mutex相關的函數並不是linux kernel實現的,而是glibc實現的,源碼位於nptl目錄下。
http://ftp.gnu.org/pub/gnu/glibc/glibc-2.3.5.tar.gz
首先說數據結構:
typedef union
{
struct
{
int __lock;
unsigned int __count;
int __owner;
unsigned int __nusers;
/* KIND must stay at this position in the structure to maintain
binary compatibility. */
int __kind;
int __spins;
} __data;
char __size[__SIZEOF_PTHREAD_MUTEX_T];
long int __align;
} pthread_mutex_t;
int __lock; 資源競爭引用計數
int __kind; 鎖類型,init 函數中mutexattr 參數傳遞,該參數可以為NULL,一般為 PTHREAD_MUTEX_NORMAL
結構體其他元素暫時不了解,以後更新。
/*nptl/pthread_mutex_init.c*/
int
__pthread_mutex_init (mutex, mutexattr)
pthread_mutex_t *mutex;
const pthread_mutexattr_t *mutexattr;
{
const struct pthread_mutexattr *imutexattr;
assert (sizeof (pthread_mutex_t) <= __SIZEOF_PTHREAD_MUTEX_T);
imutexattr = (const struct pthread_mutexattr *) mutexattr ?: &default_attr;
/* Clear the whole variable. */
memset (mutex, '\0', __SIZEOF_PTHREAD_MUTEX_T);
/* Copy the values from the attribute. */
mutex->__data.__kind = imutexattr->mutexkind & ~0x80000000;
/* Default values: mutex not used yet. */
// mutex->__count = 0; already done by memset
// mutex->__owner = 0; already done by memset
// mutex->__nusers = 0; already done by memset
// mutex->__spins = 0; already done by memset
return 0;
}
init函數就比較簡單了,將mutex結構體清零,設置結構體中__kind屬性。
/*nptl/pthread_mutex_lock.c*/
int
__pthread_mutex_lock (mutex)
pthread_mutex_t *mutex;
{
assert (sizeof (mutex->__size) >= sizeof (mutex->__data));
pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
switch (__builtin_expect (mutex->__data.__kind, PTHREAD_MUTEX_TIMED_NP))
{
…
default:
/* Correct code cannot set any other type. */
case PTHREAD_MUTEX_TIMED_NP:
simple:
/* Normal mutex. */
LLL_MUTEX_LOCK (mutex->__data.__lock);
break;
…
}
/* Record the ownership. */
assert (mutex->__data.__owner == 0);
mutex->__data.__owner = id;
#ifndef NO_INCR
++mutex->__data.__nusers;
#endif
return 0;
}
該函數主要是調用LLL_MUTEX_LOCK, 省略部分為根據mutex結構體__kind屬性不同值做些處理。
宏定義函數LLL_MUTEX_LOCK最終調用,將結構體mutex的__lock屬性作為參數傳遞進來
#define __lll_mutex_lock(futex) \
((void) ({ \
int *__futex = (futex); \
if (atomic_compare_and_exchange_bool_acq (__futex, 1, 0) != 0) \
__lll_lock_wait (__futex); \
}))
atomic_compare_and_exchange_bool_acq (__futex, 1, 0)宏定義為:
#define atomic_compare_and_exchange_bool_acq(mem, newval, oldval) \
({ __typeof (mem) __gmemp = (mem); \
__typeof (*mem) __gnewval = (newval); \
\
*__gmemp == (oldval) ? (*__gmemp = __gnewval, 0) : 1; })
這個宏實現的功能是:
如果mem的值等於oldval,則把newval賦值給mem,放回0,否則不做任何處理,返回1.
由此可以看出,當mutex鎖限制的資源沒有競爭時,__lock 屬性被置為1,並返回0,不會調用__lll_lock_wait (__futex); 當存在競爭時,再次調用lock函數,該宏不做任何處理,返回1,調用__lll_lock_wait (__futex);
void
__lll_lock_wait (int *futex)
{
do
{
int oldval = atomic_compare_and_exchange_val_acq (futex, 2, 1);
if (oldval != 0)
lll_futex_wait (futex, 2);
}
while (atomic_compare_and_exchange_bool_acq (futex, 2, 0) != 0);
}
atomic_compare_and_exchange_val_acq (futex, 2, 1); 宏定義:
/* The only basic operation needed is compare and exchange. */
#define atomic_compare_and_exchange_val_acq(mem, newval, oldval) \
({ __typeof (mem) __gmemp = (mem); \
__typeof (*mem) __gret = *__gmemp; \
__typeof (*mem) __gnewval = (newval); \
\
if (__gret == (oldval)) \
*__gmemp = __gnewval; \
__gret; })
這個宏實現的功能是,當mem等於oldval時,將mem置為newval,始終返回mem原始值。
此時,futex等於1,futex將被置為2,並且返回1. 進而調用
lll_futex_wait (futex, 2);
#define lll_futex_timed_wait(ftx, val, timespec) \
({ \
DO_INLINE_SYSCALL(futex, 4, (long) (ftx), FUTEX_WAIT, (int) (val), \
(long) (timespec)); \
_r10 == -1 ? -_retval : _retval; \
})
該宏對於不同的平台架構會用不同的實現,採用匯編語言實現系統調用。不過確定的是調用了Linux kernel的futex系統調用。
futex在linux kernel的實現位於:kernel/futex.c
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
struct timespec __user *, utime, u32 __user *, uaddr2,
u32, val3)
{
struct timespec ts;
ktime_t t, *tp = NULL;
u32 val2 = 0;
int cmd = op & FUTEX_CMD_MASK;
if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
cmd == FUTEX_WAIT_BITSET ||
cmd == FUTEX_WAIT_REQUEUE_PI)) {
if (_from_user(&ts, utime, sizeof(ts)) != 0)
return -EFAULT;
if (!timespec_valid(&ts))
return -EINVAL;
t = timespec_to_ktime(ts);
if (cmd == FUTEX_WAIT)
t = ktime_add_safe(ktime_get(), t);
tp = &t;
}
/*
* requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
* number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
*/
if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
val2 = (u32) (unsigned long) utime;
return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
}
futex具有六個形參,pthread_mutex_lock最終只關注了前四個。futex函數對參數進行判斷和轉化之後,直接調用do_futex。
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
u32 __user *uaddr2, u32 val2, u32 val3)
{
int clockrt, ret = -ENOSYS;
int cmd = op & FUTEX_CMD_MASK;
int fshared = 0;
if (!(op & FUTEX_PRIVATE_FLAG))
fshared = 1;
clockrt = op & FUTEX_CLOCK_REALTIME;
if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
return -ENOSYS;
switch (cmd) {
case FUTEX_WAIT:
val3 = FUTEX_BITSET_MATCH_ANY;
case FUTEX_WAIT_BITSET:
ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
break;
…
default:
ret = -ENOSYS;
}
return ret;
}
省略部分為對其他cmd的處理,pthread_mutex_lock函數最終傳入的cmd參數為FUTEX_WAIT,所以在此只關注此分之,分析futex_wait函數的實現。
static int futex_wait(u32 __user *uaddr, int fshared,
u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
{
struct hrtimer_sleeper timeout, *to = NULL;
struct restart_block *restart;
struct futex_hash_bucket *hb;
struct futex_q q;
int ret;
… … //delete parameters check and convertion
retry:
/* Prepare to wait on uaddr. */
ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
if (ret)
goto out;
/* queue_me and wait for wakeup, timeout, or a signal. */
futex_wait_queue_me(hb, &q, to);
… … //other handlers
return ret;
}
futex_wait_setup 將線程放進休眠隊列中,
futex_wait_queue_me(hb, &q, to);將本線程休眠,等待喚醒。
喚醒後,__lll_lock_wait函數中的while (atomic_compare_and_exchange_bool_acq (futex, 2, 0) != 0); 語句將被執行,由於此時futex在pthread_mutex_unlock中置為0,所以atomic_compare_and_exchange_bool_acq (futex, 2, 0)語句將futex置為2,返回0. 退出循環,訪問用戶控制項的臨界資源。
/*nptl/pthread_mutex_unlock.c*/
int
internal_function attribute_hidden
__pthread_mutex_unlock_usercnt (mutex, decr)
pthread_mutex_t *mutex;
int decr;
{
switch (__builtin_expect (mutex->__data.__kind, PTHREAD_MUTEX_TIMED_NP))
{
… …
default:
/* Correct code cannot set any other type. */
case PTHREAD_MUTEX_TIMED_NP:
case PTHREAD_MUTEX_ADAPTIVE_NP:
/* Normal mutex. Nothing special to do. */
break;
}
/* Always reset the owner field. */
mutex->__data.__owner = 0;
if (decr)
/* One less user. */
--mutex->__data.__nusers;
/* Unlock. */
lll_mutex_unlock (mutex->__data.__lock);
return 0;
}
省略部分是針對不同的__kind屬性值做的一些處理,最終調用 lll_mutex_unlock。
該宏函數最終的定義為:
#define __lll_mutex_unlock(futex) \
((void) ({ \
int *__futex = (futex); \
int __val = atomic_exchange_rel (__futex, 0); \
\
if (__builtin_expect (__val > 1, 0)) \
lll_futex_wake (__futex, 1); \
}))
atomic_exchange_rel (__futex, 0);宏為:
#define atomic_exchange_rel(mem, value) \
(__sync_synchronize (), __sync_lock_test_and_set (mem, value))
實現功能為:將mem設置為value,返回原始mem值。
__builtin_expect (__val > 1, 0) 是編譯器優化語句,告訴編譯器期望值,也就是大多數情況下__val > 1 ?是0,其邏輯判斷依然為if(__val > 1)為真的話執行 lll_futex_wake。
現在分析,在資源沒有被競爭的情況下,__futex 為1,那麼返回值__val則為1,那麼 lll_futex_wake (__futex, 1); 不會被執行,不產生系統調用。 當資源產生競爭的情況時,根據對pthread_mutex_lock 函數的分析,__futex為2, __val則為2,執行 lll_futex_wake (__futex, 1); 從而喚醒等在臨界資源的線程。
lll_futex_wake (__futex, 1); 最終會調動同一個系統調用,即futex, 只是傳遞的cmd參數為FUTEX_WAKE。
在linux kernel的futex實現中,調用
static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
{
struct futex_hash_bucket *hb;
struct futex_q *this, *next;
struct plist_head *head;
union futex_key key = FUTEX_KEY_INIT;
int ret;
if (!bitset)
return -EINVAL;
ret = get_futex_key(uaddr, fshared, &key);
if (unlikely(ret != 0))
goto out;
hb = hash_futex(&key);
spin_lock(&hb->lock);
head = &hb->chain;
plist_for_each_entry_safe(this, next, head, list) {
if (match_futex (&this->key, &key)) {
if (this->pi_state || this->rt_waiter) {
ret = -EINVAL;
break;
}
/* Check if one of the bits is set in both bitsets */
if (!(this->bitset & bitset))
continue;
wake_futex(this);
if (++ret >= nr_wake)
break;
}
}
spin_unlock(&hb->lock);
put_futex_key(fshared, &key);
out:
return ret;
}
該函數遍歷在該mutex上休眠的所有線程,調用wake_futex進行喚醒,
static void wake_futex(struct futex_q *q)
{
struct task_struct *p = q->task;
/*
* We set q->lock_ptr = NULL _before_ we wake up the task. If
* a non futex wake up happens on another CPU then the task
* might exit and p would dereference a non existing task
* struct. Prevent this by holding a reference on p across the
* wake up.
*/
get_task_struct(p);
plist_del(&q->list, &q->list.plist);
/*
* The waiting task can free the futex_q as soon as
* q->lock_ptr = NULL is written, without taking any locks. A
* memory barrier is required here to prevent the following
* store to lock_ptr from getting ahead of the plist_del.
*/
smp_wmb();
q->lock_ptr = NULL;
wake_up_state(p, TASK_NORMAL);
put_task_struct(p);
}
wake_up_state(p, TASK_NORMAL); 的實現位於kernel/sched.c中,屬於linux進程調度的技術。
❷ Linux管道實驗題
<pre t="code" l="cpp">#include <unistd.h>
#include <stdio.h>
//警告: 該程序未做錯誤驗證, 未關閉管道(由系統自動關閉)
int main()
{
int p2c[2]; // 該管道父進程寫,子進程讀
int c2p[2]; // 該管道子進程寫,父進程讀
// 創建2條管道
pipe(p2c);
pipe(c2p);
int pid = fork();
int fd_read, fd_write; // 這兩個描述符用於保存某進程讀端和寫端
int pid_my; // 保存某進程自身的pid
int pid_other; // 另一進程的pid,通過
if ( pid == 0 ) { // 子進程
fd_read = p2c[0];
fd_write= c2p[1];
// 通過getpid取得自身pid,寫到管道里
pid_my = getpid();
write(fd_write, pid_my, sizeof(int));
// 從另一管道讀取另一進程的pid
read(fd_read, pid_other, sizeof(int));
// 列印讀取到的pid
printf("Recive pid : %d\n", pid_other);
} else { // p
fd_read = c2p[0];
fd_write= p2c[1];
pid_my = getpid();
// 由於子進程是先寫自身pid,父進程最好先讀取子進程的pid
read(fd_read, pid_other, sizeof(int));
write(fd_write, pid_my, sizeof(int));
printf("Recive pid : %d\n", pid_other);
}
return 0;
}
❸ linux環境下,c語言怎麼讀取WEB伺服器的80埠上頁面的內容
已知url ,host, port;
int s, size;
struct sockaddr_in sin;
struct hostent* phe;
char cmd[256];
char msg_hdr[1000];
char* p;
//准備http中GET 方法的請求。
sprintf(cmd,"GET %s\r\nHTTP/1.1\r\nHost:%s", url, host);
//創建socket
if((s=socket(PF_INET,SOCK_STREAM,0))<0)
return -1;
//取得遠程主機的IP地址,失敗函數返回-1
if((phe = gethostbyname(host)) == NULL)
return -1;
memset(&sin,0,sizeof(sin));
memcpy(&sin.sin_addr,phe->h_addr,sizeof(struct in_addr));
sin.sin_family=AF_INET;
sin.sin_port=htons(pms->port);
//跟遠程機器建立連接,失敗函數返回-1
if(connect(s,(struct sockaddr*)&sin,sizeof(sin))==-1)
return -1;
//發送GET請求
if(write(s,cmd,strlen(cmd))<0)
return 0;
//從鏈接描述符(連接管道)中讀取傳送過來的數據
if(read(s, msg_hdr, 300)<0)
error;
close(s);
//讀到該文件的大小
if((p=strstr(msg_hdr,"Content-Length"))||(p=strstr(msg_hdr,"Content-length:")))
p+=16;
else
error;
//返回大小
size = atoi(p);
sprintf(cmd,"GET %s HTTP/1.1\r\nHost: %s\r\nAccept: */*\r\nPragma: no-cache\r\nCache-Control: no-cache\r\nConnection: close\r\nRange: bytes0-%d\r\n\r\n", url, host, size);
//創建套介面
if((s=socket(AF_INET,SOCK_STREAM,0))<0)
return 0;
//取得遠程主機的IP地址,失敗返回0
if((phe = gethostbyname(host)) == NULL)
return 0;
memset(&sin,0,sizeof(sin));
memcpy(&sin.sin_addr,phe->h_addr,sizeof(struct in_addr));
sin.sin_family=AF_INET;
sin.sin_port=htons(port);
//建立連接
if(connect(s,(struct sockaddr*)&sin,sizeof(sin))==-1)
return 0;
//發送讀取請求
if(write(s,cmd,strlen(cmd))<0)
error;
read(s, buf, BUFSIZE)..............