導航:首頁 > 操作系統 > linux內核符號表

linux內核符號表

發布時間:2025-02-09 20:26:08

1. linux 操作系統/boot目錄下面都是什麼文件

BOOT目錄下的文件,
其中幾個核心的如下:
System.map、vmlinuz、initrd-2.4.7-10.img
這幾個文件是怎麼產生的?又有什麼作用呢?本文對此做些介紹。

一、vmlinuz

vmlinuz是可引導的、壓縮的內核。「vm」代表「Virtual Memory」。Linux 支持虛擬內存,不像老的操作系統比如DOS有640KB內存的限制。Linux能夠使用硬碟空間作為虛擬內存,因此得名「vm」。vmlinuz是可執行的Linux內核,它位於/boot/vmlinuz,它一般是一個軟鏈接,比如圖中是vmlinuz-2.4.7-10的軟鏈接。

vmlinuz的建立有兩種方式。一是編譯內核時通過「make zImage」創建,然後通過:「cp /usr/src/linux-2.4/arch/i386/linux/boot/zImage/boot/vmlinuz」產生。zImage適用於小內核的情況,它的存在是為了向後的兼容性。

二是內核編譯時通過命令make bzImage創建,然後通過:「cp/usr/src/linux-2.4/arch/i386/linux/boot/bzImage /boot/vmlinuz」產生。bzImage是壓縮的內核映像,需要注意,bzImage不是用bzip2壓縮的,bzImage中的bz容易引起誤解,bz表示「big zImage」。 bzImage中的b是「big」意思。 zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip壓縮的。它們不僅是一個壓縮文件,而且在這兩個文件的開頭部分內嵌有gzip解壓縮代碼。所以你不能用gunzip 或 gzip –dc解包vmlinuz。

內核文件中包含一個微型的gzip用於解壓縮內核並引導它。兩者的不同之處在於,老的zImage解壓縮內核到低端內存(第一個640K),bzImage解壓縮內核到高端內存(1M以上)。如果內核比較小,那麼可以採用zImage或bzImage之一,兩種方式引導的系統運行時是相同的。大的內核採用bzImage,不能採用zImage。vmlinux是未壓縮的內核,vmlinuz是vmlinux的壓縮文件。

二、initrd-x.x.x.img

initrd是「initial ramdisk」的簡寫。initrd一般被用來臨時的引導硬體到實際內核vmlinuz能夠接管並繼續引導的狀態。圖中的initrd-2.4.7-10.img主要是用於載入ext3等文件系統及scsi設備的驅動。

比如,使用的是scsi硬碟,而內核vmlinuz中並沒有這個scsi硬體的驅動,那麼在裝入scsi模塊之前,內核不能載入根文件系統,但scsi模塊存儲在根文件系統的/lib/moles下。為了解決這個問題,可以引導一個能夠讀實際內核的initrd內核並用initrd修正scsi引導問題。initrd-2.4.7-10.img是用gzip壓縮的文件,initrd實現載入一些模塊和安裝文件系統等功能。

initrd映象文件是使用mkinitrd創建的。mkinitrd實用程序能夠創建initrd映象文件。這個命令是RedHat專有的。其它Linux發行版或許有相應的命令。這是個很方便的實用程序。具體情況請看幫助:man mkinitrd下面的命令創建initrd映象文件。

三、System.map

System.map是一個特定內核的內核符號表。它是你當前運行的內核的System.map的鏈接。

內核符號表是怎麼創建的呢? System.map是由「nm vmlinux」產生並且不相關的符號被濾出。

對於本文中的例子,編譯內核時,System.map創建在/usr/src/linux-2.4/System.map。像下面這樣:

nm /boot/vmlinux-2.4.7-10 > System.map

下面幾行來自/usr/src/linux-2.4/Makefile:

nm vmlinux | grep -v '\(compiled\)\|\(\.o$$\)\|\( [aUw] \)\|\(\.\.ng$$\)\|\(LASH[RL]DI\)' | sort > System.map

然後復制到/boot:

cp /usr/src/linux/System.map /boot/System.map-2.4.7-10

下圖是System.map文件的一部分:

在進行程序設計時,會命名一些變數名或函數名之類的符號。Linux內核是一個很復雜的代碼塊,有許許多多的全局符號。

Linux內核不使用符號名,而是通過變數或函數的地址來識別變數或函數名。比如不是使用size_t BytesRead這樣的符號,而是像c0343f20這樣引用這個變數。

對於使用計算機的人來說,更喜歡使用那些像size_t BytesRead這樣的名字,而不喜歡像c0343f20這樣的名字。內核主要是用c寫的,所以編譯器/連接器允許我們編碼時使用符號名,當內核運行時使用地址。

然而,在有的情況下,我們需要知道符號的地址,或者需要知道地址對應的符號。這由符號表來完成,符號表是所有符號連同它們的地址的列表。上圖就是一個內核符號表,由上圖可知變數名checkCPUtype在內核地址c01000a5。

Linux 符號表使用到2個文件:

/proc/ksyms

System.map

/proc/ksyms是一個「proc file」,在內核引導時創建。實際上,它並不真正的是一個文件,它只不過是內核數據的表示,卻給人們是一個磁碟文件的假象,這從它的文件大小是0可以看出來。然而,System.map是存在於你的文件系統上的實際文件。

當你編譯一個新內核時,各個符號名的地址要發生變化,你的老的System.map具有的是錯誤的符號信息。每次內核編譯時產生一個新的System.map,你應當用新的System.map來取代老的System.map。

雖然內核本身並不真正使用System.map,但其它程序比如klogd,lsof和ps等軟體需要一個正確的System.map。如果你使用錯誤的或沒有System.map,klogd的輸出將是不可靠的,這對於排除程序故障會帶來困難。沒有System.map,你可能會面臨一些令人煩惱的提示信息。

另外少數驅動需要System.map來解析符號,沒有為你當前運行的特定內核創建的System.map它們就不能正常工作。

Linux的內核日誌守護進程klogd為了執行名稱-地址解析,klogd需要使用System.map。System.map應當放在使用它的軟體能夠找到它的地方。執行:man klogd可知,如果沒有將System.map作為一個變數的位置給klogd,那麼它將按照下面的順序,在三個地方查找System.map:

/boot/System.map

/System.map

/usr/src/linux/System.map

System.map也有版本信息,klogd能夠智能地查找正確的映象(map)文件。

閱讀全文

與linux內核符號表相關的資料

熱點內容
java的equals用法 瀏覽:843
奧維雲伺服器怎麼開通 瀏覽:167
js取得伺服器地址 瀏覽:810
起點中文網小說緩存在哪個文件夾 瀏覽:214
java瘋狂講義pdf 瀏覽:296
推有錢app在哪裡 瀏覽:739
寧波鮑斯壓縮機 瀏覽:93
新建文件夾電影2完整版演員表 瀏覽:988
空調壓縮機為什麼不能放到冷庫用 瀏覽:89
江西雲伺服器節點虛擬主機 瀏覽:997
新氧app如何測試臉型 瀏覽:688
個稅app如何查詢社保 瀏覽:495
安卓設備快充什麼時候開啟的 瀏覽:13
ipad怎麼用安卓手機傳文件 瀏覽:584
編輯程序員視頻 瀏覽:633
極光app的雲助手在哪裡 瀏覽:777
信合有什麼ApP 瀏覽:958
android絕對位置 瀏覽:79
阿里巴巴校招程序員在哪個園區 瀏覽:905
呼吸的科學pdf 瀏覽:820