導航:首頁 > 操作系統 > android線程通訊

android線程通訊

發布時間:2024-06-21 18:50:54

1. android的handler機制的原理

Android的handler機制的原理分為非同步通信准備,消息發送,消息循環,消息處理。

1、非同步通信准備

在主線程中創建處理器對象(Looper)、消息隊列對象(Message Queue)和Handler對象。

2、消息入隊

工作線程通過Handler發送消息(Message) 到消息隊列(Message Queue)中。

3、消息循環

消息出隊: Looper循環取出消息隊列(Message Queue) 中的的消息(Message)。

消息分發: Looper將取出的消息 (Message) 發送給創建該消息的處理者(Handler)。

4、消息處理

處理者(Handler) 接收處理器(Looper) 發送過來的消息(Message),根據消息(Message) 進行U操作。

handler的作用

handler是android線程之間的消息機制,主要的作用是將一個任務切換到指定的線程中去執行,(准確的說是切換到構成handler的looper所在的線程中去出處理)android系統中的一個例子就是主線程中的所有操作都是通過主線程中的handler去處理的。

Handler的運行需要底層的 messagequeue和 looper做支撐。



2. 22 AndroidBroadcast廣播機制

廣播(Broadcast)機制用於進程/線程間通信,廣播分為廣播發送和廣播接收兩個過程,其中廣播接收者BroadcastReceiver便是Android四大組件之一。

BroadcastReceiver分為兩類:

從廣播發送方式可分為三類:

廣播在系統中以BroadcastRecord對象來記錄, 該對象有幾個時間相關的成員變數.

廣播注冊,對於應用開發來說,往往是在Activity/Service中調用 registerReceiver() 方法,而Activity或Service都間接繼承於Context抽象類,真正幹活是交給ContextImpl類。另外調用getOuterContext()可獲取最外層的調用者Activity或Service。

[ContextImpl.java]

其中broadcastPermission擁有廣播的許可權控制,scheler用於指定接收到廣播時onRecive執行線程,當scheler=null則默認代表在主線程中執行,這也是最常見的用法

[ContextImpl.java]

ActivityManagerNative.getDefault()返回的是ActivityManagerProxy對象,簡稱AMP.
該方法中參數有mMainThread.getApplicationThread()返回的是ApplicationThread,這是Binder的Bn端,用於system_server進程與該進程的通信。

[-> LoadedApk.java]

不妨令 以BroadcastReceiver(廣播接收者)為key,LoadedApk.ReceiverDispatcher(分發者)為value的ArrayMap 記為 A 。此處 mReceivers 是一個以 Context 為key,以 A 為value的ArrayMap。對於ReceiverDispatcher(廣播分發者),當不存在時則創建一個。

此處mActivityThread便是前面傳遞過來的當前主線程的Handler.

ReceiverDispatcher(廣播分發者)有一個內部類 InnerReceiver ,該類繼承於 IIntentReceiver.Stub 。顯然,這是一個Binder服務端,廣播分發者通過rd.getIIntentReceiver()可獲取該Binder服務端對象 InnerReceiver ,用於Binder IPC通信。

[-> ActivityManagerNative.java]

這里有兩個Binder服務端對象 caller 和 receiver ,都代表執行注冊廣播動作所在的進程. AMP通過Binder驅動將這些信息發送給system_server進程中的AMS對象,接下來進入AMS.registerReceiver。

[-> ActivityManagerService.java]

其中 mRegisteredReceivers 記錄著所有已注冊的廣播,以receiver IBinder為key, ReceiverList為value為HashMap。

在BroadcastQueue中有兩個廣播隊列mParallelBroadcasts,mOrderedBroadcasts,數據類型都為ArrayList<broadcastrecord style="box-sizing: border-box;">:</broadcastrecord>

mLruProcesses數據類型為 ArrayList<ProcessRecord> ,而ProcessRecord對象有一個IApplicationThread欄位,根據該欄位查找出滿足條件的ProcessRecord對象。

該方法用於匹配發起的Intent數據是否匹配成功,匹配項共有4項action, type, data, category,任何一項匹配不成功都會失敗。

broadcastQueueForIntent(Intent intent)通過判斷intent.getFlags()是否包含FLAG_RECEIVER_FOREGROUND 來決定是前台或後台廣播,進而返回相應的廣播隊列mFgBroadcastQueue或者mBgBroadcastQueue。

注冊廣播:

另外,當注冊的是Sticky廣播:

廣播注冊完, 另一個操作便是在廣播發送過程.

發送廣播是在Activity或Service中調用 sendBroadcast() 方法,而Activity或Service都間接繼承於Context抽象類,真正幹活是交給ContextImpl類。

[ContextImpl.java]

[-> ActivityManagerNative.java]

[-> ActivityManagerService.java]

broadcastIntent()方法有兩個布爾參數serialized和sticky來共同決定是普通廣播,有序廣播,還是Sticky廣播,參數如下:

broadcastIntentLocked方法比較長,這里劃分為8個部分來分別說明。

這個過程最重要的工作是:

BroadcastReceiver還有其他flag,位於Intent.java常量:

主要功能:

這個過主要處於系統相關的10類廣播,這里不就展開講解了.

這個過程主要是將sticky廣播增加到list,並放入mStickyBroadcasts裡面。

其他說明:

AMS.collectReceiverComponents

廣播隊列中有一個成員變數 mParallelBroadcasts ,類型為ArrayList<broadcastrecord style="box-sizing: border-box;">,記錄著所有的並行廣播。</broadcastrecord>

動態注冊的registeredReceivers,全部合並都receivers,再統一按串列方式處理。

廣播隊列中有一個成員變數 mOrderedBroadcasts ,類型為ArrayList<broadcastrecord style="box-sizing: border-box;">,記錄著所有的有序廣播。</broadcastrecord>

發送廣播過程:

處理方式:

可見不管哪種廣播方式,都是通過broadcastQueueForIntent()來根據intent的flag來判斷前台隊列或者後台隊列,然後再調用對應廣播隊列的scheleBroadcastsLocked方法來處理廣播;

在發送廣播過程中會執行 scheleBroadcastsLocked 方法來處理相關的廣播

[-> BroadcastQueue.java]

在BroadcastQueue對象創建時,mHandler=new BroadcastHandler(handler.getLooper());那麼此處交由mHandler的handleMessage來處理:

由此可見BroadcastHandler採用的是」ActivityManager」線程的Looper

[-> BroadcastQueue.java]

此處mService為AMS,整個流程還是比較長的,全程持有AMS鎖,所以廣播效率低的情況下,直接會嚴重影響這個手機的性能與流暢度,這里應該考慮細化同步鎖的粒度。

3. Android可以讓主線程在其他子線程執行完後再執行嗎如果可以,該怎麼做

android中什麼時候會選擇用廣播來進行線程間的通信 Android 多線程 通信 線程中通信就不要用廣播了吧 進程中通信可以用廣播或者aidl 可是,這兩天看到的項目都是這么做的;然後,自己分析了下,覺得一下的理由也是可以成立的; 1.正常情況下我們選擇handler消息機制來進行單向的線程間的通信;(工作線程向主線程發送消息) 因為主線程有現成的handler,而工作線程沒有現成的handler,這樣的話,主線程將handler交給工作線程而讓工作線程將工作的結果交給主線程; 相反,工作線程中沒有現成的handler(事實上是沒有消息隊列,也就是handler沒有綁定到工作線程),那麼,如果開辟的話,代碼角度上是挺麻煩的(相對應廣播機制來說); 2.廣播機制本身就是雙向的(工作線程向主線程發送廣播,主線程向工作線程發送廣播); //另外,對於像一個activity中通過fragment來進行界面的處理; 我們大多數情況下是採用廣播的機制來實現fragment中adapter的數據的更新;這樣做主要是考慮到工作線程的任務載入完成,而具體的對應刷新的activity可能還沒有啟動; 另外,基於介面隔離原則,如果用handler進行通信的話,則不能很好的滿足這一原則; 你要是周期比較長 用廣播好些吧 應該與周期關系不是很密切。最主要的原因是兩條線成是雙向通信。 Handler類似於P2P的通信。 廣播則類似於一個server端,用來處理分發不同線程的請求,從控制器的角度來說用廣播更好一點。 一般使用Handler的,多用於子線程處理事務,完成時告知主線程這一類的情況。 而類似樓主所說的多條線程之間需要頻繁交互的話,廣播是個很好的選擇,並且結構清晰,只是不知道廣播的性能與handler相比會怎麼樣。

4. 每個Android 都應必須了解的多線程知識點~

進程是系統調度和資源分配的一個獨立單位。

在Android中,一個應用程序就是一個獨立的集成,應用運行在一個獨立的環境中,可以避免其他應用程序/進程的干擾。當我們啟動一個應用程序時,系統就會創建一個進程(該進程是從Zygote中fork出來的,有獨立的ID),接著為這個進程創建一個主線程,然後就可以運行MainActivity了,應用程序的組件默認都是運行在其進程中。開發者可以通過設置應用的組件的運行進程,在清單文件中給組件設置:android:process = "進程名";可以達到讓組件運行在不同進程中的目的。讓組件運行在不同的進程中,既有好處,也有壞處。我們依次的說明下。

好處:每一個應用程序(也就是每一個進程)都會有一個內存預算,所有運行在這個進程中的程序使用的總內存不能超過這個值,讓組件運行不同的進程中,可以讓主進程可以擁有更多的空間資源。當我們的應用程序比較大,需要的內存資源比較多時(也就是用戶會抱怨應用經常出現OutOfMemory時),可以考慮使用多進程。

壞處:每個進程都會有自己的虛擬機實例,因此讓在進程間共享一些數據變得相對困難,需要採用進程間的通信來實現數據的共享。

線程是進程的一個實體,是CPU調度和分派的基本單位,它是比進程更小的能獨立運行的基本單位。

在Android中,線程會有那麼幾種狀態:創建、就緒、運行、阻塞、結束。當應用程序有組件在運行時,UI線程是處於運行狀態的。默認情況下,應用的所有組件的操作都是在UI線程里完成的,包括響應用戶的操作(觸摸,點擊等),組件生命周期方法的調用,UI的更新等。因此如果UI線程處理阻塞狀態時(在線程里做一些耗時的操作,如網路連接等),就會不能響應各種操作,如果阻塞時間達到5秒,就會讓程序處於ANR(application not response)狀態。

1.線程作用

減少程序在並發執行時所付出的時空開銷,提高操作系統的並發性能。

2.線程分類

守護線程、非守護線程(用戶線程)

2.1 守護線程

定義:守護用戶線程的線程,即在程序運行時為其他線程提供一種通用服務
常見:如垃圾回收線程
設置方式:thread.setDaemon(true);//設置該線程為守護線程

2.2 非守護線程(用戶線程)

主線程 & 子線程。

2.2.1 主線程(UI線程)

定義:Android系統在程序啟動時會自動啟動一條主線程
作用:處理四大組件與用戶進行交互的事情(如UI、界面交互相關)
因為用戶隨時會與界面發生交互,因此主線程任何時候都必須保持很高的響應速度,所以主線程不允許進行耗時操作,否則會出現ANR。

2.2.2 子線程(工作線程)

定義:手動創建的線程
作用:耗時的操作(網路請求、I/O操作等)

2.3 守護線程與非守護線程的區別和聯系

區別:虛擬機是否已退出,即
a. 當所有用戶線程結束時,因為沒有守護的必要,所以守護線程也會終止,虛擬機也同樣退出
b. 反過來,只要任何用戶線程還在運行,守護線程就不會終止,虛擬機就不會退出

3.線程優先順序

3.1 表示

線程優先順序分為10個級別,分別用Thread類常量表示。

3.2 設置

通過方法setPriority(int grade)進行優先順序設置,默認線程優先順序是5,即 Thread.NORM_PRIORITY。

4.線程狀態

創建狀態:當用 new 操作符創建一個線程的時候

就緒狀態:調用 start 方法,處於就緒狀態的線程並不一定馬上就會執行 run 方法,還需要等待CPU的調度

運行狀態:CPU 開始調度線程,並開始執行 run 方法

阻塞(掛起)狀態:線程的執行過程中由於一些原因進入阻塞狀態,比如:調用 sleep/wait 方法、嘗試去得到一個鎖等

結束(消亡)狀態:run 方法執行完 或者 執行過程中遇到了一個異常

(1)start()和run()的區別

通過調用Thread類的start()方法來啟動一個線程,這時此線程是處於就緒狀態,並沒有運行。調用Thread類調用run()方法來完成其運行操作的,方法run()稱為線程體,它包含了要執行的這個線程的內容,run()運行結束,此線程終止,然後CPU再調度其它線程。

(2)sleep()、wait()、yield()的區別

sleep()方法屬於Thread類,wait()方法屬於Object類。
調用sleep()方法,線程不會釋放對象鎖,只是暫停執行指定的時間,會自動恢復運行狀態;調用wait()方法,線程會放棄對象鎖,進入等待此對象的等待鎖定池,不調用notify()方法,線程永遠處於就緒(掛起)狀態。

yield()直接由運行狀態跳回就緒狀態,表示退讓線程,讓出CPU,讓CPU調度器重新調度。禮讓可能成功,也可能不成功,也就是說,回到調度器和其他線程進行公平競爭。

1.Android線程的原則

(1)為什麼不能再主線程中做耗時操作
防止ANR, 不能在UI主線程中做耗時的操作,因此我們可以把耗時的操作放在另一個工作線程中去做。操作完成後,再通知UI主線程做出相應的響應。這就需要掌握線程間通信的方式了。 在Android中提供了兩種線程間的通信方式:一種是AsyncTask機制,另一種是Handler機制。

(2)為什麼不能在非UI線程中更新UI 因為Android的UI線程是非線程安全的,應用更新UI,是調用invalidate()方法來實現界面的重繪,而invalidate()方法是非線程安全的,也就是說當我們在非UI線程來更新UI時,可能會有其他的線程或UI線程也在更新UI,這就會導致界面更新的不同步。因此我們不能在非UI主線程中做更新UI的操作。

2.Android實現多線程的幾種方式

3.為何需要多線程

多線程的本質就是非同步處理,直觀一點說就是不要讓用戶感覺到「很卡」。

4.多線程機制的核心是啥

多線程核心機制是Handler

推薦Handler講解視頻: 面試總被問到Handler?帶你從源碼的角度解讀Handler核心機制

根據上方提到的 多進程、多線程、Handler 問題,我整理了一套 Binder與Handler 機制解析的學習文檔,提供給大家進行學習參考,有需要的可以 點擊這里直接獲取!!! 裡面記錄許多Android 相關學習知識點。

5. Android通信方式篇(七)-Binder機制(Native層(下))

本篇文章針對向ServiceManager注冊服務 和 獲取服務兩個流程來做總結。在這兩個過程中,ServiceManager都扮演的是服務端,與客戶端之間的通信也是通過Binder IPC。

在此之前先了解下Binder的進程與線程的關系:

用戶空間 :ProcessState描述一個進程,IPCThreadState對應一個進程中的一個線程。
內核空間 :binder_proc描述一個進程,統一由binder_procs全局鏈表保存,binder_thread對應進程的一個線程。
ProcessState與binder_proc是一一對應的。

Binder線程池 :每個Server進程在啟動時會創建一個binder線程池,並向其中注冊一個Binder線程;之後Server進程也可以向binder線程池注冊新的線程,或者Binder驅動在探測到沒有空閑binder線程時會主動向Server進程注冊新的的binder線程。對於一個Server進程有一個最大Binder線程數限制15,(#define DEFAULT_MAX_BINDER_THREADS 15)。對於所有Client端進程的binder請求都是交由Server端進程的binder線程來處理的。我的理解是:binder線程是進程進行binder ipc時的一條數據處理路徑。

MediaPlayerService向ServiceManager注冊過程如下:

相關類:

整個過程總結如下:
1 獲取BpServiceManager 與 BpBinder
由defaultServiceManager()返回的是BpServiceManager,同時會創建ProcessState對象和BpBinder對象。然後通過BpBinder執行transact,把真正工作交給IPCThreadState來處理。

2 BpBinder transact
Binder代理類調用transact()方法,真正工作還是交給IPCThreadState來進行transact工作。

3 通過IPCThreadState 包裝並轉換數據並進行transact事務處理
每個線程都有一個IPCThreadState,每個IPCThreadState中都有一對Parcel變數:mIn、mOut。相當於兩根數據管道:

最後執行talkWithDriver。

writeTransactionData:將BC Protocol + binder_transaction_data結構體 寫入mOut, 然後執行waitForResponse:

由talkWithDriver將數據進一步封裝到binder_write_read結構體,通過ioctl(BINDER_WRITE_READ)與驅動通信。同時等待驅動返回的接收BR命令,從mIn取出返回的數據。

mIn包裝的數據結構(注冊服務handle = 0 ,code 為ADD_SERVICE_TRANSACTION):

4 Binder Driver
把binder_write_read結構體write_buffer里數據取出來,分別得到BC命令和封裝好數據的事務binder_transaction_data, 然後根據handler,在當前binder_proc中,找到相應的binder_ref,由binder_ref再找到目標binder_node實體,由目標binder_node再找到目標進程binder_proc。然後就是插入數據:當binder驅動可以找到合適的線程,就會把binder_transaction節點插入到servciemanager的線程的todo隊列中,如果找不到合適的線程,就把節點之間插入servciemanager的binder_proc的todo隊列。

5 ServiceManager
經過Binder Driver的處理,數據已經到了ServiceManager進程,在BR_TRANSACTION的引導下,在binder_loop()中執行binder_parser()取出數據,執行do_add_service()操作,最終向 svcinfo 列表中添加已經注冊的服務(沒有數據的返回)。最後發送 BR_REPLY 命令喚醒等待的線程,通知注冊成功。結束MediaPlayerService進程 waitForResponse()的狀態,整個注冊過程結束。

獲取服務的過程與注冊類似,首先 ServiceManager 向 Binder 驅動發送 BC_TRANSACTION 命令攜帶 CHECK_SERVICE_TRANSACTION 命令,同時獲取服務的線程進入等待狀態 waitForResponse()。Binder 驅動收到請求命令向 ServiceManager 的發送 BC_TRANSACTION 查詢已注冊的服務,會區分請求服務所屬進程情況。

查詢到直接響應 BR_REPLY 喚醒等待的線程。若查詢不到將與 binder_procs 鏈表中的服務進行一次通訊再響應。

以startService為例來簡單總結下執行流程:

3.1 從方法執行流程來看:

Client :

1 AMP.startService 標記方法以及通過Parcel包裝數據;

2 BinderProxy.transact 實際調用native的 android_os_BinderProxy_transact 傳遞數據;

3 獲取BpServiceManager 與 BpBinder 同時會創建ProcessState。然後通過BpBinder執行transact,把真正工作交給IPCThreadState來處理;

4 IPC.transact 主要執行writeTransactionData,將上層傳來的數據重新包裝成binder_transaction_data,並將BC Protocol + binder_transaction_data結構體 寫入mOut;

5 IPC waitForResponse talkWithDriver + 等待返回數據;

6 talkWithDriver 將數據進一步封裝成binder_write_read,通過ioctl(BINDER_WRITE_READ)與驅動通信;

Kernel :

7 binder ioctl 接收BINDER_WRITE_READ ioctl命令;

8 binder_ioctl_write_read 把用戶空間數據ubuf拷貝到內核空間bwr;

9 binder_thread_write 當bwr寫緩存有數據,則執行binder_thread_write;當寫失敗則將bwr數據寫回用戶空間並退出;

10 binder_transaction 找到目標進程binder_proc並插入數據到目標進程的線程todo隊列,最終執行到它
時,將發起端數據拷貝到接收端進程的buffer結構體;

11 binder_thread_read 根據binder_transaction結構體和binder_buffer結構體數據生成新的binder_transaction_data結構體,寫入bwr的read_buffer,當bwr讀緩存有數據,則執行binder_thread_read;當讀失敗則再將bwr數據寫回用戶空間並退出;最後,把內核數據bwr拷貝到用戶空間ubuf。

12 binder_thread_write + binder_ioctl BR命令和數據傳遞

Server:

13 IPC.executeCommand 解析kernel傳過來的binder_transaction_data數據,找到目標BBinder並調用其transact()方法;

14 IPC.joinThreadPool 採用循環不斷地執行getAndExecuteCommand()方法, 處理事務。當bwr的讀寫buffer都沒有數據時,則阻塞在binder_thread_read的wait_event過程. 另外,正常情況下binder線程一旦創建則不會退出.

15 BBinder.transact 到Binder.exeTransact 調用 AMN.onTransact

16 AMN.onTransact 把數據傳遞到AMS.starService去執行

17 AMS.starService Server處理了Client的請求了

然後原路replay回去,talkWithDriver 到Kernel ,然後找到Client進程,把數據拷貝到read_buffer里,最終喚醒IPC,把反饋傳遞回AMP.startService。完成啟動服務。

3.2 從通信協議流程來看:

非oneWay:

oneway:

oneway與非oneway區別: 都是需要等待Binder Driver的回應消息BR_TRANSACTION_COMPLETE. 主要區別在於oneway的通信收到BR_TRANSACTION_COMPLETE則返回,而不會再等待BR_REPLY消息的到來. 另外,oneway的binder IPC則接收端無法獲取對方的pid.

3.3 從數據流來看

從用戶空間開始:

進入驅動後:

回到用戶空間:

參考:
http://gityuan.com/2016/09/04/binder-start-service/
http://gityuan.com/2015/11/28/binder-summary/
http://gityuan.com/2015/11/14/binder-add-service/
http://gityuan.com/2015/11/15/binder-get-service/

6. android 後台怎麼向ui主線程中發送消息

據我所知android提供了以下幾種方法,用於實現後台線程與UI線程的交互。


1、handler


2、Activity.runOnUIThread(Runnable)


3、View.Post(Runnable)


4、View.PostDelayed(Runnabe,long)


5、AsyncTask



方法一:handler


handler是android中專門用來在線程之間傳遞信息類的工具。


要講明handler的用法非常簡單,但是我在這里會少許深入的講一下handler的運行機制。


為了能夠讓handler在線程間傳遞消息,我們還需要用到幾個類。他們是looper,messageQueue,message。


這里說的looper可不是前段時間的好萊塢大片環形使者,他的主要功能是為特定單一線程運行一個消息環。一個線程對應一個looper。同樣一個looper對應一個線程。這就是所謂的特定單一。一般情況下,在一個線程創建時他本身是不會生產他特定單一的looper的(主線程是個特例)。因此我們需要手動的把一個looper與線程相關聯。其方法只需在需要關聯的looper的線程中調用Looper.prepare。之後我們再調用Looper.loop啟動looper。


說了這么多looper的事情,到底這個looper有什麼用哪。其實之前我們已經說到了,他是為線程運行一個消息環。具體的說,在我們將特定單一looper與線程關聯的時候,looper會同時生產一個messageQueue。他是一個消息隊列,looper會不停的從messageQuee中取出消息,也就是message。然後線程就會根據message中的內容進行相應的操作。


那麼messageQueue中的message是從哪裡來的哪?那就要提到handler了。在我們創建handler的時候,我們需要與特定的looper綁定。這樣通過handler我們就可以把message傳遞給特定的looper,繼而傳遞給特定的線程。在這里,looper和handler並非一一對應的。一個looper可以對應多個handler,而一個handler只能對應一個looper(突然想起了一夫多妻制,呵呵)。這里補充一下,handler和looper的綁定,是在構建handler的時候實現的,具體查詢handler的構造函數。


在我們創建handler並與相應looper綁定之後,我們就可以傳遞message了。我們只需要調用handler的sendMessage函數,將message作為參數傳遞給相應線程。之後這個message就會被塞進looper的messageQueue。然後再被looper取出來交給線程處理。


這里要補充說一下message,雖然我們可以自己創建一個新的message,但是更加推薦的是調用handler的obtainMessage方法來獲取一個message。這個方法的作用是從系統的消息池中取出一個message,這樣就可以避免message創建和銷毀帶來的資源浪費了(這也就是算得上重復利用的綠色之舉了吧)。


突然發現有一點很重要的地方沒有講到,那就是線程從looper收到message之後他是如何做出響應的嘞。其實原來線程所需要做出何種響應需要我們在我們自定義的handler類中的handleMessage重構方法中編寫。之後才是之前說的創建handler並綁定looper。


好吧說的可能喲點亂,總結一下利用handler傳遞信息的方法。


假設A線程要傳遞信息給B線程,我們需要做的就是


1、在B線程中調用Looper.prepare和Looper.loop。(主線程不需要)


2、 編寫Handler類,重寫其中的handleMessage方法。


3、創建Handler類的實例,並綁定looper


4、調用handler的sentMessage方法發送消息。

7. Android中的線程狀態 - AsyncTask詳解

在操作系統中,線程是操作系統調度的最小單元,同時線程又是一種受限的系統資源,即線程不可能無限制地產生,並且 線程的創建和銷毀都會有相應的開銷。 當系統中存在大量的線程時,系統會通過會時間片輪轉的方式調度每個線程,因此線程不可能做到絕對的並行。

如果在一個進程中頻繁地創建和銷毀線程,顯然不是高效的做法。正確的做法是採用線程池,一個線程池中會緩存一定數量的線程,通過線程池就可以避免因為頻繁創建和銷毀線程所帶來的系統開銷。

AsyncTask是一個抽象類,它是由Android封裝的一個輕量級非同步類(輕量體現在使用方便、代碼簡潔),它可以在線程池中執行後台任務,然後把執行的進度和最終結果傳遞給主線程並在主線程中更新UI。

AsyncTask的內部封裝了 兩個線程池 (SerialExecutor和THREAD_POOL_EXECUTOR)和 一個Handler (InternalHandler)。

其中 SerialExecutor線程池用於任務的排隊,讓需要執行的多個耗時任務,按順序排列 THREAD_POOL_EXECUTOR線程池才真正地執行任務 InternalHandler用於從工作線程切換到主線程

1.AsyncTask的泛型參數

AsyncTask是一個抽象泛型類。

其中,三個泛型類型參數的含義如下:

Params: 開始非同步任務執行時傳入的參數類型;

Progress: 非同步任務執行過程中,返回下載進度值的類型;

Result: 非同步任務執行完成後,返回的結果類型;

如果AsyncTask確定不需要傳遞具體參數,那麼這三個泛型參數可以用Void來代替。

有了這三個參數類型之後,也就控制了這個AsyncTask子類各個階段的返回類型,如果有不同業務,我們就需要再另寫一個AsyncTask的子類進行處理。

2.AsyncTask的核心方法

onPreExecute()

這個方法會在 後台任務開始執行之間調用,在主線程執行。 用於進行一些界面上的初始化操作,比如顯示一個進度條對話框等。

doInBackground(Params...)

這個方法中的所有代碼都會 在子線程中運行,我們應該在這里去處理所有的耗時任務。

任務一旦完成就可以通過return語句來將任務的執行結果進行返回,如果AsyncTask的第三個泛型參數指定的是Void,就可以不返回任務執行結果。 注意,在這個方法中是不可以進行UI操作的,如果需要更新UI元素,比如說反饋當前任務的執行進度,可以調用publishProgress(Progress...)方法來完成。

onProgressUpdate(Progress...)

當在後台任務中調用了publishProgress(Progress...)方法後,這個方法就很快會被調用,方法中攜帶的參數就是在後台任務中傳遞過來的。 在這個方法中可以對UI進行操作,在主線程中進行,利用參數中的數值就可以對界面元素進行相應的更新。

onPostExecute(Result)

當doInBackground(Params...)執行完畢並通過return語句進行返回時,這個方法就很快會被調用。返回的數據會作為參數傳遞到此方法中, 可以利用返回的數據來進行一些UI操作,在主線程中進行,比如說提醒任務執行的結果,以及關閉掉進度條對話框等。

上面幾個方法的調用順序:

onPreExecute() --> doInBackground() --> publishProgress() --> onProgressUpdate() --> onPostExecute()

如果不需要執行更新進度則為onPreExecute() --> doInBackground() --> onPostExecute(),

除了上面四個方法,AsyncTask還提供了onCancelled()方法, 它同樣在主線程中執行,當非同步任務取消時,onCancelled()會被調用,這個時候onPostExecute()則不會被調用 ,但是要注意的是, AsyncTask中的cancel()方法並不是真正去取消任務,只是設置這個任務為取消狀態,我們需要在doInBackground()判斷終止任務。就好比想要終止一個線程,調用interrupt()方法,只是進行標記為中斷,需要在線程內部進行標記判斷然後中斷線程。

3.AsyncTask的簡單使用

這里我們模擬了一個下載任務,在doInBackground()方法中去執行具體的下載邏輯,在onProgressUpdate()方法中顯示當前的下載進度,在onPostExecute()方法中來提示任務的執行結果。如果想要啟動這個任務,只需要簡單地調用以下代碼即可:

4.使用AsyncTask的注意事項

①非同步任務的實例必須在UI線程中創建,即AsyncTask對象必須在UI線程中創建。

②execute(Params... params)方法必須在UI線程中調用。

③不要手動調用onPreExecute(),doInBackground(Params... params),onProgressUpdate(Progress... values),onPostExecute(Result result)這幾個方法。

④不能在doInBackground(Params... params)中更改UI組件的信息。

⑤一個任務實例只能執行一次,如果執行第二次將會拋出異常。

先從初始化一個AsyncTask時,調用的構造函數開始分析。

這段代碼雖然看起來有點長,但實際上並沒有任何具體的邏輯會得到執行,只是初始化了兩個變數,mWorker和mFuture,並在初始化mFuture的時候將mWorker作為參數傳入。mWorker是一個Callable對象,mFuture是一個FutureTask對象,這兩個變數會暫時保存在內存中,稍後才會用到它們。 FutureTask實現了Runnable介面,關於這部分內容可以看這篇文章。

mWorker中的call()方法執行了耗時操作,即result = doInBackground(mParams);,然後把執行得到的結果通過postResult(result);,傳遞給內部的Handler跳轉到主線程中。在這里這是實例化了兩個變數,並沒有開啟執行任務。

那麼mFuture對象是怎麼載入到線程池中,進行執行的呢?

接著如果想要啟動某一個任務,就需要調用該任務的execute()方法,因此現在我們來看一看execute()方法的源碼,如下所示:

調用了executeOnExecutor()方法,具體執行邏輯在這個方法裡面:

可以 看出,先執行了onPreExecute()方法,然後具體執行耗時任務是在exec.execute(mFuture),把構造函數中實例化的mFuture傳遞進去了。

exec具體是什麼?

從上面可以看出具體是sDefaultExecutor,再追溯看到是SerialExecutor類,具體源碼如下:

終於追溯到了調用了SerialExecutor 類的execute方法。SerialExecutor 是個靜態內部類,是所有實例化的AsyncTask對象公有的,SerialExecutor 內部維持了一個隊列,通過鎖使得該隊列保證AsyncTask中的任務是串列執行的,即多個任務需要一個個加到該隊列中,然後執行完隊列頭部的再執行下一個,以此類推。

在這個方法中,有兩個主要步驟。

①向隊列中加入一個新的任務,即之前實例化後的mFuture對象。

②調用 scheleNext()方法,調用THREAD_POOL_EXECUTOR執行隊列頭部的任務。

由此可見SerialExecutor 類僅僅為了保持任務執行是串列的,實際執行交給了THREAD_POOL_EXECUTOR。

THREAD_POOL_EXECUTOR又是什麼?

實際是個線程池,開啟了一定數量的核心線程和工作線程。然後調用線程池的execute()方法。執行具體的耗時任務,即開頭構造函數中mWorker中call()方法的內容。先執行完doInBackground()方法,又執行postResult()方法,下面看該方法的具體內容:

該方法向Handler對象發送了一個消息,下面具體看AsyncTask中實例化的Hanlder對象的源碼:

在InternalHandler 中,如果收到的消息是MESSAGE_POST_RESULT,即執行完了doInBackground()方法並傳遞結果,那麼就調用finish()方法。

如果任務已經取消了,回調onCancelled()方法,否則回調 onPostExecute()方法。

如果收到的消息是MESSAGE_POST_PROGRESS,回調onProgressUpdate()方法,更新進度。

InternalHandler是一個靜態類,為了能夠將執行環境切換到主線程,因此這個類必須在主線程中進行載入。所以變相要求AsyncTask的類必須在主線程中進行載入。

到此為止,從任務執行的開始到結束都從源碼分析完了。

AsyncTask的串列和並行

從上述源碼分析中分析得到,默認情況下AsyncTask的執行效果是串列的,因為有了SerialExecutor類來維持保證隊列的串列。如果想使用並行執行任務,那麼可以直接跳過SerialExecutor類,使用executeOnExecutor()來執行任務。

四、AsyncTask使用不當的後果

1.)生命周期

AsyncTask不與任何組件綁定生命周期,所以在Activity/或者Fragment中創建執行AsyncTask時,最好在Activity/Fragment的onDestory()調用 cancel(boolean);

2.)內存泄漏

3.) 結果丟失

屏幕旋轉或Activity在後台被系統殺掉等情況會導致Activity的重新創建,之前運行的AsyncTask(非靜態的內部類)會持有一個之前Activity的引用,這個引用已經無效,這時調用onPostExecute()再去更新界面將不再生效。

自己是從事了七年開發的Android工程師,不少人私下問我,2019年Android進階該怎麼學,方法有沒有?

沒錯,年初我花了一個多月的時間整理出來的學習資料,希望能幫助那些想進階提升Android開發,卻又不知道怎麼進階學習的朋友。【 包括高級UI、性能優化、架構師課程、NDK、Kotlin、混合式開發(ReactNative+Weex)、Flutter等架構技術資料 】,希望能幫助到您面試前的復習且找到一個好的工作,也節省大家在網上搜索資料的時間來學習。

8. android線程間通信有哪些方式

進程:是具有一定獨立功能的程序關於某個數據集合上的一次運行活動,進程是系統進行資源分配和調度的一個獨立單位。
  線程:是進程的一個實體,是CPU調度和分派的基本單位,它是比進程更小的能獨立運行的基本單位。線程自己基本上不擁有系統資源,只擁有一些在運行中必不可少的資源(如程序計數器,一組寄存器和棧),但是它可與同屬一個進程的其他的線程共享進程所擁有的全部資源。
  區別:
  (1)、一個程序至少有一個進程,一個進程至少有一個線程;
  (2)、線程的劃分尺度小於進程,使得多線程程序的並發性高;
  (3)、進程在執行過程中擁有獨立的內存單元,而多個線程共享內存,但線程之間沒有單獨的地址空間,一個線程死掉就等於整個進程死掉。
---------------------
一、Android進程間通信方式
1.Bundle
  由於Activity,Service,Receiver都是可以通過Intent來攜帶Bundle傳輸數據的,所以我們可以在一個進程中通過Intent將攜帶數據的Bundle發送到另一個進程的組件。
  缺點:無法傳輸Bundle不支持的數據類型。
2.ContentProvider
  ContentProvider是Android四大組件之一,以表格的方式來儲存數據,提供給外界,即Content Provider可以跨進程訪問其他應用程序中的數據。用法是繼承ContentProvider,實現onCreate,query,update,insert,delete和getType方法,onCreate是負責創建時做一些初始化的工作,增刪查改的方法就是對數據的查詢和修改,getType是返回一個String,表示Uri請求的類型。注冊完後就可以使用ContentResolver去請求指定的Uri。
3.文件
  兩個進程可以到同一個文件去交換數據,我們不僅可以保存文本文件,還可以將對象持久化到文件,從另一個文件恢復。要注意的是,當並發讀/寫時可能會出現並發的問題。
4.Broadcast
  Broadcast可以向android系統中所有應用程序發送廣播,而需要跨進程通訊的應用程序可以監聽這些廣播。
5.AIDL方式
  Service和Content Provider類似,也可以訪問其他應用程序中的數據,Content Provider返回的是Cursor對象,而Service返回的是Java對象,這種可以跨進程通訊的服務叫AIDL服務。
AIDL通過定義服務端暴露的介面,以提供給客戶端來調用,AIDL使伺服器可以並行處理,而Messenger封裝了AIDL之後只能串列運行,所以Messenger一般用作消息傳遞。
6.Messenger
  Messenger是基於AIDL實現的,服務端(被動方)提供一個Service來處理客戶端(主動方)連接,維護一個Handler來創建Messenger,在onBind時返回Messenger的binder。
  雙方用Messenger來發送數據,用Handler來處理數據。Messenger處理數據依靠Handler,所以是串列的,也就是說,Handler接到多個message時,就要排隊依次處理。
7.Socket
  Socket方法是通過網路來進行數據交換,注意的是要在子線程請求,不然會堵塞主線程。客戶端和服務端建立連接之後即可不斷傳輸數據,比較適合實時的數據傳輸
二、Android線程間通信方式
  一般說線程間通信主要是指主線程(也叫UI線程)和子線程之間的通信,主要有以下兩種方式:
1.AsyncTask機制
  AsyncTask,非同步任務,也就是說在UI線程運行的時候,可以在後台的執行一些非同步的操作;AsyncTask可以很容易且正確地使用UI線程,AsyncTask允許進行後台操作,並在不顯示使用工作線程或Handler機制的情況下,將結果反饋給UI線程。但是AsyncTask只能用於短時間的操作(最多幾秒就應該結束的操作),如果需要長時間運行在後台,就不適合使用AsyncTask了,只能去使用Java提供的其他API來實現。
2.Handler機制
  Handler,繼承自Object類,用來發送和處理Message對象或Runnable對象;Handler在創建時會與當前所在的線程的Looper對象相關聯(如果當前線程的Looper為空或不存在,則會拋出異常,此時需要在線程中主動調用Looper.prepare()來創建一個Looper對象)。使用Handler的主要作用就是在後面的過程中發送和處理Message對象和讓其他的線程完成某一個動作(如在工作線程中通過Handler對象發送一個Message對象,讓UI線程進行UI的更新,然後UI線程就會在MessageQueue中得到這個Message對象(取出Message對象是由其相關聯的Looper對象完成的),並作出相應的響應)。
三、Android兩個子線程之間通信
  面試的過程中,有些面試官可能會問Android子線程之間的通信方式,由於絕大部分程序員主要關注的是Android主線程和子線程之間的通信,所以這個問題很容易讓人懵逼。
  主線程和子線程之間的通信可以通過主線程中的handler把子線程中的message發給主線程中的looper,或者,主線程中的handler通過post向looper中發送一個runnable。但looper默認存在於main線程中,子線程中沒有Looper,該怎麼辦呢?其實原理很簡單,把looper綁定到子線程中,並且創建一個handler。在另一個線程中通過這個handler發送消息,就可以實現子線程之間的通信了。
  子線程創建handler的兩種方式:
  方式一:給子線程創建Looper對象:
new Thread(new Runnable() {
public void run() {
Looper.prepare(); // 給這個Thread創建Looper對象,一個Thead只有一個Looper對象
Handler handler = new Handler(){
@Override
public void handleMessage(Message msg) {
Toast.makeText(getApplicationContext(), "handleMessage", Toast.LENGTH_LONG).show();
}
};
handler.sendEmptyMessage(1);
Looper.loop(); // 不斷遍歷MessageQueue中是否有消息
};
}).start();
---------------------
方式二:獲取主線程的looper,或者說是UI線程的looper:
new Thread(new Runnable() {
public void run() {
Handler handler = new Handler(Looper.getMainLooper()){ // 區別在這!!!
@Override
public void handleMessage(Message msg) {
Toast.makeText(getApplicationContext(), "handleMessage", Toast.LENGTH_LONG).show();
}
};
handler.sendEmptyMessage(1);
};
}).start();

閱讀全文

與android線程通訊相關的資料

熱點內容
哪個app陪伴運動 瀏覽:879
學編程每天六點起床 瀏覽:951
烏鴉搜索演算法復現 瀏覽:74
android3d切換 瀏覽:750
資源管理器選定文件夾 瀏覽:989
分數公約數的演算法 瀏覽:588
yii2引入php文件 瀏覽:563
華為p20方舟編譯器評測 瀏覽:186
pntp伺服器是什麼 瀏覽:654
程序員培訓多長時間 瀏覽:556
求aaa的和python 瀏覽:193
python因子分析代碼 瀏覽:646
python啟動時提示沒有入口 瀏覽:680
linux中oracle監聽 瀏覽:621
程序員高價值朋友圈 瀏覽:488
雲伺服器做淘寶店 瀏覽:804
程序員判3年緩3年 瀏覽:911
伺服器雲監控系統 瀏覽:653
ios暴力解壓軟體 瀏覽:431
可以搜簡便演算法的軟體 瀏覽:202