sem); //不可中斷
int down_interruptible(struct semaphore *sem);//可中斷
int down_killable(struct semaphore *sem);//睡眠的進程可以因為受到致命信號而被喚醒,中斷獲取信號量的操作。
int down_trylock(struct semaphore *sem);//試圖獲取信號量,若無法獲得則直接返回1而不睡眠。返回0則 表示獲取到了信號量
int down_timeout(struct semaphore *sem,long jiffies);//表示睡眠時間是有限制的,如果在jiffies指明的時間到期時仍然無法獲得信號量,則將返回錯誤碼。

⑥ linux編程時的信號量問題。 我以前用過的信號量頭文件是<semaphore.h>,而現在又發現還有個<sys/sem.h>

semaphore.h 提供的是 POSIX 標準定義的 semaphore 介面 ( sem_open, sem_wait, ...) ,這組介面使用更簡單,設計的較好。

而 sys/sem.h 里 提供的是符合 System V 標準的 semaphore介面 (semget, semop, ...),這些介面都比較老了, linux提供主要是為了兼容老代碼。

對於 linux 開發來說,新寫的代碼,都應該考慮採用 POSIX 標準的信號量。

⑦ linux信號量的問題

sem_init:初始化信號量sem_t,初始化的時候可以指定信號量的初始值,以及是否可以在多進程間共享。
sem_wait:一直阻塞等待直到信號量>0。
sem_timedwait:阻塞等待若干時間直到信號量>0。
sem_post:使信號量加1。
sem_destroy:釋放信號量。和sem_init對應。 答案補充 關於各函數的具體參數請用man查看,如man sem_init可查看該函數的幫助

⑧ Linux信號 機制和Linux信號量機制的區別

首先,一句話總結它們之間的區別:

字面上相似,但是本質上存在巨大的差別!請看詳細解答...
Linux信號(signal) 機制

signal,又簡稱為信號(軟中斷信號)用來通知進程發生了非同步事件。

原理:

一個進程收到一個信號與處理器收到一個中斷請求可以說是一樣的。信號是進程間通信機制中唯一的非同步通信機制,一個進程不必通過任何操作來等待信號的到達,事實上,進程也不知道信號到底什麼時候到達。進程之間可以互相通過系統調用kill發送軟中斷信號。內核也可以因為內部事件而給進程發送信號,通知進程發生了某個事件。信號機制除了基本通知功能外,還可以傳遞附加信息。

分類:
從兩個不同的分類角度對信號進行:
可靠性方面:可靠信號與不可靠信號;
與時間的關繫上:實時信號與非實時信號。

部分定義轉自:http://www.cnblogs.com/hoys/archive/2012/08/19/2646377.html

Linux信號量(semaphore)機制
Linux內核的信號量用來操作系統進程間同步訪問共享資源。

原理:信號量在創建時需要設置一個初始值,表示同時可以有幾個任務可以訪問該信號量保護的共享資源,初始值為1就變成互斥鎖(Mutex),即同時只能有一個任務可以訪問信號量保護的共享資源。
一個任務要想訪問共享資源,首先必須得到信號量,獲取信號量的操作將把信號量的值減1,若當前信號量的值為負數,表明無法獲得信號量,該任務必須掛起在該信號量的等待隊列等待該信號量可用;若當前信號量的值為非負數,表示可以獲得信號量,因而可以立刻訪問被該信號量保護的共享資源。
當任務訪問完被信號量保護的共享資源後,必須釋放信號量,釋放信號量通過把信號量的值加1實現,如果信號量的值為非正數,表明有任務等待當前信號量,因此它也喚醒所有等待該信號量的任務。

常用的信號量的API:

DECLARE_MUTEX(name)

該宏聲明一個信號量name並初始化它的值為0,即聲明一個互斥鎖。
DECLARE_MUTEX_LOCKED(name)

該宏聲明一個互斥鎖name,但把它的初始值設置為0,即鎖在創建時就處在已鎖狀態。因此對於這種鎖,一般是先釋放後獲得。
void sema_init (struct semaphore *sem, int val);

該函用於數初始化設置信號量的初值,它設置信號量sem的值為val。
void init_MUTEX (struct semaphore *sem);

該函數用於初始化一個互斥鎖,即它把信號量sem的值設置為1。
void init_MUTEX_LOCKED (struct semaphore *sem);

該函數也用於初始化一個互斥鎖,但它把信號量sem的值設置為0,即一開始就處在已鎖狀態。
void down(struct semaphore * sem);

該函數用於獲得信號量sem,它會導致睡眠,因此不能在中斷上下文(包括IRQ上下文和softirq上下文)使用該函數。該函數將把sem的值減1,如果信號量sem的值非負,就直接返回,否則調用者將被掛起,直到別的任務釋放該信號量才能繼續運行。
int down_interruptible(struct semaphore * sem);

該函數功能與down類似,不同之處為,down不會被信號(signal)打斷,但down_interruptible能被信號打斷,因此該函數有返回值來區分是正常返回還是被信號中斷,如果返回0,表示獲得信號量正常返回,如果被信號打斷,返回-EINTR。
int down_trylock(struct semaphore * sem);

該函數試著獲得信號量sem,如果能夠立刻獲得,它就獲得該信號量並返回0,否則,表示不能獲得信號量sem,返回值為非0值。因此,它不會導致調用者睡眠,可以在中斷上下文使用。
void up(struct semaphore * sem);

該函數釋放信號量sem,即把sem的值加1,如果sem的值為非正數,表明有任務等待該信號量,因此喚醒這些等待者。

實例:
信號量在絕大部分情況下作為互斥鎖使用,下面以console驅動系統為例說明信號量的使用。

在內核源碼樹的kernel/printk.c中,使用宏DECLARE_MUTEX聲明了一個互斥鎖console_sem,它用於保護console驅動列表console_drivers以及同步對整個console驅動系統的訪問。

閱讀全文

與linux使用信號量相關的資料

熱點內容
有免費編譯軟體嗎 瀏覽:916
java互聯網公司 瀏覽:70
對弈下象棋的app哪裡好 瀏覽:707
有什麼食譜app推薦 瀏覽:471
python實現動態口令 瀏覽:825
我的世界電腦伺服器地址怎麼添加 瀏覽:850
傳奇地圖怎麼加密到pak 瀏覽:977
linux刪除mysql用戶 瀏覽:755
圖案設計pdf 瀏覽:584
pdf編輯器在線 瀏覽:471
華為雲雲耀伺服器如何關機 瀏覽:994
數字加密的歷史 瀏覽:613
宏傑文件夾打不開 瀏覽:819
施工日記app哪個好 瀏覽:566
什麼是壓縮機的排氣量 瀏覽:538
在哪個app可以預約一科考試 瀏覽:634
易語言vmp加殼源碼 瀏覽:513
閱讀前端框架源碼 瀏覽:14
我的世界命令方塊傳送指令 瀏覽:545
不能用start命令打開xp 瀏覽:927