ss是Socket Statistics的縮寫。顧名思義,ss命令可以用來獲取socket統計信息,它可以顯示和netstat類似的內容。但ss的優勢在於它能夠顯示更多更詳細的有關TCP和連接狀態的信息,而且比netstat更快速更高效。當伺服器的socket連接數量變得非常大時,無論是使用netstat命令還是直接cat /proc/net/tcp,執行速度都會很慢。可能你不會有切身的感受,但請相信我,當伺服器維持的連接達到上萬個的時候,使用netstat等於浪費 生命,而用ss才是節省時間。天下武功唯快不破。ss快的秘訣在於,它利用到了TCP協議棧中tcp_diag。tcp_diag是一個用於分析統計的模塊,可以獲得Linux 內核中第一手的信息,這就確保了ss的快捷高效。當然,如果你的系統中沒有tcp_diag,ss也可以正常運行,只是效率會變得稍慢。(但仍然比 netstat要快。)
命令格式:
ss [參數]
ss [參數] [過濾]
2.命令功能:
ss(Socket Statistics的縮寫)命令可以用來獲取 socket統計信息,此命令輸出的結果類似於 netstat輸出的內容,但它能顯示更多更詳細的 TCP連接狀態的信息,且比 netstat 更快速高效。它使用了 TCP協議棧中 tcp_diag(是一個用於分析統計的模塊),能直接從獲得第一手內核信息,這就使得 ss命令快捷高效。在沒有 tcp_diag,ss也可以正常運行。
3.命令參數:
-h, --help 幫助信息
-V, --version 程序版本信息
-n, --numeric 不解析服務名稱
-r, --resolve 解析主機名
-a, --all 顯示所有套接字(sockets)
-l, --listening 顯示監聽狀態的套接字(sockets)
-o, --options 顯示計時器信息
-e, --extended 顯示詳細的套接字(sockets)信息
-m, --memory 顯示套接字(socket)的內存使用情況
-p, --processes 顯示使用套接字(socket)的進程
-i, --info 顯示 TCP內部信息
-s, --summary 顯示套接字(socket)使用概況
-4, --ipv4 僅顯示IPv4的套接字(sockets)
-6, --ipv6 僅顯示IPv6的套接字(sockets)
-0, --packet 顯示 PACKET 套接字(socket)
-t, --tcp 僅顯示 TCP套接字(sockets)
-u, --udp 僅顯示 UCP套接字(sockets)
-d, --dccp 僅顯示 DCCP套接字(sockets)
-w, --raw 僅顯示 RAW套接字(sockets)
-x, --unix 僅顯示 Unix套接字(sockets)
-f, --family=FAMILY 顯示 FAMILY類型的套接字(sockets),FAMILY可選,支持 unix, inet, inet6, link, netlink
-A, --query=QUERY, --socket=QUERY
QUERY := {all|inet|tcp|udp|raw|unix|packet|netlink}[,QUERY]
-D, --diag=FILE 將原始TCP套接字(sockets)信息轉儲到文件
-F, --filter=FILE 從文件中都去過濾器信息
FILTER := [ state TCP-STATE ] [ EXPRESSION ]
4.使用實例:
實例1:顯示TCP連接
命令:ss -t -a
輸出:
代碼如下:
[root@localhost ~]# ss -t -a
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 0 127.0.0.1:smux *:*
LISTEN 0 0 *:3690 *:*
LISTEN 0 0 *:ssh *:*
ESTAB 0 0 192.168.120.204:ssh 10.2.0.68:49368
[root@localhost ~]#
實例2:顯示 Sockets 摘要
命令:ss -s
輸出:
代碼如下:
[root@localhost ~]# ss -s
Total: 34 (kernel 48)
TCP: 4 (estab 1, closed 0, orphaned 0, synrecv 0, timewait 0/0), ports 3《/p》 《p》Transport Total IP IPv6
* 48 - -
RAW 0 0 0
UDP 5 5 0
TCP 4 4 0
INET 9 9 0
FRAG 0 0 0
[root@localhost ~]#
說明:列出當前的established, closed, orphaned and waiting TCP sockets
實例3:列出所有打開的網路連接埠
命令:ss -l
輸出:
代碼如下:
[root@localhost ~]# ss -l
Recv-Q Send-Q Local Address:Port Peer Address:Port
0 0 127.0.0.1:smux *:*
0 0 *:3690 *:*
0 0 *:ssh *:*
[root@localhost ~]#
實例4:查看進程使用的socket
命令:ss -pl
輸出:
代碼如下:
[root@localhost ~]# ss -pl
Recv-Q Send-Q Local Address:Port Peer Address:Port
0 0 127.0.0.1:smux *:* users:((「snmpd」,2716,8))
0 0 *:3690 *:* users:((「svnserve」,3590,3))
0 0 *:ssh *:* users:((「sshd」,2735,3))
[root@localhost ~]#
實例5:找出打開套接字/埠應用程序
命令:ss -lp | grep 3306
輸出:
代碼如下:
[root@localhost ~]# ss -lp|grep 1935
0 0 *:1935 *:* users:((「fmsedge」,2913,18))
0 0 127.0.0.1:19350 *:* users:((「fmsedge」,2913,17))
[root@localhost ~]# ss -lp|grep 3306
0 0 *:3306 *:* users:((「mysqld」,2871,10))
[root@localhost ~]#
實例6:顯示所有UDP Sockets
命令:ss -u -a
輸出:
代碼如下:
[root@localhost ~]# ss -u -a
State Recv-Q Send-Q Local Address:Port Peer Address:Port
UNCONN 0 0 127.0.0.1:syslog *:*
UNCONN 0 0 *:snmp *:*
ESTAB 0 0 192.168.120.203:39641 10.58.119.119:domain
[root@localhost ~]#
實例7:顯示所有狀態為established的SMTP連接
命令:ss -o state established 『( dport = :smtp or sport = :smtp )』
輸出:
代碼如下:
[root@localhost ~]# ss -o state established 『( dport = :smtp or sport = :smtp )』
Recv-Q Send-Q Local Address:Port Peer Address:Port
[root@localhost ~]#
實例8:顯示所有狀態為Established的HTTP連接
命令:ss -o state established 『( dport = :http or sport = :http )』
輸出:
代碼如下:
[root@localhost ~]# ss -o state established 『( dport = :http or sport = :http )』
Recv-Q Send-Q Local Address:Port Peer Address:Port
0 0 75.126.153.214:2164 192.168.10.42:http
[root@localhost ~]#
實例9:列舉出處於 FIN-WAIT-1狀態的源埠為 80或者 443,目標網路為 193.233.7/24所有 tcp套接字
命令:ss -o state fin-wait-1 『( sport = :http or sport = :https )』 dst 193.233.7/24
實例10:用TCP 狀態過濾Sockets:
命令:
代碼如下:
ss -4 state FILTER-NAME-HERE
ss -6 state FILTER-NAME-HERE
輸出:
代碼如下:
[root@localhost ~]#ss -4 state closing
Recv-Q Send-Q Local Address:Port Peer Address:Port
1 11094 75.126.153.214:http 192.168.10.42:4669
說明:
FILTER-NAME-HERE 可以代表以下任何一個:
代碼如下:
established
syn-sent
syn-recv
fin-wait-1
fin-wait-2
time-wait
closed
close-wait
last-ack
listen
closing
all : 所有以上狀態
connected : 除了listen and closed的所有狀態
synchronized :所有已連接的狀態除了syn-sent
bucket : 顯示狀態為maintained as minisockets,如:time-wait和syn-recv.
big : 和bucket相反。
實例11:匹配遠程地址和埠號
命令:
代碼如下:
ss dst ADDRESS_PATTERN
ss dst 192.168.1.5
ss dst 192.168.119.113:http
ss dst 192.168.119.113:smtp
ss dst 192.168.119.113:443
輸出:
代碼如下:
[root@localhost ~]# ss dst 192.168.119.113
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:20229
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:61056
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:61623
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:60924
ESTAB 0 0 192.168.119.103:16050 192.168.119.113:43701
ESTAB 0 0 192.168.119.103:16073 192.168.119.113:32930
ESTAB 0 0 192.168.119.103:16073 192.168.119.113:49318
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:3844
[root@localhost ~]# ss dst 192.168.119.113:http
State Recv-Q Send-Q Local Address:Port Peer Address:Port
[root@localhost ~]# ss dst 192.168.119.113:3844
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:3844
[root@localhost ~]#
實例12:匹配本地地址和埠號
命令:
代碼如下:
ss src ADDRESS_PATTERN
ss src 192.168.119.103
ss src 192.168.119.103:http
ss src 192.168.119.103:80
ss src 192.168.119.103:smtp
ss src 192.168.119.103:25
輸出:
代碼如下:
[root@localhost ~]# ss src 192.168.119.103:16021
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:63054
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:62894
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:63055
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:2274
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:44784
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:7233
ESTAB 0 0 192.168.119.103:16021 192.168.119.103:58660
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:44822
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:56737
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:57487
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:56736
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:64652
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:56586
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:64653
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:56587
[root@localhost ~]#
實例13:將本地或者遠程埠和一個數比較
命令:
代碼如下:
ss dport OP PORT
ss sport OP PORT
輸出:
代碼如下:
[root@localhost ~]# ss sport = :http
[root@localhost ~]# ss dport = :http
[root@localhost ~]# ss dport \》 :1024
[root@localhost ~]# ss sport \》 :1024
[root@localhost ~]# ss sport \《 :32000
[root@localhost ~]# ss sport eq :22
[root@localhost ~]# ss dport != :22
[root@localhost ~]# ss state connected sport = :http
[root@localhost ~]# ss \( sport = :http or sport = :https \)
[root@localhost ~]# ss -o state fin-wait-1 \( sport = :http or sport = :https \) dst 192.168.1/24
說明:
ss dport OP PORT 遠程埠和一個數比較;ss sport OP PORT 本地埠和一個數比較。
OP 可以代表以下任意一個:
《= or le : 小於或等於埠號
》= or ge : 大於或等於埠號
== or eq : 等於埠號
!= or ne : 不等於埠號
《 or gt : 小於埠號
》 or lt : 大於埠號
實例14:ss 和 netstat 效率對比
命令:
代碼如下:
time netstat -at
time ss
輸出:
代碼如下:
[root@localhost ~]# time ss
real 0m0.739s
user 0m0.019s
sys 0m0.013s
[root@localhost ~]#
[root@localhost ~]# time netstat -at
real 2m45.907s
user 0m0.063s
sys 0m0.067s
[root@localhost ~]#
說明:
用time 命令分別獲取通過netstat和ss命令獲取程序和概要佔用資源所使用的時間。在伺服器連接數比較多的時候,netstat的效率完全沒法和ss比。
⑵ linux c中的socket監聽指定埠,協議udp
使用recvfrom函數接收數據,它會同時返回對方的地址結構
判斷數據的來源是不是目標埠即可。
⑶ linux socket 連接超時 怎麼解決
今天發現自己的系統存在很嚴重缺陷,當前台關閉的時候後台就無法正常工作,原因很好定位,後台的socket連接超時時間過長,系統默認時間好像是75秒,於是找資料,根據下邊文章中的內容解決了,把超時時間設為5秒後,感覺好多了。看來還有好多東西需要慢慢挖掘阿!
如何設置socket的Connect超時(linux)
[From]http://dev.cbw.com/c/c/200510195601_4292587.shtml
1.首先將標志位設為Non-blocking模式,准備在非阻塞模式下調用connect函數
2.調用connect,正常情況下,因為TCP三次握手需要一些時間;而非阻塞調用只要不能立即完成就會返回錯誤,所以這里會返回EINPROGRESS,表示在建立連接但還沒有完成。
3.在讀套介面描述符集(fd_set rset)和寫套介面描述符集(fd_set wset)中將當前套介面置位(用FD_ZERO()、FD_SET()宏),並設置好超時時間(struct timeval *timeout)
4.調用select( socket, &rset, &wset, NULL, timeout )
返回0表示connect超時
如果你設置的超時時間大於75秒就沒有必要這樣做了,因為內核中對connect有超時限制就是75秒。
[From]http://www.ycgczj.com.cn/34733.html
網路編程中socket的分量我想大家都很清楚了,socket也就是套介面,在套介面編程中,提到超時的概念,我們一下子就能想到3個:發送超時,接收超時,以及select超時(註: select函數並不是只用於套介面的,但是套介面編程中用的比較多),在connect到目標主機的時候,這個超時是不由我們來設置的。不過正常情況下這個超時都很長,並且connect又是一個阻塞方法,一個主機不能連接,等著connect返回還能忍受,你的程序要是要試圖連接多個主機,恐怕遇到多個不能連接的主機的時候,會塞得你受不了的。我也廢話少說,先說說我的方法,如果你覺得你已掌握這種方法,你就不用再看下去了,如果你還不了解,我願意與你分享。本文是已在Linux下的程序為例子,不過拿到Windows中方法也是一樣,無非是換幾個函數名字罷了。
Linux中要給connect設置超時,應該是有兩種方法的。一種是該系統的一些參數,這個方法我不講,因為我講不清楚:P,它也不是編程實現的。另外一種方法就是變相的實現connect的超時,我要講的就是這個方法,原理上是這樣的:
1.建立socket
2.將該socket設置為非阻塞模式
3.調用connect()
4.使用select()檢查該socket描述符是否可寫(注意,是可寫)
5.根據select()返回的結果判斷connect()結果
6.將socket設置為阻塞模式(如果你的程序不需要用阻塞模式的,這步就省了,不過一般情況下都是用阻塞模式的,這樣也容易管理)
如果你對網路編程很熟悉的話,其實我一說出這個過程你就知道怎麼寫你的程序了,下面給出我寫的一段程序,僅供參考。
/******************************
* Time out for connect()
* Write by Kerl W
******************************/
#include <sys/socket.h>
#include <sys/types.h>
#define TIME_OUT_TIME 20 //connect超時時間20秒
int main(int argc , char **argv)
{
………………
int sockfd = socket(AF_INET, SOCK_STREAM, 0);
if(sockfd < 0) exit(1);
struct sockaddr_in serv_addr;
………//以伺服器地址填充結構serv_addr
int error=-1, len;
len = sizeof(int);
timeval tm;
fd_set set;
unsigned long ul = 1;
ioctl(sockfd, FIONBIO, &ul); //設置為非阻塞模式
bool ret = false;
if( connect(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) == -1)
{
tm.tv_set = TIME_OUT_TIME;
tm.tv_uset = 0;
FD_ZERO(&set);
FD_SET(sockfd, &set);
if( select(sockfd+1, NULL, &set, NULL, &tm) > 0)
{
getsockopt(sockfd, SOL_SOCKET, SO_ERROR, &error, (socklen_t *)&len);
if(error == 0) ret = true;
else ret = false;
} else ret = false;
}
else ret = true;
ul = 0;
ioctl(sockfd, FIONBIO, &ul); //設置為阻塞模式
if(!ret)
{
close( sockfd );
fprintf(stderr , "Cannot Connect the server!n");
return;
}
fprintf( stderr , "Connected!n");
//下面還可以進行發包收包操作
……………
}
以上代碼片段,僅供參考,也是為初學者提供一些提示,主要用到的幾個函數,select, ioctl, getsockopt都可以找到相關資料,具體用法我這里就不贅述了,你只需要在linux中輕輕的敲一個man <函數名>就能夠看到它的用法。
此外我需要說明的幾點是,雖然我們用ioctl把套介面設置為非阻塞模式,不過select本身是阻塞的,阻塞的時間就是其超時的時間由調用select 的時候的最後一個參數timeval類型的變數指針指向的timeval結構變數來決定的,timeval結構由一個表示秒數的和一個表示微秒數(long類型)的成員組成,一般我們設置了秒數就行了,把微妙數設為0(註:1秒等於100萬微秒)。而select函數另一個值得一提的參數就是上面我們用到的fd_set類型的變數指針。調用之前,這個變數裡面存了要用select來檢查的描述符,調用之後,針對上面的程序這裡面是可寫的描述符,我們可以用宏FD_ISSET來檢查某個描述符是否在其中。由於我這里只有一個套介面描述符,我就沒有使用FD_ISSET宏來檢查調用select之後這個sockfd是否在set裡面,其實是需要加上這個判斷的。不過我用了getsockopt來檢查,這樣才可以判斷出這個套介面是否是真的連接上了,因為我們只是變相的用select來檢查它是否連接上了,實際上select檢查的是它是否可寫,而對於可寫,是針對以下三種條件任一條件滿足時都表示可寫的:
1)套介面發送緩沖區中的可用控制項位元組數大於等於套介面發送緩沖區低潮限度的當前值,且或者i)套介面已連接,或者ii)套介面不要求連接(UDP方式的)
2)連接的寫這一半關閉。
3)有一個套介面錯誤待處理。
這樣,我們就需要用getsockopt函數來獲取套介面目前的一些信息來判斷是否真的是連接上了,沒有連接上的時候還能給出發生了什麼錯誤,當然我程序中並沒有標出那麼多狀態,只是簡單的表示可連接/不可連接。
下面我來談談對這個程序測試的結果。我針對3種情形做了測試:
1. 目標機器網路正常的情況
可以連接到目標主機,並能成功以阻塞方式進行發包收包作業。
2. 目標機器網路斷開的情況
在等待設置的超時時間(上面的程序中為20秒)後,顯示目標主機不能連接。
3. 程序運行前斷開目標機器網路,超時時間內,恢復目標機器的網路
在恢復目標主機網路連接之前,程序一隻等待,恢復目標主機後,程序顯示連接目標主機成功,並能成功以阻塞方式進行發包收包作業。
以上各種情況的測試結果表明,這種設置connect超時的方法是完全可行的。我自己是把這種設置了超時的connect封裝到了自己的類庫,用在一套監控系統中,到目前為止,運行還算正常。這種編程實現的connect超時比起修改系統參數的那種方法的有點就在於它只用於你的程序之中而不影響系統。