『壹』 linux內核中斷之中斷申請介面
本文基於 RockPI 4A 單板Linux4.4內核介紹中斷申請的常用介面函數。
1、文件
2、定義
說明:
1)、 irq :要申請的中斷號,可通過 platform_get_irq() 獲取,見「Linux內核中斷之獲取中斷號」。
2)、 handler :中斷處理函數,發生中斷時,先處理中斷處理函數,然後返回 IRQ_WAKE_THREAD 喚醒中斷處理線程。中斷處理函數盡可能簡單。
中斷處理函數定義: typedef irqreturn_t (*irq_handler_t)(int, void *);
中斷返回值如下:
3)、 thread_fn :中斷處理線程,該參數可為NULL。類似於中斷處理函數的下半部分。
4)、 irqflags :中斷類型標志。
定義文件: include/linux/interrupt.h ,內容如下:
5)、 devname :中斷名稱,可使用 cat /proc/interrupts 命令查看。
6)、 dev_id :設備ID,該值唯一。
在使用共享中斷時(即設置 IRQF_SHARED ),必須傳入 dev_id ,在中斷處理和釋放函數中都會使用該參數。
註:
1、 request_threaded_irq() 函數可替代 request_irq 加 tasklet 或 workqueue 的方式。
2、對應的中斷釋放函數為: void free_irq(unsigned int, void *) ,需要和中斷申請函數成對出現。
1、文件
2、定義
說明:
1)、 __must_check :指調用函數一定要處理函數的返回值,否則編譯器會給出警告。
2)、 request_irq() 函數本質上是中斷處理線程 thread_fn 為空的 request_threaded_irq() 函數。
注 :
對應的中斷釋放函數為: void free_irq(unsigned int, void *) ,需要和中斷申請函數成對出現。
1、文件
2、定義
說明 :
devm_request_threaded_irq() 本質上還是使用 request_threaded_irq() 函數實現中斷申請。
兩者區別:
1)多了一個 dev 參數;
2)在設備驅動卸載時,中斷會自動釋放;
3)如果想單獨釋放中斷,可使用 void devm_free_irq(struct device *dev, unsigned int irq, void *dev_id) 函數。
1、文件
2、定義
devm_request_irq() 函數本質上是中斷處理線程 thread_fn 為空的 devm_request_threaded_irq() 函數。
1、獲取中斷號
2、申請中斷
3、中斷處理函數
4、中斷處理線程
5、查看中斷
『貳』 初學linux觸摸屏驅動,請求IRQ_ADC和IRQ_TC中斷總是返回EBUSY,請問怎麼解決啊
是該中斷線被佔用了,可能是其他設備佔用的,把那個地方找到,把中斷線釋放掉就行了
『叄』 Linux下如何強制中斷一個程序的執行(利用按鍵,而不是kill命令)
Linux下強制中斷一個程序的執行使用鍵盤按鍵可以有多種方法。
1、CTRL+C鍵,這相當於發送Terminal信息到當前的程序。比如下圖,在通過find命令查找名稱帶3b76的文件,可以直接按ctrl+c鍵結束掉循環。
『肆』 《Linux設備驅動程序》(十六)-中斷處理
設備與處理器之間的工作通常來說是非同步,設備數據要傳遞給處理器通常來說有以下幾種方法:輪詢、等待和中斷。
讓CPU進行輪詢等待總是不能讓人滿意,所以通常都採用中斷的形式,讓設備來通知CPU讀取數據。
2.6內核的函數參數與現在的參數有所區別,這里都主要介紹概念,具體實現方法需要結合具體的內核版本。
request_irq函數申請中斷,返回0表示申請成功,其他返回值表示申請失敗,其具體參數解釋如下:
flags 掩碼可以使用以下幾個:
快速和慢速處理常式 :現代內核中基本沒有這兩個概念了,使用SA_INTERRUPT位後,當中斷被執行時,當前處理器的其他中斷都將被禁止。通常不要使用SA_INTERRUPT標志位,除非自己明確知道會發生什麼。
共享中斷 :使用共享中斷時,一方面要使用SA_SHIRQ位,另一個是request_irq中的dev_id必須是唯一的,不能為NULL。這個限制的原因是:內核為每個中斷維護了一個共享處理常式的列表,常式中的dev_id各不相同,就像設備簽名。如果dev_id相同,在卸載的時候引起混淆(卸載了另一個中斷),當中斷到達時會產生內核OOP消息。
共享中斷需要滿足以下一個條件才能申請成功:
當不需要使用該中斷時,需要使用free_irq釋放中斷。
通常我們會在模塊載入的時候申請安裝中斷處理常式,但書中建議:在設備第一次打開的時候安裝,在設備最後一次關閉的時候卸載。
如果要查看中斷觸發的次數,可以查看 /proc/interrupts 和 /proc/stat。
書中講述了如何自動檢測中斷號,在嵌入式開發中通常都是查看原理圖和datasheet來直接確定。
自動檢測的原理如下:驅動程序通知設備產生中斷,然後查看哪些中斷信號線被觸發了。Linux提供了以下方法來進行探測:
探測工作耗時較長,建議在模塊載入的時候做。
中斷處理函數和普通函數其實差不多,唯一的區別是其運行的中斷上下文中,在這個上下文中有以下注意事項:
中斷處理函數典型用法如下:
中斷處理函數的參數和返回值含義如下:
返回值主要有兩個:IRQ_NONE和IRQ_HANDLED。
對於中斷我們是可以進行開啟和關閉的,Linux中提供了以下函數操作單個中斷的開關:
該方法可以在所有處理器上禁止或啟用中斷。
需要注意的是:
如果要關閉當前處理器上所有的中斷,則可以調用以下方法:
local_irq_save 會將中斷狀態保持到flags中,然後禁用處理器上的中斷;如果明確知道中斷沒有在其他地方被禁用,則可以使用local_irq_disable,否則請使用local_irq_save。
locat_irq_restore 會根據上面獲取到flags來恢復中斷;local_irq_enable 會無條件打開所有中斷。
在中斷中需要做一些工作,如果工作內容太多,必然導致中斷處理所需的時間過長;而中斷處理又要求能夠盡快完成,這樣才不會影響正常的系統調度,這兩個之間就產生了矛盾。
現在很多操作系統將中斷分為兩個部分來處理上面的矛盾:頂半部和底半部。
頂半部就是我們用request_irq來注冊的中斷處理函數,這個函數要求能夠盡快結束,同時在其中調度底半部,讓底半部在之後來進行後續的耗時工作。
頂半部就不再說明了,就是上面的中斷處理函數,只是要求能夠盡快處理完成並返回,不要處理耗時工作。
底半部通常使用tasklet或者工作隊列來實現。
tasklet的特點和注意事項:
工作隊列的特點和注意事項:
『伍』 Linux內核中斷之獲取中斷號
Linux內核中可使用 platform_get_irq() 函數獲取 dts 文件中設置的中斷號。
函數原型: int platform_get_irq(struct platform_device *dev, unsigned int num)
定義文件: driversaseplatform.c
中斷號獲取函數 platform_get_irq() 調用流程如下:
rk3399 使用的是 GICv3 ,對應 irq_domain->name 。
文件: drivers/irqchip/irq-gic-v3.c 。
translate() 函數實現如下:
以 RockPI 4A 單板 Debian 系統Linux 4.4內核中的獲取 HDMI 中斷號為例。
1、查找中斷號
從手冊「Rockchip RK3399 TRM V1.3 Part1.pdf」中,可以查到 HDMI_IRQ 中斷號,即55。
2、 dts 配置
文件: arch/arm64/boot/dts/rockchip/rk3399.dtsi
hdmi 使用的是 GIC_SPI 中斷,按照 gic_irq_domain_translate() 函數中處理,需要將中斷號55減去32,得到 dts 中的中斷號23。
註: interrupts = <中斷類型 中斷號 中斷觸發類型 中斷分區(對應哪個CPU cluster,PPI類型中斷特有)>
3、驅動函數
文件: driversgpudrm ockchipdw_hdmi-rockchip.c
此時, irq 返回值為55。
後續會介紹 GIC 和中斷注冊等實現函數。
『陸』 Linux如何及時響應外部中斷
FPGA每隔100us給運行linux的ARM一個中斷,要求在20us內響應中斷,並讀走2000*16bit的數據。
目前主要的問題是,當系統同時發生多個中斷時,會嚴重影響linux對FPGA中斷的響應時間。如何解決?
1、首先想到了ARM的FIQ,它可以打斷IRQ中斷服務程序,保證對外部FIQ的及時響應。但是發現linux只實現了IRQ,沒有顯示FIQ。
linux是從devicetree讀取中斷號,加入中斷向量表的。
interrupts = <0x0 0x32 0x0>;中的第一個欄位0表示非共享中斷,非零表示共享中斷,SDK產生的dts統一為0,此時第二欄位的值比XPS中的小32;如果第一欄位非零,則第二欄位比XPS小16.
最後欄位表示中斷的觸發方式。
IRQ_TYPE_EDGE_RISING =0x00000001,
IRQ_TYPE_EDGE_FALLING =0x00000002,
IRQ_TYPE_LEVEL_HIGH =0x00000004,
IRQ_TYPE_LEVEL_LOW =0x00000008,
很明顯,devicetree根本沒有提供通知linux有FIQ的渠道。
2、再來看linux的IRQ
linux的中斷分為上半部和下半部,上半部運行在IRQ模式,會屏蔽所有中斷,下半部運行在SVC模式,會重新打開中斷。
也就是說,當一個中斷的上半部正在運行時(不能再次響應中斷),FPGA的中斷是不能被linux響應的;
反過來,當FPGA中斷的上半部正在運行時(不能再次響應中斷),其他的中斷也不能被linux響應;
unsigned long flags;
...
local_irq_save(flags);
....
local_irq_restore(flags);
3.
ARM有七種模式,我們這里只討論SVC、IRQ和FIQ模式。
我們可以假設ARM核心有兩根中斷引腳(實際上是看不見的),一根叫 irq pin, 一根叫fiq pin.
在ARM的cpsr中,有一個I位和一個F位,分別用來禁止IRQ和FIQ的。
先不說中斷控制器,只說ARM核心。正常情況下,ARM核都只是機械地隨著pc的指示去做事情,當CPSR中的I和F位為1的時候,IRQ和FIQ全部處於禁止狀態。無論你在irq
pin和fiq pin上面發什麼樣的中斷信號,ARM是不會理你的,你根本不能打斷他,因為他耳聾了,眼也瞎了。
在I位和F位為0的時候,當irq
pin上有中斷信號過來的時候,就會打斷arm的當前工作,並且切換到IRQ模式下,並且跳到相應的異常向量表(vector)位置去執行代碼。這個過程是自動的,但是返回到被中斷打斷的地方就得您親自動手了。當你跳到異常向量表,處於IRQ的模式的時候,這個時候如果irq
pin上面又來中斷信號了,這個時候ARM不會理你的,irq
pin就跟秘書一樣,ARM核心就像老闆,老闆本來在做事,結果來了一個客戶,秘書打斷它,讓客戶進去了。而這個時候再來一個客戶,要麼秘書不斷去敲門問,要麼客戶走人。老闆第一個客戶沒有會見完,是不會理你的。
但是有一種情況例外,當ARM處在IRQ模式,這個時候fiq pin來了一個中斷信號,fiq
pin是什麼?是快速中斷呀,比如是公安局的來查刑事案件,那才不管你老闆是不是在會見客戶,直接打斷,進入到fiq模式下,並且跳到相應的fiq的異常向量表處去執行代碼。那如果當ARM處理FIQ模式,fiq
pin又來中斷信號,又就是又一批公安來了,那沒戲,都是執法人員,你打不斷我。那如果這個時候irq
pin來了呢?來了也不理呀,正在辦案,還敢來妨礙公務。
所以得出一個結論: IRQ模式只能被FIQ模式打斷,FIQ模式下誰也打不斷。
在打不斷的情況下,irq pin 或 fiq pin隨便你怎麼發中斷信號,都是白發。
所以除了fiq能打斷irq以外,根本沒有所謂中斷嵌套的情況。
Linux不用FIQ,只用到了IRQ。但是我們有時候一個中斷需要處理很長時間,那我們就需要佔用IRQ模式那麼長的時間嗎?沒有,linux在IRQ模式下只是簡單的記錄是什麼中斷,馬上就切換回了SVC模式,換句話說,Linux的中斷處理都是在SVC模式下處理的。
只不過SVC模式下的ISR上半部關閉了當前中斷線,下半部才重新打開