『壹』 linux幾種中斷信號的區別:HUP,INT,KILL,TERM,TSTP
Linux的HUP,INT,KILL,TERM,TSTP中斷信號區別為:鍵入不同、對應操作不同、啟用不同。
一、鍵入不同
1、HUP中斷信號:HUP中斷信號是當用戶鍵入<Ctrl+X>時由終端驅動程序發送的信號。
2、INT中斷信號:INT中斷信號是當用戶鍵入<Ctrl+I>時由終端驅動程序發送的信號。
3、KILL中斷信號:KILL中斷信號是當用戶鍵入<Ctrl+Z>時由終端驅動程序發送的信號。
4、TERM中斷信號:TERM中斷信號是當用戶鍵入<Ctrl+>時由終端驅動程序發送的信號。
5、TSTP中斷信號:TSTP中斷信號是當用戶鍵入<Ctrl+T>時由終端驅動程序發送的信號。二、對應操作不同
1、HUP中斷信號:HUP中斷信號的對應操作為讓進程掛起,睡眠。
2、INT中斷信號:INT中斷信號的對應操作為正常關閉所有進程。
3、KILL中斷信號:KILL中斷信號的對應操作為強制關閉所有進程。
4、TERM中斷信號:TERM中斷信號的對應操作為正常的退出進程。
5、TSTP中斷信號:TSTP中斷信號的對應操作為暫時停用進程。
三、啟用不同
1、HUP中斷信號:HUP中斷信號發送後,可以重新被用戶再次輸入恢復啟用進程。
2、INT中斷信號:INT中斷信號發送後,不可以重新被用戶再次輸入恢復啟用進程。
3、KILL中斷信號:KILL中斷信號發送後,不可以重新被用戶再次輸入恢復啟用進程。
4、TERM中斷信號:TERM中斷信號發送後,可以重新被用戶再次輸入啟用進程。
5、TSTP中斷信號:TSTP中斷信號發送後,可以重新被用戶再次輸入繼續使用進程。
『貳』 Linux 系統中的中斷是不是沒有中斷優先順序
關於中斷嵌套:在linux內核里,如果驅動在申請注冊中斷的時候沒有特別的指定,do_irq在做中斷響應的時候,是開啟中斷的,如果在驅動的中斷處理函數正在執行的過程中,出現同一設備的中斷或者不同設備的中斷,這時候新的中斷會被立即處理,還是被pending,等當前中斷處理完成後,再做處理。在2.4和2.6內核里,關於這一塊是否有什麼不同。 一般申請中斷的時候都允許開中斷,即不使用SA_INTERRUPT標志。如果允許共享則加上 SA_SHIRQ,如果可以為內核熵池提供熵值(譬如你寫的驅動是ide之類的驅動),則再加上 SA_SAMPLE_RANDOM標志。這是普通的中斷請求過程。對於這種一般情況,只要發生中斷,就可以搶占內核,即使內核正在執行其他中斷函數。這里有兩點說明:一是因為linux不支持 中斷優先順序,因此任何中斷都可以搶占其他中斷,但是同種類型的中斷(即定義使用同一個 中斷線的中斷)不會發生搶占,他們會在執行本類型中斷的時候依次被調用執行。二是所謂 只要發生中斷,就可以搶占內核這句是有一定限制的,因為當中斷發生的時候系統由中斷門 進入時自動關中斷(對於x86平台就是將eflags寄存器的if位置為0),只有當中斷函數被執行 (handle_IRQ_event)的過程中開中斷之後才能有搶占。 對於同種類型的中斷,由於其使用同樣的idt表項,通過其狀態標志(IRQ_PENDING和 IRQ_INPROGRESS)可以防止同種類型的中斷函數執行(注意:是防止handle_IRQ_event被重入, 而不是防止do_IRQ函數被重入),對於不同的中斷,則可以自由的嵌套。因此,所謂中斷嵌套, 對於不同的中斷是可以自由嵌套的,而對於同種類型的中斷,是不可以嵌套執行的。以下簡單解釋一下如何利用狀態標志來防止同種類型中斷的重入:當某種類型的中斷第一次發生時,首先其idt表項的狀態位上被賦予IRQ_PENDING標志,表示有待處理。 然後將中斷處理函數action置為null,然後由於其狀態沒有IRQ_INPROGRESS標志(第一次),故將其狀態置上IRQ_INPROGRESS並去處IRQ_PENDING標志,同時將action賦予相應的中斷處理函數指針(這里是一個重點,linux很巧妙的用法,隨後說明)。這樣,後面就可以順利執行handle_IRQ_event進行中斷處理,當在handle_IRQ_event中開中斷後,如果有同種類型的中斷發生,則再次進入do_IRQ函數,然後其狀態位上加上IRQ_PENDING標志,但是由於前一次中斷處理中加上的IRQ_INPROGRESS沒有被清除,因此這里無法清除IRQ_PENDING標志,因此action還是為null,這樣就無法再次執行handle_IRQ_event函數。從而退出本次中斷處理,返回上一次的中斷處理函數中,即繼續執行handle_IRQ_event函數。當handle_IRQ_event返回時檢查IRQ_PENDING標志,發現存在這個標志,說明handle_IRQ_event執行過程中被中斷過,存在未處理的同類中斷,因此再次循環執行handle_IRQ_event函數。直到不存在IRQ_PENDING標志為止。2.4和2.6的差別,就我來看,主要是在2.6中一進入do_IRQ,多了一個關閉內核搶占的動作,同時在處理中多了一種對IRQ_PER_CPU類型的中斷的處理,其他沒有什麼太大的改變。這類IRQ_PER_CPU的中斷主要用在smp環境下將中斷綁定在某一個指定的cpu上。例如arch/ppc/syslib/open_pic.c中的openpic_init中初始化ipi中斷的時候。 其實簡單的說,中斷可以嵌套,但是同種類型的中斷是不可以嵌套的,因為在IRQ上發生中斷,在中斷響應的過程中,這個IRQ是屏蔽的,也就是這個IRQ的中斷是不能被發現的。 同時在內核的臨界區內,中斷是被禁止的 關於do_IRQ可能會丟失中斷請求:do_IRQ函數是通過在執行完handle_IRQ_event函數之後判斷status是否被設置了IRQ_PENDING標志來判斷是否還有沒有被處理的同一通道的中斷請求。 但是這種方法只能判斷是否有,而不能知道有多少個未處理的統一通道中斷請求。也就是說,假如在第一個中斷請求執行handle_IRQ_event函數的過程中來了同一通道的兩個或更多中斷請求,而這些中斷不會再來,那麼僅僅通過判斷status是否設置了IRQ_PENDING標志不知道到底有多少個未處理的中斷,handle_IRQ_event只會被再執行一次。這算不算是個bug呢? 不算,只要知道有中斷沒有處理就OK了,知道1個和知道N個,本質上都是一樣的。作為外設,應當能夠處理自己中斷未被處理的情況。不可能丟失的,在每一個中斷描述符的結構體內,都有一個鏈表,鏈表中存放著服務常式序關於中斷中使用的幾個重要概念和關系: 一、基本概念 1. 產生的位置 發生的時刻 時序 中斷 CPU外部 隨機 非同步 異常 CPU正在執行的程序 一條指令終止執行後 同步 2.由中斷或異常執行的代碼不是一個進程,而是一個內核控制路徑,代表中斷發生時正在運行的進程的執行 中斷處理程序與正在運行的程序無關 引起異常處理程序的進程正是異常處理程序運行時的當前進程 二、特點 (2)能以嵌套的方式執行,但是同種類型的中斷不可以嵌套 (3)盡可能地限制臨界區,因為在臨界區中,中斷被禁止 2.大部分異常發生在用戶態,缺頁異常是唯一發生於內核態能觸發的異常 缺頁異常意味著進程切換,因此中斷處理程序從不執行可以導致缺頁的操作 3.中斷處理程序運行於內核態 中斷發生於用戶態時,要把進程的用戶空間堆棧切換到進程的系統空間堆棧,剛切換時,內核堆棧是空的 中斷發生於內核態時, 不需要堆棧空間的切換 三、分類 1.中斷的分類:可屏蔽中斷、不可屏蔽中斷 2.異常的分類: 分類 解決異常的方法 舉例 故障 那條指令會被重新執行 缺頁異常處理程序 陷阱 會從下一條指令開始執行 調試程序
『叄』 linux系統中的中斷指令是什麼
什麼是中斷
Linux 內核需要對連接到計算機上的所有硬體設備進行管理,毫無疑問這是它的份內事。如果要管理這些設備,首先得和它們互相通信才行,一般有兩種方案可實現這種功能:
輪詢(polling) 讓內核定期對設備的狀態進行查詢,然後做出相應的處理;中斷(interrupt) 讓硬體在需要的時候向內核發出信號(變內核主動為硬體主動)。
第一種方案會讓內核做不少的無用功,因為輪詢總會周期性的重復執行,大量地耗用 CPU 時間,因此效率及其低下,所以一般都是採用第二種方案 。
對於中斷的理解我們先看一個生活中常見的例子:QQ。第一種情況:你正在工作,然後你的好友突然給你發送了一個窗口抖動,打斷你正在進行的工作。第
二種情況:當然你有時候也會每隔 5 分鍾就去檢查一下 QQ
看有沒有好友找你,雖然這很浪費你的時間。在這里,一次窗口抖動就可以被相當於硬體的中斷,而你就相當於 CPU,你的工作就是 CPU
這在執行的進程。而定時查詢就被相當於 CPU 的輪詢。在這里可以看到:同樣作為 CPU 和硬體溝通的方式,中斷是硬體主動的方式,較輪詢(CPU
主動)更有效些,因為我們都不可能一直無聊到每隔幾分鍾就去查一遍好友列表。
CPU
有大量的工作需要處理,更不會做這些大量無用功。當然這只是一般情況下。好了,這里又有了一個問題,每個硬體設備都中斷,那麼如何區分不同硬體呢?不同設
備同時中斷如何知道哪個中斷是來自硬碟、哪個來自網卡呢?這個很容易,不是每個 QQ 號碼都不相同嗎?同樣的,系統上的每個硬體設備都會被分配一個
IRQ 號,通過這個唯一的 IRQ 號就能區別張三和李四了。
從物理學的角度看,中斷是一種電信號,由硬體設備產生,並直接送入中斷控制器(如
8259A)的輸入引腳上,然後再由中斷控制器向處理器發送相應的信號。處理器一經檢測到該信號,便中斷自己當前正在處理的工作,轉而去處理中斷。此後,
處理器會通知 OS 已經產生中斷。這樣,OS
就可以對這個中斷進行適當的處理。不同的設備對應的中斷不同,而每個中斷都通過一個唯一的數字標識,這些值通常被稱為中斷請求線。
『肆』 《Linux設備驅動程序》(十六)-中斷處理
設備與處理器之間的工作通常來說是非同步,設備數據要傳遞給處理器通常來說有以下幾種方法:輪詢、等待和中斷。
讓CPU進行輪詢等待總是不能讓人滿意,所以通常都採用中斷的形式,讓設備來通知CPU讀取數據。
2.6內核的函數參數與現在的參數有所區別,這里都主要介紹概念,具體實現方法需要結合具體的內核版本。
request_irq函數申請中斷,返回0表示申請成功,其他返回值表示申請失敗,其具體參數解釋如下:
flags 掩碼可以使用以下幾個:
快速和慢速處理常式 :現代內核中基本沒有這兩個概念了,使用SA_INTERRUPT位後,當中斷被執行時,當前處理器的其他中斷都將被禁止。通常不要使用SA_INTERRUPT標志位,除非自己明確知道會發生什麼。
共享中斷 :使用共享中斷時,一方面要使用SA_SHIRQ位,另一個是request_irq中的dev_id必須是唯一的,不能為NULL。這個限制的原因是:內核為每個中斷維護了一個共享處理常式的列表,常式中的dev_id各不相同,就像設備簽名。如果dev_id相同,在卸載的時候引起混淆(卸載了另一個中斷),當中斷到達時會產生內核OOP消息。
共享中斷需要滿足以下一個條件才能申請成功:
當不需要使用該中斷時,需要使用free_irq釋放中斷。
通常我們會在模塊載入的時候申請安裝中斷處理常式,但書中建議:在設備第一次打開的時候安裝,在設備最後一次關閉的時候卸載。
如果要查看中斷觸發的次數,可以查看 /proc/interrupts 和 /proc/stat。
書中講述了如何自動檢測中斷號,在嵌入式開發中通常都是查看原理圖和datasheet來直接確定。
自動檢測的原理如下:驅動程序通知設備產生中斷,然後查看哪些中斷信號線被觸發了。Linux提供了以下方法來進行探測:
探測工作耗時較長,建議在模塊載入的時候做。
中斷處理函數和普通函數其實差不多,唯一的區別是其運行的中斷上下文中,在這個上下文中有以下注意事項:
中斷處理函數典型用法如下:
中斷處理函數的參數和返回值含義如下:
返回值主要有兩個:IRQ_NONE和IRQ_HANDLED。
對於中斷我們是可以進行開啟和關閉的,Linux中提供了以下函數操作單個中斷的開關:
該方法可以在所有處理器上禁止或啟用中斷。
需要注意的是:
如果要關閉當前處理器上所有的中斷,則可以調用以下方法:
local_irq_save 會將中斷狀態保持到flags中,然後禁用處理器上的中斷;如果明確知道中斷沒有在其他地方被禁用,則可以使用local_irq_disable,否則請使用local_irq_save。
locat_irq_restore 會根據上面獲取到flags來恢復中斷;local_irq_enable 會無條件打開所有中斷。
在中斷中需要做一些工作,如果工作內容太多,必然導致中斷處理所需的時間過長;而中斷處理又要求能夠盡快完成,這樣才不會影響正常的系統調度,這兩個之間就產生了矛盾。
現在很多操作系統將中斷分為兩個部分來處理上面的矛盾:頂半部和底半部。
頂半部就是我們用request_irq來注冊的中斷處理函數,這個函數要求能夠盡快結束,同時在其中調度底半部,讓底半部在之後來進行後續的耗時工作。
頂半部就不再說明了,就是上面的中斷處理函數,只是要求能夠盡快處理完成並返回,不要處理耗時工作。
底半部通常使用tasklet或者工作隊列來實現。
tasklet的特點和注意事項:
工作隊列的特點和注意事項:
『伍』 Linux下如何強制中斷一個程序的執行(利用按鍵,而不是kill命令)
Linux下強制中斷一個程序的執行使用鍵盤按鍵可以有多種方法。
1、CTRL+C鍵,這相當於發送Terminal信息到當前的程序。比如下圖,在通過find命令查找名稱帶3b76的文件,可以直接按ctrl+c鍵結束掉循環。
『陸』 Linux內核中斷之中斷調用流程
本文基於 RockPI 4A 單板Linux4.4內核介紹中斷調用流程。
ARMv8包括兩種運行狀態:AArch64和AArch32。
AArch64中不再使用AArch32中的7種特權模式,而是提出了Exception Levels的概念,包括:
1)EL0:用於用戶態程序,許可權最低
2)EL1:給內核使用,許可權稍高
3)EL2:虛擬化相關,許可權更高
4)EL3:安全相關,許可權最高
Linux內核中一般只使用EL0和EL1。
AArch64異常向量表中的異常包括:
1)Synchronous exception(同步異常)
2)SError
3)IRQ
4)FIQ
註:SError、IRQ和FIQ屬於非同步異常。
在Linux內核中,在 arch/arm64/kernel/entry.S 文件中定義了異常向量表,內容如下:
選取 el1_irq() 函數介紹Linux內核中斷的調用流程。
文件: arch/arm64/kernel/entry.S ,調用流程如下:
1、handle_irq()初始化
在 DTS 解析階段完成 handle_irq() 函數的初始化,流程如下:
gic_irq_domain_map() 函數中完成了 handle_irq() 函數的賦值,具體執行如下:
2、handle_irq()實現
以共享外設中斷 SPI 的中斷處理函數 handle_fasteoi_irq() 為例,繼續跟蹤中斷的執行過程。
handle_irq_event_percpu() 函數會調用已經注冊的中斷處理函數,同時喚醒 irq_thread 線程。
3、中斷處理線程
在使用 request_threaded_irq() 函數申請中斷時,會創建一個 irq_thread 線程,調用流程如下:
irq_thread 線程平時在睡眠狀態,等待 handle_irq_event_percpu() 函數喚醒,進一步執行已注冊的中斷處理線程函數。
使用 DRM 框架中 HDMI 中斷驗證中斷調用流程。
文件: driversgpudrmridgesynopsysdw-hdmi.c
在中斷處理函數 dw_hdmi_hardirq() 和中斷處理線程函數 dw_hdmi_irq 中增加 mp_stack() 調用( 註:僅限於調試驗證 )。
插入 HDMI 線,系統啟動後,顯示中斷調用流程的日誌如下:
和