導航:首頁 > 操作系統 > 單片機pid演算法

單片機pid演算法

發布時間:2023-06-14 09:47:09

Ⅰ 8位單片機PID控制PWM的演算法如何實現,C語言計算

PID控制在8位單片機中仍然有廣泛的應用,比如溫度控制,利用比例、積分、微分補償來做恆溫補償控制,當然由於有這些數學處理,用C語言相對方便一些,以下是一個具體的實例。

#include<reg51.h>

#include<intrins.h>

#include<math.h>

#include<string.h>

struct PID {

unsigned int SetPoint; // 設定目標 Desired Value

unsigned int Proportion; // 比例常數 Proportional Const

unsigned int Integral; // 積分常數 Integral Const

unsigned int Derivative; // 微分常數 Derivative Const

unsigned int LastError; // Error[-1]

unsigned int PrevError; // Error[-2]

unsigned int SumError; // Sums of Errors

};

struct PID spid; // PID Control Structure

unsigned int rout; // PID Response (Output)

unsigned int rin; // PID Feedback (Input)

sbit data1=P1^0;

sbit clk=P1^1;

sbit plus=P2^0;

sbit subs=P2^1;

sbit stop=P2^2;

sbit output=P3^4;

sbit DQ=P3^3;

unsigned char flag,flag_1=0;

unsigned char high_time,low_time,count=0;//占空比調節參數

unsigned char set_temper=35;

unsigned char temper;

unsigned char i;

unsigned char j=0;

unsigned int s;

/***********************************************************

延時子程序,延時時間以12M晶振為准,延時時間為30us×time

***********************************************************/

void delay(unsigned char time)

{

unsigned char m,n;

for(n=0;n<time;n++)

for(m=0;m<2;m++){}

}

/***********************************************************

寫一位數據子程序

***********************************************************/

void write_bit(unsigned char bitval)

{

EA=0;

DQ=0; /*拉低DQ以開始一個寫時序*/

if(bitval==1)

{

_nop_();

DQ=1; /*如要寫1,則將匯流排置高*/

}

delay(5); /*延時90us供DA18B20采樣*/

DQ=1; /*釋放DQ匯流排*/

_nop_();

_nop_();

EA=1;

}

/***********************************************************

寫一位元組數據子程序

***********************************************************/

void write_byte(unsigned char val)

{

unsigned char i;

unsigned char temp;

EA=0;

TR0=0;

for(i=0;i<8;i++) /*寫一位元組數據,一次寫一位*/

{

temp=val>>i; /*移位操作,將本次要寫的位移到最低位*/

temp=temp&1;

write_bit(temp); /*向匯流排寫該位*/

}

delay(7); /*延時120us後*/

// TR0=1;

EA=1;

}

/***********************************************************

讀一位數據子程序

***********************************************************/

unsigned char read_bit()

{

unsigned char i,value_bit;

EA=0;

DQ=0; /*拉低DQ,開始讀時序*/

_nop_();

_nop_();

DQ=1; /*釋放匯流排*/

for(i=0;i<2;i++){}

value_bit=DQ;

EA=1;

return(value_bit);

}

/***********************************************************

讀一位元組數據子程序

***********************************************************/

unsigned char read_byte()

{

unsigned char i,value=0;

EA=0;

for(i=0;i<8;i++)

{

if(read_bit()) /*讀一位元組數據,一個時序中讀一次,並作移位處理*/

value|=0x01<<i;

delay(4); /*延時80us以完成此次都時序,之後再讀下一數據*/

}

EA=1;

return(value);

}

/***********************************************************

復位子程序

***********************************************************/

unsigned char reset()

{

unsigned char presence;

EA=0;

DQ=0; /*拉低DQ匯流排開始復位*/

delay(30); /*保持低電平480us*/

DQ=1; /*釋放匯流排*/

delay(3);

presence=DQ; /*獲取應答信號*/

delay(28); /*延時以完成整個時序*/

EA=1;

return(presence); /*返回應答信號,有晶元應答返回0,無晶元則返回1*/

}

/***********************************************************

獲取溫度子程序

***********************************************************/

void get_temper()

{

unsigned char i,j;

do

{

i=reset(); /*復位*/

} while(i!=0); /*1為無反饋信號*/

i=0xcc; /*發送設備定位命令*/

write_byte(i);

i=0x44; /*發送開始轉換命令*/

write_byte(i);

delay(180); /*延時*/

do

{

i=reset(); /*復位*/

} while(i!=0);

i=0xcc; /*設備定位*/

write_byte(i);

i=0xbe; /*讀出緩沖區內容*/

write_byte(i);

j=read_byte();

i=read_byte();

i=(i<<4)&0x7f;

s=(unsigned int)(j&0x0f); //得到小數部分

s=(s*100)/16;

j=j>>4;

temper=i|j; /*獲取的溫度放在temper中*/

}

/*====================================================================================================

Initialize PID Structure

=====================================================================================================*/

void PIDInit (struct PID *pp)

{

memset ( pp,0,sizeof(struct PID)); //全部初始化為0

}

/*====================================================================================================

PID計算部分

=====================================================================================================*/

unsigned int PIDCalc( struct PID *pp, unsigned int NextPoint )

{

unsigned int dError,Error;

Error = pp->SetPoint - NextPoint; // 偏差

pp->SumError += Error; // 積分

dError = pp->LastError - pp->PrevError; // 當前微分

pp->PrevError = pp->LastError;

pp->LastError = Error;

return (pp->Proportion * Error // 比例項

+ pp->Integral * pp->SumError // 積分項

+ pp->Derivative * dError); // 微分項

}

/***********************************************************

溫度比較處理子程序

***********************************************************/

void compare_temper()

{

unsigned char i;

if(set_temper>temper) //是否設置的溫度大於實際溫度

{

if(set_temper-temper>1) //設置的溫度比實際的溫度是否是大於1度

{

high_time=100; //如果是,則全速加熱

low_time=0;

}

else //如果是在1度范圍內,則運行PID計算

{

for(i=0;i<10;i++)

{

get_temper(); //獲取溫度

rin = s; // Read Input

rout = PIDCalc ( &spid,rin ); // Perform PID Interation

}

if (high_time<=100)

high_time=(unsigned char)(rout/800);

else

high_time=100;

low_time= (100-high_time);

}

}

else if(set_temper<=temper)

{

if(temper-set_temper>0)

{

high_time=0;

low_time=100;

}

else

{

for(i=0;i<10;i++)

{

get_temper();

rin = s; // Read Input

rout = PIDCalc ( &spid,rin ); // Perform PID Interation

}

if (high_time<100)

high_time=(unsigned char)(rout/10000);

else

high_time=0;

low_time= (100-high_time);

}

}

// else

// {}

}

/*****************************************************

T0中斷服務子程序,用於控制電平的翻轉 ,40us*100=4ms周期

******************************************************/

void serve_T0() interrupt 1 using 1

{

if(++count<=(high_time))

output=1;

else if(count<=100)

{

output=0;

}

else

count=0;

TH0=0x2f;

TL0=0xe0;

}

/*****************************************************

串列口中斷服務程序,用於上位機通訊

******************************************************/

void serve_sio() interrupt 4 using 2

{

/* EA=0;

RI=0;

i=SBUF;

if(i==2)

{

while(RI==0){}

RI=0;

set_temper=SBUF;

SBUF=0x02;

while(TI==0){}

TI=0;

}

else if(i==3)

{

TI=0;

SBUF=temper;

while(TI==0){}

TI=0;

}

EA=1; */

}

void disp_1(unsigned char disp_num1[6])

{

unsigned char n,a,m;

for(n=0;n<6;n++)

{

// k=disp_num1[n];

for(a=0;a<8;a++)

{

clk=0;

m=(disp_num1[n]&1);

disp_num1[n]=disp_num1[n]>>1;

if(m==1)

data1=1;

else

data1=0;

_nop_();

clk=1;

_nop_();

}

}

}

/*****************************************************

顯示子程序

功能:將占空比溫度轉化為單個字元,顯示占空比和測得到的溫度

******************************************************/

void display()

{

unsigned char code number[]={0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xe0,0xfe,0xf6};

unsigned char disp_num[6];

unsigned int k,k1;


k=high_time;

k=k%1000;

k1=k/100;

if(k1==0)

disp_num[0]=0;

else

disp_num[0]=0x60;

k=k%100;

disp_num[1]=number[k/10];

disp_num[2]=number[k%10];

k=temper;

k=k%100;

disp_num[3]=number[k/10];

disp_num[4]=number[k%10]+1;

disp_num[5]=number[s/10];

disp_1(disp_num);

}

/***********************************************************

主程序

***********************************************************/

void main()

{

unsigned char z;

unsigned char a,b,flag_2=1,count1=0;

unsigned char phil[]={2,0xce,0x6e,0x60,0x1c,2};

TMOD=0x21;

TH0=0x2f;

TL0=0x40;

SCON=0x50;

PCON=0x00;

TH1=0xfd;

TL1=0xfd;

PS=1;

EA=1;

EX1=0;

ET0=1;

ES=1;

TR0=1;

TR1=1;

high_time=50;

low_time=50;

PIDInit ( &spid ); // Initialize Structure

spid.Proportion = 10; // Set PID Coefficients 比例常數 Proportional Const

spid.Integral = 8; //積分常數 Integral Const

spid.Derivative =6; //微分常數 Derivative Const

spid.SetPoint = 100; // Set PID Setpoint 設定目標 Desired Value

while(1)

{

if(plus==0)

{

EA=0;

for(a=0;a<5;a++)

for(b=0;b<102;b++){}

if(plus==0)

{

set_temper++;

flag=0;

}

}

else if(subs==0)

{

for(a=0;a<5;a++)

for(b=0;a<102;b++){}

if(subs==0)

{

set_temper--;

flag=0;

}

}

else if(stop==0)

{

for(a=0;a<5;a++)

for(b=0;b<102;b++){}

if(stop==0)

{

flag=0;

break;

}

EA=1;

}

get_temper();

b=temper;

if(flag_2==1)

a=b;

if((abs(a-b))>5)

temper=a;

else

temper=b;

a=temper;

flag_2=0;

if(++count1>30)

{

display();

count1=0;

}

compare_temper();

}

TR0=0;

z=1;

while(1)

{

EA=0;

if(stop==0)

{

for(a=0;a<5;a++)

for(b=0;b<102;b++){}

if(stop==0)

disp_1(phil);

// break;

}

EA=1;

}

}

Ⅱ 單片機C語言PID自整定演算法

就是一般的排序演算法,與查找演算法一樣,這個的都不會嗎floata[3],max=0;for(i=0;i<=2;i++){printf("Pleaseenterthemark:");scanf("%f",&a[i]);if(maxintsort(intnum[5]);voidmain(){intnumm[5],i,a;for(i=0;i<5;i++)scanf("%d",&numm[i]);sort(numm);//調用排序for(i=0;i<5;i++)printf("%d",numm[i]);}intsort(intnum[5]){intm,n,t;for(m=0;m<4;m++)for(n=m+1;n<5;n++)//冒泡排序{if(num[m]

Ⅲ 什麼是大林演算法,單片機如何進行PID控制,謝謝

一個叫大林的外國人創造的PID演算法叫大林演算法。
P,誤差
I ,誤差求和
D,誤差相減

U = Kp×P +Ki× I + Kd×D
U為輸出量
Kp
Ki
Kd
是常數,根據實際情況調節。

Ⅳ 單片機pid演算法控制步進電機的電路圖和程序

//P1.1(T0):Count They Distance
//P0.4:Tx
//P0.5:Rx
#include <C8051F310.h> //SFR declarations
#include <stdio.h> //Standard I/O definition file
#include <math.h> //Math library file
#include <Intrins.h>
#include <absacc.h>

unsigned int j,i;
char a=0;
unsigned int t=0;

//sbit led=P0^2;
//P0.0(PWM0):給定左輪速度.
sbit vls=P0^4; //P0.4(GPIO):給定左輪方向.
sbit vlf=P0^6; //P0.6(T0) :反饋左輪速度.
sbit dlf=P1^0; //P1.0(GPIO):反饋左輪方向.

//P0.2(PWM0):給定右輪速度.
sbit vrs=P0^5; //P0.5(GPIO):給定右輪方向.
sbit vrf=P0^7; //P0.7(T0) :反饋右輪速度.
sbit drf=P1^1; //P1.1(GPIO):反饋右輪方向.

int ol; //左輪給定值
int len;
int len_1,len_2;
int lyn_1,lyn_2;
int vl1,vl2; //反饋左輪速度值(取樣周期內的方波數)
int lfz; //運算後賦給PWM的值

int lyn,lynn;
int lun=0,lun_1=0; //偏差校正值 即校正PWM輸出
int lunp,luni,lund; //PID 校正值

int or; //右輪給定值
int ren;
int ren_1,ren_2;
int ryn_1,ryn_2;
int vr1,vr2; //反饋右輪速度值(取樣周期內的方波數)
int rfz; //運算後賦給PWM的值

int ryn,rynn;
int run=0,run_1=0; //偏差校正值 即校正PWM輸出
int runp,runi,rund; //PID 校正值

float kp=2.0; //比例系數1.8
float kd=0.2; //微分系數0.4
float lki; //積分系數

void pio_init(void);
void sys_init(void);
void t01_init(void);
void TIME3_INT(void);
void PID(void);
void interrupt_init(void);
void delay(unsigned int x);
void pwm1_1(void);

void main(void)
{
PCA0MD &= ~0x40; //關閉
pio_init(); //P11為測距輸入端
sys_init();
t01_init();
pwm1_1();
TIME3_INT();
interrupt_init();

vls=1;vrs=0;
while(1)
{

ol=50;
or=50;
delay(1000);

ol=100;
or=100;
delay(1000);

ol=-50;
or=50;
delay(1000);

}

}

void PID(void)
{
/****************左輪PID調節******************/
if(dlf==1)
{
lyn=(vl2*256+vl1); //dlf是左輪反饋方向,0表示向前 vl=TL0
}
else
{
lyn=-(vl2*256+vl1); //dlf=1表示是向後退,速度應該為負值
}

len=ol-lyn; //誤差=給定速度-反饋速度(取樣周期內的方波數)

if(abs(len)<8)//30
{
lki=1.4; //ki值的確定1.4
}
else
{
lki=0.05; //積分系數:如果 | 給定值-反饋值 | 太大
} //則就可以不引入積分,或者引入的很小0.05

lunp=kp*(len-len_1); //比例校正
luni=lki*len; //積分校正
lund=kd*(len-2*len_1+len_2); //微分校正

lun=lunp+luni+lund+lun_1; //總校正

/*************新舊數據更新*************************/
len_2=len_1;
len_1=len; //len:當前取樣周期內出現的速度偏差;len_1:上次取樣周期內出現的速度偏差
lun_1=lun; //lun:當前取樣周期內得出的PWM校正值;lun_1:上次取樣周期內得出的PWM校正值
/*************新舊數據更新*************************/

if(lun>255)
{
lun=255; //正速度
}
if(lun<-255)
{
lun=-255; //負速度
}
if(lun<0)

{
vls=1;
PCA0CPH0=-lun;
}

if(lun>=0)
{
vls=0;
PCA0CPH0=lun;
}

/****************右輪PID調節******************/
if(drf==0)
{
ryn=(vr2*256+vr1); //drf是右輪反饋方向,0表示向前 vl=TL0
}
else
{
ryn=-(vr2*256+vr1); //dlf=1表示是向後退,速度應該為負值
}

ren=or-ryn; //誤差=給定速度-反饋速度(取樣周期內的方波數)

if(abs(ren)<8)//30
{
lki=1.4; //ki值的確定1.4
}
else
{
lki=0.05; //積分系數:如果 | 給定值-反饋值 | 太大
} //則就可以不引入積分,或者引入的很小0.05

runp=kp*(ren-ren_1); //比例校正
runi=lki*ren; //積分校正
rund=kd*(ren-2*ren_1+ren_2); //微分校正

run=runp+runi+rund+run_1; //總校正

/*************新舊數據更新*************************/
ren_2=ren_1;
ren_1=ren; //len:當前取樣周期內出現的速度偏差;len_1:上次取樣周期內出現的速度偏差
run_1=run; //lun:當前取樣周期內得出的PWM校正值;lun_1:上次取樣周期內得出的PWM校正值
/*************新舊數據更新*************************/

if(run>255)
{
run=255; //正速度
}
if(run<-255)
{
run=-255; //負速度
}
if(run<0)

{
vrs=1;
PCA0CPH1=-run;
}

if(run>=0)
{
vrs=0;
PCA0CPH1=run;
}
//因為這里的PCA0CPH0越大,對應的電機速度越小,所以要255來減一下
}

void pio_init(void)
{
XBR0=0x00; //0000 0001
XBR1=0x72; //0111 0010 時能弱上拉 T0T1連接到腳口P06、P07 CEX0、CEX1連接到腳口P00、P01

P0MDIN=0xff; //模擬(0);數字(1) 1111 0011
P0MDOUT=0xc3;//開漏(0);推挽(1) 1111 1111
P0SKIP=0x3c; //0011 1100

P1MDIN=0xff; //1111 1111
P1MDOUT=0xfc;//
P1SKIP=0x00; //1111 1111

}

void sys_init(void) //12MHz
{
OSCICL=0x43;
OSCICN=0xc2;
CLKSEL=0x00;

}

void pwm1_1(void) //PWM的初始化
{
PCA0MD=0x08; //PCA時鍾為12分頻

PCA0CPL0=200; //左輪
PCA0CPM0=0x42; //設置左輪為8位PWM輸出
PCA0CPH0=200;

PCA0CPL1=200; //平衡校正
PCA0CPM1=0x42; //設置為8位PWM輸出
PCA0CPH1=200;

PCA0CN=0x40; //允許PCA工作
}

void t01_init(void)
{
TCON=0x50; //計數器1、2允許
TMOD=0x55; //定時器1、2採用16位計數功能
CKCON=0x00;

TH1=0x00; //用於採集左輪的速度
TL1=0x00;

TH0=0x00; //用於採集右輪的速度
TL0=0x00;
}

void TIME3_INT(void)
{
TMR3CN = 0x00; //定時器3為16位自動重載
CKCON &= ~0x40;

TMR3RLL = 0xff;
TMR3RLH = 0xd7;
TMR3L = 0xff;
TMR3H = 0xd7;

TMR3CN |= 0x04;
}

void T3_ISR() interrupt 14 //定時器3中斷服務程序
{
//led=~led;
EA=0;
TCON &=~0x50; //關閉計數器0、1

vl1=TL0; //取左輪速度值
vl2=TH0;

vr1=TL1; //取右輪速度值
vr2=TH1;

TH1=0x00;
TL1=0x00;

TH0=0x00;
TL0=0x00;

PID(); //PID處理

TMR3CN &=~0x80; //清中斷標志位
TCON |=0x50; //重新開計數器0、1
EA=1;
}
void interrupt_init(void)
{ IE=0x80;
IP=0x00;
EIE1|=0x80;
EIP1|=0x80;

}

void delay(unsigned int m) //延時程序
{
for(i=0;i<2000;i++)
{
for(j=0;j<m;j++){_nop_(); _nop_();}
}
}

Ⅳ 如何用PID演算法編程,使單片機通過控制繼電器來實現恆溫功能。

/***********************************************************************
PID溫度控製程序
程序說明:
系統上電後顯示 「--溫度」
表示需要先設定溫度才開始進行溫度檢測
溫度設定完畢後程序才開始進行PID溫控
***********************************************************************/
#include <reg52.h>
#include <absacc.h>
#include"DS18B20.H"
#include"PID.H"
#define uchar unsigned char
#define uint unsigned int
unsigned char code tab[]=
{
0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xBF
}
;
/*個位0~9的數碼管段碼*/
unsigned char code sao[]=
{
0x7f,0xbf,0xdf,0xef
}
;
//掃描碼
uchar set=30,keyflag=1 ; //set初始化為30° keyflag為進入溫度設定的標志位
//4個按鍵使用說明
sbit key_out=P1^0 ; //用於溫度設定後的退出
sbit key_up=P1^1 ; //設定溫度加
sbit key_down=P1^2 ; //設定溫度減
sbit key_in=P1^3 ; //在程序的運行中如需要重新設定溫度 按下此鍵才能進入設置模式並且此時是停在溫度控制的,按下key_out鍵後才表示設定完畢
void Show_key();
/***********************************************************/
void delays(unsigned char k)
{
unsigned char i,j ;
for(i=0;i<k;i++)
for(j=0;j<50;j++);
}
/*********************************************************
//數碼管顯示函數
P0口 作為數據口
P2口的低四位作為掃描口
變數 x表示掃描
d表示是否要加小數點 為1是 為0不加
y表示傳遞的數值
*********************************************************/
LCD_disp_char(uchar x,bit d,uchar y)
{
P2=0XFF ;
P0=0xFF ;
if(d==0)
P0=tab[y];
else
P0=tab[y]&0x7f ; //與上0x7f表示是否要加小數點
P2=sao[x]; //打開掃描端號

}
/*********************************************************
按鍵掃描
*********************************************************/
void keyscan(void)
{
if(key_in==0) //按鍵進入函數
{
delays(10); //延時消抖 (以下同)
if(key_in==0)
{
while(key_in==0)
{
Show_key(); //如果一直按著鍵不放 就一直顯示在當前狀態 (以下同)
}
keyflag=1 ; //按鍵標志位
}
}
/***********************/
if(key_out==0) //按鍵退出
{
delays(10);
if(key_out==0)
{
while(key_out==0)
{
Show_key();
}
keyflag=0 ;
set_temper=set ;
}
}
/*************************/
if(key_up==0) //設定溫度的加
{
delays(10);
if(key_up==0)
{
while(key_up==0)
{
Show_key();
}
if(keyflag==1)
{
set++;
if(set>90) //如果大於90°就不在加
set=90 ;
}
}
}
/*************************/
if(key_down==0) //溫度設定的減
{
delays(10);
if(key_down==0)
{
while(key_down==0)
{
Show_key();
}
if(keyflag==1)
{
set--;
if(set<30) //溫度減到30°時不在往下減
set=30 ;
}
}
}
}
/*********************************************************************
按鍵按下時的顯示函數
***********************************************************************/
void Show_key()
{
output=1 ;
LCD_disp_char(3,0,10); //顯示 -
delays(3);
LCD_disp_char(2,0,10); //顯示- (表示溫度設定 )
delays(3);
LCD_disp_char(1,0,set/10); //顯示溫度十位
delays(3);
LCD_disp_char(0,0,set%10); //顯示溫度個位
delays(3);
}
/*****************************************************************/
void main()
{
unsigned int tmp ;//聲明溫度中間變數
unsigned char counter=0 ;
PIDBEGIN(); //PID參數的初始化
output=1 ; //關閉繼電器輸出
while(1)
{
keyscan();
if(keyflag)
{
Show_key(); //顯示溫度設定
}
else
{
if(counter--==0)
{
tmp=ReadTemperature();//每隔一段時間讀取溫度值
counter=20 ;
}
LCD_disp_char(3,0,tmp/1000); //顯示溫度十位
delays(3);
LCD_disp_char(2,1,tmp/100%10); //顯示溫度個位
//顯示小數點
delays(3);
LCD_disp_char(1,0,tmp/10%10); //顯示溫度小數後一位
delays(3);
LCD_disp_char(0,0,tmp%10);//顯示溫度小數後二位
delays(3);
P2=0XFF ;
P0=0xff ;
compare_temper(); //比較溫度

}
}
}
/**********************************************************************************************************************************************/
//PID演算法溫控C語言2008-08-17 18:58
#ifndef _PID_H__
#define _PID_H__
#include<intrins.h>
#include<math.h>
#include<string.h>
struct PID
{
unsigned int SetPoint ;
// 設定目標 Desired Value
unsigned int Proportion ;
// 比例常數 Proportional Const
unsigned int Integral ;
// 積分常數 Integral Const
unsigned int Derivative ;
// 微分常數 Derivative Const
unsigned int LastError ;
// Error[-1]
unsigned int PrevError ;
// Error[-2]
unsigned int SumError ;
// Sums of Errors
}
;
struct PID spid ;
// PID Control Structure
unsigned int rout ;
// PID Response (Output)
unsigned int rin ;
// PID Feedback (Input)

sbit output=P1^4;
unsigned char high_time,low_time,count=0 ;
//占空比調節參數
unsigned char set_temper ;
void PIDInit(struct PID*pp)
{
memset(pp,0,sizeof(struct PID)); //PID參數初始化全部設置為0
}
unsigned int PIDCalc(struct PID*pp,unsigned int NextPoint)
{
unsigned int dError,Error ;
Error=pp->SetPoint-NextPoint ;
// 偏差
pp->SumError+=Error ;
// 積分
dError=pp->LastError-pp->PrevError ;
// 當前微分
pp->PrevError=pp->LastError ;
pp->LastError=Error ;
//比例
//積分項
return(pp->Proportion*Error+pp->Integral*pp->SumError+pp->Derivative*dError);
// 微分項
}
/***********************************************************
溫度比較處理子程序
***********************************************************/
void compare_temper()
{
unsigned char i ;
//EA=0;
if(set_temper>temper)
{
if(set_temper-temper>1)
{
high_time=100 ; //大於1°不進行PID運算
low_time=0 ;
}
else
{ //在1°范圍內進行PID運算
for(i=0;i<10;i++)
{
//get_temper();
rin=s;
// Read Input
rout=PIDCalc(&spid,rin); //執行PID運算
// Perform PID Interation
}
if(high_time<=100) //限制最大值
high_time=(unsigned char)(rout/800);
else
high_time=100;
low_time=(100-high_time);
}
}
/****************************************/
else if(set_temper<=temper) //當實際溫度大於設置溫度時
{
if(temper-set_temper>0)//如果實際溫度大於設定溫度
{
high_time=0 ;
low_time=100 ;
}
else
{
for(i=0;i<10;i++)
{
//get_temper();
rin=s ;
// Read Input
rout=PIDCalc(&spid,rin);
// Perform PID Interation
}
if(high_time<100) //此變數是無符號字元型
high_time=(unsigned char)(rout/10000);
else
high_time=0 ;//限制不輸出負值
low_time=(100-high_time);
//EA=1;
}
}
}

/*****************************************************
T0中斷服務子程序,用於控制電平的翻轉 ,40us*100=4ms周期
******************************************************/
void serve_T0()interrupt 1 using 1
{
if(++count<=(high_time))
output=0 ;
else if(count<=100)
{
output=1 ;
}
else
count=0 ;
TH0=0x2f ;
TL0=0xe0 ;
}
void PIDBEGIN()
{

TMOD=0x01 ;
TH0=0x2f ;
TL0=0x40 ;

EA=1 ;
ET0=1 ;
TR0=1 ;

high_time=50 ;
low_time=50 ;
PIDInit(&spid);
// Initialize Structure
spid.Proportion=10 ;
// Set PID Coefficients
spid.Integral=8 ;
spid.Derivative=6 ;
spid.SetPoint=100 ;
// Set PID Setpoint

}
#endif

轉自他人程序。

Ⅵ 單片機PID控制問題

首先弄清楚PID是一種控制演算法!!!
1,「如果用單片機恆溫可以使溫度到達預定值就停止加熱,低了就加熱,用一個溫度感測器反饋,這樣算是一個自動控制嗎」你這是控制系統,但是效果會非常差,尤其是對於溫度控制這種大慣性系統,達到預定值就停止加熱,但是由於慣性,溫度肯定會繼續上升,電爐燒水的時候,水開了,斷電之後水還要沸騰一定時間的(沸騰是很消耗能量的,由此可見如果是加熱的話溫度上升更嚴重,你也可以自己用溫度計試試看);「低了就加熱」是同樣的道理。如果系統對控制精度有要求,你這樣做肯定達不到要求。PID是一種控制演算法,相對於其他控制演算法來說算是最簡單的了。PID能夠做到在溫度快要達到設定值的時候降低加熱功率,讓溫度上升速度變慢,最終穩定在設定值。如果用你的直接控制,溫度會在設定值上下振盪,永遠不會停在設定值。
2,一般的控制系統都需要加反饋,以構成閉環控制系統,相對的還有開環控制系統。開環控制系統,舉個例子,就是你加熱的時候事先計算好大約需要多少熱量,然後考慮一下環境影響,計算出加熱時間,然後控制加熱系統按照你這個時間加熱。你覺得這樣的系統能夠穩定工作嗎?環境稍稍有變動就掛了!開環控制系統的特點就是很容易受到環境的影響;閉環控制系統就穩定很多,你用1L水可用,2L水也行,500W電能用,1000W電爐也能用,這就是閉環的優點。
因此,大多數的控制系統都是閉環的,開環很少單獨使用,即使用到了也是有閉環的。開環其實也是有優點的,開環在控制系統裡面叫做前饋(跟反饋對應的),比如你的系統裡面電源電壓上升了,加熱速度肯定會變快,如果你對電源電壓采樣,將采樣的結果輸入到閉環裡面,對閉環做一個輕微的修正,控制的精度會更好,這就是開環的優勢,它是超前的,能夠預知結果(根據地源電壓提高就能知道需要降低輸出功率了)。
說完這些,你應該明白了,反饋是必需的(前饋也可以要,但是不是必需的),PID不能被取代(除非你用其它更復雜的控制演算法)。

Ⅶ 用單片機做PID演算法控制問題

1.可以直接套用PID公式,無論增量還是絕對的。PID演算法是根據誤差來控制的演算法,不依賴系統的模型,故不用算系統的傳遞函數。有的書提到傳遞函數,一般是用於理論建模模擬,從而直接用Matlab一類的模擬軟體進行PID參數調試。得到的參數可以為實際應用提供一定參考價值。

2.PID參數整定有一套原則。首先要了解各個參數的作用。具體的整定方法,隨便找本自控原理的書都會提到,我不太記得了,大致是有一個倍數關系。但實際操作,一般不會是用這個數,是需要根據系統的反應,改變各個參數來試的。盡信書不如無書啊~
另外,不同系統的參數肯定不一樣。就算同一個系統,稍微有一些改變,可能最好的那組參數就會變化。因此衍生了很多先進PID演算法,如神經PID、專家PID、模糊PID等等。

Ⅷ pic單片機pid控制演算法參數整定

我這有51的

#include <stdlib.h>

#include "global_varible.h"

/****************************************************************************
* 模塊名: PID
* 描述: PID調節子程序
* 採用PID-PD演算法。在偏差絕對值大於△e時,用PD演算法,以改善動態品質。
* 當偏差絕對值小於△e時,用PID演算法,提高穩定精度。
* PIDout=kp*e(t)+ki*[e(t)+e(t-1)+...+e(1)]+kd*[e(t)-e(t-1)]
*============================================================================
* 入口: 無
* 出口: 無
* 改變: PID_T_Run=加熱時間控制
*****************************************************************************/
void PID_Math(void)
{
signed long ee1; //偏差一階
//signed long ee2; //偏差二階
signed long d_out; //積分輸出

if(!Flag_PID_T_OK)
return;
Flag_PID_T_OK=0;

Temp_Set=3700; //溫度控制設定值37.00度

PID_e0 = Temp_Set-Temp_Now; //本次偏差
ee1 = PID_e0-PID_e1; //計算一階偏差
//ee2 = PID_e0-2*PID_e1+PID_e2; //計算二階偏差
if(ee1 > 500) //一階偏差的限制范圍
ee1 = 500;
if(ee1 < -500)
ee1 = -500;
PID_e_SUM += PID_e0; //偏差之和
if(PID_e_SUM > 200) //積分最多累計的溫差
PID_e_SUM = 200;
if(PID_e_SUM < -200)
PID_e_SUM = -200;

PID_Out = PID_kp*PID_e0+PID_kd*ee1; //計算PID比例和微分輸出
if(abs(PID_e0) < 200) //如果溫度相差小於1.5度則計入PID積分輸出
{
if(abs(PID_e0) > 100) //如果溫度相差大於1度時積分累計限制
{
if(PID_e_SUM > 100)
PID_e_SUM = 100;
if(PID_e_SUM < -100)
PID_e_SUM = -100;
}
d_out = PID_ki*PID_e_SUM; //積分輸出
if(PID_e0 < -5) //當前溫度高於設定溫度0.5度時積分累計限制
{
if(PID_e_SUM > 150)
PID_e_SUM = 150;

if(PID_e_SUM > 0) //當前溫度高於設定溫度0.5度時削弱積分正輸出
d_out >>= 1;
}
PID_Out += d_out; //PID比例,積分和微分輸出
}
else
PID_e_SUM=0;

PID_Out/=100; //恢復被PID_Out系數放大的倍數
if(PID_Out > 200)
PID_Out=200;
if(PID_Out<0)
PID_Out=0;

if(PID_e0 > 300) //當前溫度比設定溫度低3度則全速加熱
PID_Out=200;
if(PID_e0 < -20) //當前溫度高於設定溫度0.2度則關閉加熱
PID_Out=0;

Hot_T_Run=PID_Out; //加熱時間控制輸出

PID_e2 = PID_e1; //保存上次偏差
PID_e1 = PID_e0; //保存當前偏差
}
////////////////////////////////////////////////////////////void PID_Math() end.

Ⅸ 完整可用的51單片機PID運算公式

沒意義。PID是有很強的針對性的,我以前看到的幾個網上的PID程序都還是可以用的。但是需要你自己定的,可不只是PID三個數。采樣周期是多少?PID計算後打算用多少位的數據,都是要自己定的,等等。
而所謂溫度控制的程序,直接套用的(參數不套用,自己調),沒有幾個能好用的,要麼計算量太大,要麼調節不夠好。
還是看看公式自己寫的好。就算我寫了一個在我手上好用的,給你,你那也未必好用,因為還要根據實際去修改一些輸出、輸入量,或加以限制,不同的系統,這些都是不同的。就像是汽車底盤都是4個輪子,你要的是越野車,我給你個轎車的底盤,上面再怎麼改也不好用阿!

閱讀全文

與單片機pid演算法相關的資料

熱點內容
rar壓縮包mac 瀏覽:618
php混淆加密工具 瀏覽:579
java把數字拆分 瀏覽:464
如何下載svn伺服器舊版本 瀏覽:559
命令與征服4攻略 瀏覽:914
實數四則運演算法則概念 瀏覽:294
cs16優化命令 瀏覽:871
Minecraft雲伺服器免費 瀏覽:828
png壓縮最小 瀏覽:182
老韓綜app怎麼看不了了 瀏覽:227
只有一個程序員的體驗 瀏覽:321
用伺服器地址怎麼有網 瀏覽:550
路由器伺服器昵稱是什麼 瀏覽:715
程序員男友消失了 瀏覽:401
程序員搜索框自動提示 瀏覽:28
android44api20 瀏覽:677
adb刷recovery命令 瀏覽:697
廣聯達正版加密鎖可以補辦嗎 瀏覽:945
java程序員一天多少行代碼 瀏覽:948
喪屍危機java 瀏覽:128