『壹』 linux TCP內核參數設置與調優(詳細)!
/Proc/sys/net/ipv4/目錄中存放著TCP參數的文件,用於添加網路設置。其中的許多設置能防止系統遭受攻擊,或配置系統路由功能。
例如,TCP_SYN_RETRIES參數控制客戶端發起SYN連接的重傳次數。修改此參數值,如將net.ipv4.tcp_syn_retries設置為2,測試後,通過SSH連接不存在的主機,可觀察到系統重傳了2個數據包。
TCP_WINDOW_SCALING參數決定是否啟用窗口擴大因子選項。啟用此選項可提高網路數據傳輸效率。
Net.ipv4.tcp_sack參數控制是否啟用選擇確認(Selective Acknowledgement,SACK)選項,這可以提高數據傳輸的靈活性和效率。
修改內核參數的目的是優化系統性能和安全性。了解參數的詳細配置信息,請參考Linux內核文檔。
/Proc/sys/net/core/目錄下包含設置,用於控制Linux內核與網路層的交互,決定網路動作時內核的響應方式。
網路相關參數如eth0的MAC地址、速率(speed)、MTU等信息,可以在/sys/class/net/對應網卡目錄中查看,此路徑提供深入的網路參數細節。
『貳』 實戰解讀丨Linux下實現高並發socket最大連接數的配置方法
摘要:在Linux環境下,編寫客戶端或服務端程序時,高並發TCP連接的處理能力受到系統對用戶單一進程同時可打開文件數量的限制。本文將詳細介紹如何通過修改系統配置來提升最大連接數。
【訴求場景】
在Linux系統中,無論是客戶端還是服務端程序,在處理大量並發TCP連接時,系統會受限於用戶進程能同時打開的文件數量。每個TCP連接都對應一個socket句柄,而每個句柄又等同於一個文件句柄。
【配置方法】
1. **修改文件數量並發限制**
首先,可以通過`ulimit -n`查看當前系統允許當前用戶進程打開的文件數限制。默認值通常為1024,意味著每個進程最多可以同時打開1024個文件。然而,在計算實際可用的TCP連接數時,還需要考慮標准輸入、輸出、錯誤以及伺服器監聽socket等佔用的數量,因此實際值通常會少於1024。
要提升這個限制,可以修改系統配置,例如,通過`vim /etc/security/limits.conf`添加如下內容:
`root soft nofile 1921`
`root hard nofile 1921`
這里,`root`代表修改了root用戶打開文件數的限制,`soft`和`hard`分別代表軟限制和硬限制,`1921`是新設置的最大文件數,軟限制必須小於或等於硬限制。
2. **優化登錄腳本**
在用戶登錄系統後,通過`/etc/pam.d/login`添加`session required /lib/security/pam_limits.so`,使得系統能通過`pam_limits.so`模塊調整用戶的資源使用限制,包括文件打開的最大數量。
3. **查看系統級最大文件數限制**
使用`cat /proc/sys/fs/file-max`查看Linux系統級別的最大文件數限制。這是系統的硬限制,所有用戶的文件數總和不會超過這個值。通常不輕易修改這個值,但若需要調整,可以通過`vim /etc/rc.local`完成。
4. **動態調整系統配置**
使用`echo 數值 > /proc/sys/fs/file-max`命令調整文件數限制,完成設置後重啟系統。執行`ulimit -n`驗證調整效果。
5. **解決並發連接數增加問題**
盡管解開了系統對用戶同時打開文件數的限制,但TCP連接數仍可能受到內核本地埠號范圍的限制。通常情況下,Linux內核允許的本地埠號范圍為1024-32768。
若遇到埠號不足導致無法創建新連接的問題,可以修改`/etc/sysctl.conf`文件,添加如下內容來擴展埠號范圍:
`net.ipv4.ip_local_port_range = 1024 65535`
執行`sysctl -p`確保配置生效,查看系統信息以確認埠號范圍已調整。
通過上述步驟,可以有效提升Linux系統在處理高並發TCP連接時的最大連接數,解決實際應用中的性能瓶頸。
『叄』 linux下怎麼設置tcp
Socket的send函數在執行時報EAGAIN的錯誤 當客戶通過Socket提供的send函數發送大的數據包時,就可能返回一個EGGAIN的錯誤。該錯誤產生的原因是由於send 函數中的size變數大小超過了tcp_sendspace的值。tcp_sendspace定義了應用在調用send之前能夠在kernel中緩存的數據量。當應用程序在socket中設置了O_NDELAY或者O_NONBLOCK屬性後,如果發送緩存被占滿,send就會返回EAGAIN的錯誤。 為了消除該錯誤,有三種方法可以選擇: 1.調大tcp_sendspace,使之大於send中的size參數 ---no -p -o tcp_sendspace=65536 2.在調用send前,在setsockopt函數中為SNDBUF設置更大的值 3.使用write替代send,因為write沒有設置O_NDELAY或者O_NONBLOCK 1. tcp 收發緩沖區默認值 [root@qljt core]# cat /proc/sys/net/ipv4/tcp_rmem 4096 87380 4161536 87380 :tcp接收緩沖區的默認值 [root@qljt core]# cat /proc/sys/net/ipv4/tcp_wmem 4096 16384 4161536 16384 : tcp 發送緩沖區的默認值 2. tcp 或udp收發緩沖區最大值 [root@qljt core]# cat /proc/sys/net/core/rmem_max 131071 131071:tcp 或 udp 接收緩沖區最大可設置值的一半。 也就是說調用 setsockopt(s, SOL_SOCKET, SO_RCVBUF, &rcv_size, &optlen); 時rcv_size 如果超過 131071,那麼 getsockopt(s, SOL_SOCKET, SO_RCVBUF, &rcv_size, &optlen); 去到的值就等於 131071 * 2 = 262142 [root@qljt core]# cat /proc/sys/net/core/wmem_max 131071 131071:tcp 或 udp 發送緩沖區最大可設置值得一半。 跟上面同一個道理 3. udp收發緩沖區默認值 [root@qljt core]# cat /proc/sys/net/core/rmem_default 111616:udp接收緩沖區的默認值 [root@qljt core]# cat /proc/sys/net/core/wmem_default 111616 111616:udp發送緩沖區的默認值 . tcp 或udp收發緩沖區最小值 tcp 或udp接收緩沖區的最小值為 256 bytes,由內核的宏決定; tcp 或udp發送緩沖區的最小值為 2048 bytes,由內核的宏決定 setsockopt設置socket狀態 1.closesocket(一般不會立即關閉而經歷TIME_WAIT的過程)後想繼續重用該socket: BOOL bReuseaddr=TRUE; setsockopt(s,SOL_SOCKET ,SO_REUSEADDR,(const char*)&bReuseaddr,sizeof(BOOL)); 2. 如果要已經處於連接狀態的soket在調用closesocket後強制關閉,不經歷TIME_WAIT的過程: BOOL bDontLinger = FALSE; setsockopt(s,SOL_SOCKET,SO_DONTLINGER,(const char*)&bDontLinger,sizeof(BOOL)); 3.在send(),recv()過程中有時由於網路狀況等原因,發收不能預期進行,而設置收發時限: int nNetTimeout=1000;//1秒 //發送時限 setsockopt(socket,SOL_S0CKET,SO_SNDTIMEO,(char *)&nNetTimeout,sizeof(int)); //接收時限 setsockopt(socket,SOL_S0CKET,SO_RCVTIMEO,(char *)&nNetTimeout,sizeof(int)); 4.在send()的時候,返回的是實際發送出去的位元組(同步)或發送到socket緩沖區的位元組(非同步);系統默認的狀態發送和接收一次為8688位元組(約為8.5K);在實際的過程中發送數據 和接收數據量比較大,可以設置socket緩沖區,而避免了send(),recv()不斷的循環收發: // 接收緩沖區 int nRecvBuf=32*1024;//設置為32K setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char*)&nRecvBuf,sizeof(int)); //發送緩沖區 int nSendBuf=32*1024;//設置為32K setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char*)&nSendBuf,sizeof(int)); 5. 如果在發送數據的時,希望不經歷由系統緩沖區到socket緩沖區的拷貝而影響程序的性能: int nZero=0; setsockopt(socket,SOL_S0CKET,SO_SNDBUF,(char *)&nZero,sizeof(nZero)); 6.同上在recv()完成上述功能(默認情況是將socket緩沖區的內容拷貝到系統緩沖區): int nZero=0; setsockopt(socket,SOL_S0CKET,SO_RCVBUF,(char *)&nZero,sizeof(int)); 7.一般在發送UDP數據報的時候,希望該socket發送的數據具有廣播特性: BOOL bBroadcast=TRUE; setsockopt(s,SOL_SOCKET,SO_BROADCAST,(const char*)&bBroadcast,sizeof(BOOL)); 8.在client連接伺服器過程中,如果處於非阻塞模式下的socket在connect()的過程中可以設置connect()延時,直到accpet()被呼叫(本函數設置只有在非阻塞的過程中有顯著的 作用,在阻塞的函數調用中作用不大) BOOL bConditionalAccept=TRUE; setsockopt(s,SOL_SOCKET,SO_CONDITIONAL_ACCEPT,(const char*)&bConditionalAccept,sizeof(BOOL)); 9.如果在發送數據的過程中(send()沒有完成,還有數據沒發送)而調用了closesocket(),以前我們一般採取的措施是"從容關閉"shutdown(s,SD_BOTH),但是數據是肯定丟失了,如何設置讓程序滿足具體應用的要求(即讓沒發完的數據發送出去後在關閉socket)? struct linger { u_short l_onoff; u_short l_linger; }; linger m_sLinger; m_sLinger.l_onoff=1;//(在closesocket()調用,但是還有數據沒發送完畢的時候容許逗留) // 如果m_sLinger.l_onoff=0;則功能和2.)作用相同; m_sLinger.l_linger=5;//(容許逗留的時間為5秒) setsockopt(s,SOL_SOCKET,SO_LINGER,(const char*)&m_sLinger,sizeof(linger)); 設置套介面的選項。 #include <winsock.h> int PASCAL FAR setsockopt( SOCKET s, int level, int optname, const char FAR* optval, int optlen); s:標識一個套介面的描述字。 level:選項定義的層次;目前僅支持SOL_SOCKET和IPPROTO_TCP層次。 optname:需設置的選項。 optval:指針,指向存放選項值的緩沖區。 optlen:optval緩沖區的長度。 注釋: setsockopt()函數用於任意類型、任意狀態套介面的設置選項值。盡管在不同協議層上存在選項,但本函數僅定義了最高的「套介面」層次上的選項。選項影響套介面的操作,諸如加急數據是否在普通數據流中接收,廣播數據是否可以從套介面發送等等。 有兩種套介面的選項:一種是布爾型選項,允許或禁止一種特性;另一種是整形或結構選項。允許一個布爾型選項,則將optval指向非零整形數;禁止一個選項optval指向一個等於零的整形數。對於布爾型選項,optlen應等於sizeof(int);對其他選項,optval指向包含所需選項的整形數或結構,而optlen則為整形數或結構的長度。SO_LINGER選項用於控制下述情況的行動:套介面上有排隊的待發送數據,且 closesocket()調用已執行。參見closesocket()函數中關於SO_LINGER選項對closesocket()語義的影響。應用程序通過創建一個linger結構來設置相應的操作特性: struct linger { int l_onoff; int l_linger; }; 為了允許SO_LINGER,應用程序應將l_onoff設為非零,將l_linger設為零或需要的超時值(以秒為單位),然後調用setsockopt()。為了允許SO_DONTLINGER(亦即禁止SO_LINGER),l_onoff應設為零,然後調用setsockopt()。 預設條件下,一個套介面不能與一個已在使用中的本地地址捆綁(參見bind())。但有時會需要「重用」地址。因為每一個連接都由本地地址和遠端地址的組合唯一確定,所以只要遠端地址不同,兩個套介面與一個地址捆綁並無大礙。為了通知WINDOWS套介面實現不要因為一個地址已被一個套介面使用就不讓它與另一個套介面捆綁,應用程序可在bind()調用前先設置SO_REUSEADDR選項。請注意僅在bind()調用時該選項才被解釋;故此無需(但也無害)將一個不會共用地址的套介面設置該選項,或者在bind()對這個或其他套介面無影響情況下設置或清除這一選項。 一個應用程序可以通過打開SO_KEEPALIVE選項,使得WINDOWS套介面實現在TCP連接情況下允許使用「保持活動」包。一個WINDOWS套介面實現並不是必需支持「保持活動」,但是如果支持的話,具體的語義將與實現有關,應遵守RFC1122「Internet主機要求-通訊層」中第 4.2.3.6節的規范。如果有關連接由於「保持活動」而失效,則進行中的任何對該套介面的調用都將以WSAENETRESET錯誤返回,後續的任何調用將以WSAENOTCONN錯誤返回。 TCP_NODELAY選項禁止Nagle演算法。Nagle演算法通過將未確認的數據存入緩沖區直到蓄足一個包一起發送的方法,來減少主機發送的零碎小數據包的數目。但對於某些應用來說,這種演算法將降低系統性能。所以TCP_NODELAY可用來將此演算法關閉。應用程序編寫者只有在確切了解它的效果並確實需要的情況下,才設置TCP_NODELAY選項,因為設置後對網路性能有明顯的負面影響。TCP_NODELAY是唯一使用IPPROTO_TCP層的選項,其他所有選項都使用SOL_SOCKET層。 如果設置了SO_DEBUG選項,WINDOWS套介面供應商被鼓勵(但不是必需)提供輸出相應的調試信息。但產生調試信息的機制以及調試信息的形式已超出本規范的討論范圍。 setsockopt()支持下列選項。其中「類型」表明optval所指數據的類型。 選項 類型 意義 SO_BROADCAST BOOL 允許套介面傳送廣播信息。 SO_DEBUG BOOL 記錄調試信息。 SO_DONTLINER BOOL 不要因為數據未發送就阻塞關閉操作。設置本選項相當於將SO_LINGER的l_onoff元素置為零。 SO_DONTROUTE BOOL 禁止選徑;直接傳送。 SO_KEEPALIVE BOOL 發送「保持活動」包。 SO_LINGER struct linger FAR* 如關閉時有未發送數據,則逗留。 SO_OOBINLINE BOOL 在常規數據流中接收帶外數據。 SO_RCVBUF int 為接收確定緩沖區大小。 SO_REUSEADDR BOOL 允許套介面和一個已在使用中的地址捆綁(參見bind())。 SO_SNDBUF int 指定發送緩沖區大小。 TCP_NODELAY BOOL 禁止發送合並的Nagle演算法。 setsockopt()不支持的BSD選項有: 選項名 類型 意義 SO_ACCEPTCONN BOOL 套介面在監聽。 SO_ERROR int 獲取錯誤狀態並清除。 SO_RCVLOWAT int 接收低級水印。 SO_RCVTIMEO int 接收超時。 SO_SNDLOWAT int 發送低級水印。 SO_SNDTIMEO int 發送超時。 SO_TYPE int 套介面類型。 IP_OPTIONS 在IP頭中設置選項。 返回值: 若無錯誤發生,setsockopt()返回0。否則的話,返回SOCKET_ERROR錯誤,應用程序可通過WSAGetLastError()獲取相應錯誤代碼。 錯誤代碼: WSANOTINITIALISED:在使用此API之前應首先成功地調用WSAStartup()。 WSAENETDOWN:WINDOWS套介面實現檢測到網路子系統失效。 WSAEFAULT:optval不是進程地址空間中的一個有效部分。 WSAEINPROGRESS:一個阻塞的WINDOWS套介面調用正在運行中。 WSAEINVAL:level值非法,或optval中的信息非法。 WSAENETRESET:當SO_KEEPALIVE設置後連接超時。 WSAENOPROTOOPT:未知或不支持選項。其中,SOCK_STREAM類型的套介面不支持SO_BROADCAST選項,SOCK_DGRAM 類型的套介面不支持SO_DONTLINGER 、SO_KEEPALIVE、SO_LINGER和SO_OOBINLINE選項。 WSAENOTCONN:當設置SO_KEEPALIVE後連接被復位。 WSAENOTSOCK:描述字不是一個套介面。