『壹』 怎樣分析linux的性能指標
一、處理器參數
這是一個很簡單的參數,它直觀的描述了每個CPU的利用率。在xSeries架構中,如果CPU的利用率長時間的超過80%,就可能是出現了處理器的瓶頸。
Runable processes
這個值描述了正在准備被執行的進程,在一個持續時間里這個值不應該超過物理CPU數量的10倍,否則CPU方面就可能存在瓶頸。
Blocked
描述了那些因為等待I/O操作結束而不能被執行的進程,Blocked可能指出你正面臨I/O瓶頸。
User time
描述了處理用戶進程的百分比,包括nice time。如果User time的值很高,說明系統性能用在處理實際的工作。
System time
描述了CPU花費在處理內核操作包括IRQ和軟體中斷上面的百分比。如果system time很高說明系統可能存在網路或者驅動堆棧方面的瓶頸。一個系統通常只花費很少的時間去處理內核的操作。
Idle time
描述了CPU空閑的百分比。
Nice time
描述了CPU花費在處理re-nicing進程的百分比。
Context switch
系統中線程之間進行交換的數量。
Waiting
CPU花費在等待I/O操作上的總時間,與blocked相似,一個系統不應該花費太多的時間在等待I/O操作上,否則你應該進一步檢測I/O子系統是否存在瓶頸。
Interrupts
Interrupts值包括硬Interrupts和軟Interrupts,硬Interrupts會對系統性能帶
來更多的不利影響。高的Interrupts值指出系統可能存在一個軟體的瓶頸,可能是內核或者驅動程序。注意Interrupts值中包括CPU時鍾導
致的中斷(現代的xServer系統每秒1000個Interrupts值)。
二、內存參數
Free memory
相比其他操作系統,Linux空閑內存的值不應該做為一個性能參考的重要指標,因為就像我們之前提到過的,Linux內核會分配大量沒有被使用的內存作為文件系統的緩存,所以這個值通常都比較小。
Swap usage
這個值描述了已經被使用的swap空間。Swap
usage只表示了Linux管理內存的有效性。對識別內存瓶頸來說,Swap In/Out才是一個比較又意義的依據,如果Swap
In/Out的值長期保持在每秒200到300個頁面通常就表示系統可能存在內存的瓶頸。
Buffer and cache
這個值描述了為文件系統和塊設備分配的緩存。注意在Red Hat Enterprise Linux
3和更早一些的版本中,大部分空閑內存會被分配作為緩存使用。在Red Hat Enterprise Linux
4以後的版本中,你可以通過修改/proc/sys/vm中的page_cache_tuning來調整空閑內存中作為緩存的數量。
Slabs
描述了內核使用的內存空間,注意內核的頁面是不能被交換到磁碟上的。
Active versus inactive memory
提供了關於系統內存的active內存信息,Inactive內存是被kswapd守護進程交換到磁碟上的空間。
三、網路參數
Packets received and sent
這個參數表示了一個指定網卡接收和發送的數據包的數量。
Bytes received and sent
這個參數表示了一個指定網卡接收和發送的數據包的位元組數。
Collisions per second
這個值提供了發生在指定網卡上的網路沖突的數量。持續的出現這個值代表在網路架構上出現了瓶頸,而不是在伺服器端出現的問題。在正常配置的網路中沖突是非常少見的,除非用戶的網路環境都是由hub組成。
Packets dropped
這個值表示了被內核丟掉的數據包數量,可能是因為防火牆或者是網路緩存的缺乏。
Overruns
Overruns表達了超出網路介面緩存的次數,這個參數應該和packets dropped值聯繫到一起來判斷是否存在在網路緩存或者網路隊列過長方面的瓶頸。
Errors
這個值記錄了標志為失敗的幀的數量。這個可能由錯誤的網路配置或者部分網線損壞導致,在銅口千兆乙太網環境中部分網線的損害是影響性能的一個重要因素。
四、塊設備參數
Iowait
CPU等待I/O操作所花費的時間。這個值持續很高通常可能是I/O瓶頸所導致的。
Average queue length
I/O請求的數量,通常一個磁碟隊列值為2到3為最佳情況,更高的值說明系統可能存在I/O瓶頸。
Average wait
響應一個I/O操作的平均時間。Average wait包括實際I/O操作的時間和在I/O隊列里等待的時間。
Transfers per second
描述每秒執行多少次I/O操作(包括讀和寫)。Transfers per second的值與kBytes per second結合起來可以幫助你估計系統的平均傳輸塊大小,這個傳輸塊大小通常和磁碟子系統的條帶化大小相符合可以獲得最好的性能。
Blocks read/write per second
這個值表達了每秒讀寫的blocks數量,在2.6內核中blocks是1024bytes,在早些的內核版本中blocks可以是不同的大小,從512bytes到4kb。
Kilobytes per second read/write
按照kb為單位表示讀寫塊設備的實際數據的數量。
『貳』 linux系統性能怎麼優化
linux系統性能怎麼優化
一、前提
我們可以在文章的開始就列出一個列表,列出可能影響Linux操作系統性能的一些調優參數,但這樣做其實並沒有什麼價值。因為性能調優是一個非常困難的任務,它要求對硬體、操作系統、和應用都有著相當深入的了解。如果性能調優非常簡單的話,那些我們要列出的調優參數早就寫入硬體的微碼或者操作系統中了,我們就沒有必要再繼續讀這篇文章了。正如下圖所示,伺服器的性能受到很多因素的影響。
當面對一個使用單獨IDE硬碟的,有20000用戶的資料庫伺服器時,即使我們使用數周時間去調整I/O子系統也是徒勞無功的,通常一個新的驅動或者應用程序的一個更新(如SQL優化)卻可以使這個伺服器的性能得到明顯的提升。正如我們前面提到的,不要忘記系統的性能是受多方面因素影響的。理解操作系統管理系統資源的方法將幫助我們在面對問題時更好的判斷應該對哪個子系統進行調整。
二、Linux的CPU調度
任何計算機的基本功能都十分簡單,那就是計算。為了實現計算的功能就必須有一個方法去管理計算資源、處理器和計算任務(也被叫做線程或者進程)。非常感謝Ingo Molnar,他為Linux內核帶來了O(1)CPU調度器,區別於舊有的O(n)調度器,新的調度器是動態的,可以支持負載均衡,並以恆定的速度進行操作。
新調度器的可擴展性非常好,無論進程數量或者處理器數量,並且調度器本身的系統開銷更少。新調取器的演算法使用兩個優先順序隊列。
引用
・活動運行隊列
・過期運行隊列
調度器的一個重要目標是根據優先順序許可權有效地為進程分配CPU 時間片,當分配完成後它被列在CPU的運行隊列中,除了 CPU 的運行隊列之外,還有一個過期運行隊列。當活動運行隊列中的一個任務用光自己的時間片之後,它就被移動到過期運行隊列中。在移動過程中,會對其時間片重新進行計算。如果活動運行隊列中已經沒有某個給定優先順序的任務了,那麼指向活動運行隊列和過期運行隊列的指針就會交換,這樣就可以讓過期優先順序列表變成活動優先順序的列表。通常互動式進程(相對與實時進程而言)都有一個較高的優先順序,它佔有更長的時間片,比低優先順序的進程獲得更多的計算時間,但通過調度器自身的調整並不會使低優先順序的進程完全被餓死。新調度器的優勢是顯著的改變Linux內核的可擴展性,使新內核可以更好的處理一些有大量進程、大量處理器組成的企業級應用。新的O(1)調度器包含仔2.6內核中,但是也向下兼容2.4內核。
新調度器另外一個重要的優勢是體現在對NUMA(non-uniform memory architecture)和SMP(symmetric multithreading processors)的支持上,例如INTEL@的超線程技術。
改進的NUMA支持保證了負載均衡不會發生在CECs或者NUMA節點之間,除非發生一個節點的超出負載限度。
三、Linux的內存架構
今天我們面對選擇32位操作系統還是64位操作系統的情況。對企業級用戶它們之間最大的區別是64位操作系統可以支持大於4GB的內存定址。從性能角度來講,我們需要了解32位和64位操作系統都是如何進行物理內存和虛擬內存的映射的。
在上面圖示中我們可以看到64位和32位Linux內核在定址上有著顯著的不同。
在32位架構中,比如IA-32,Linux內核可以直接定址的范圍只有物理內存的第一個GB(如果去掉保留部分還剩下896MB),訪問內存必須被映射到這小於1GB的所謂ZONE_NORMAL空間中,這個操作是由應用程序完成的。但是分配在ZONE_HIGHMEM中的內存頁將導致性能的降低。
在另一方面,64位架構比如x86-64(也稱作EM64T或者AMD64)。ZONE_NORMAL空間將擴展到64GB或者128GB(實際上可以更多,但是這個數值受到操作系統本身支持內存容量的限制)。正如我們看到的,使用64位操作系統我們排除了因ZONE_HIGHMEM部分內存對性能的影響的情況。
實際中,在32位架構下,由於上面所描述的內存定址問題,對於大內存,高負載應用,會導致死機或嚴重緩慢等問題。雖然使用hugemen核心可緩解,但採取x86_64架構是最佳的解決辦法。
四、虛擬內存管理
因為操作系統將內存都映射為虛擬內存,所以操作系統的物理內存結構對用戶和應用來說通常都是不可見的。如果想要理解Linux系統內存的調優,我們必須了解Linux的虛擬內存機制。應用程序並不分配物理內存,而是向Linux內核請求一部分映射為虛擬內存的內存空間。如下圖所示虛擬內存並不一定是映射物理內存中的空間,如果應用程序有一個大容量的請求,也可能會被映射到在磁碟子系統中的swap空間中。
另外要提到的是,通常應用程序不直接將數據寫到磁碟子系統中,而是寫入緩存和緩沖區中。Bdflush守護進程將定時將緩存或者緩沖區中的數據寫到硬碟上。
Linux內核處理數據寫入磁碟子系統和管理磁碟緩存是緊密聯系在一起的。相對於其他的操作系統都是在內存中分配指定的一部分作為磁碟緩存,Linux處理內存更加有效,默認情況下虛擬內存管理器分配所有可用內存空間作為磁碟緩存,這就是為什麼有時我們觀察一個配置有數G內存的Linux系統可用內存只有20MB的原因。
同時Linux使用swap空間的機制也是相當高效率的,如上圖所示虛擬內存空間是由物理內存和磁碟子系統中的swap空間共同組成的。如果虛擬內存管理器發現一個已經分配完成的內存分頁已經長時間沒有被調用,它將把這部分內存分頁移到swap空間中。經常我們會發現一些守護進程,比如getty,會隨系統啟動但是卻很少會被應用到。這時為了釋放昂貴的主內存資源,系統會將這部分內存分頁移動到swap空間中。上述就是Linux使用swap空間的機制,當swap分區使用超過50%時,並不意味著物理內存的使用已經達到瓶頸了,swap空間只是Linux內核更好的使用系統資源的一種方法。
簡單理解:Swap usage只表示了Linux管理內存的有效性。對識別內存瓶頸來說,Swap In/Out才是一個比較又意義的依據,如果Swap In/Out的值長期保持在每秒200到300個頁面通常就表示系統可能存在內存的瓶頸。下面的事例是好的狀態:
引用
# vmstat
procs ———–memory————- —swap– —–io—- –system– —-cpu—-
r b swpd free buff cache si so bi bo in cs us sy id wa
1 0 5696 6904 28192 50496 0 0 88 117 61 29 11 8 80 1
五、模塊化的I/O調度器
就象我們知道的Linux2.6內核為我們帶來了很多新的特性,這其中就包括了新的I/O調度機制。舊的2.4內核使用一個單一的I/O調度器,2.6 內核為我們提供了四個可選擇的I/O調度器。因為Linux系統應用在很廣闊的范圍里,不同的應用對I/O設備和負載的要求都不相同,例如一個筆記本電腦和一個10000用戶的資料庫伺服器對I/O的要求肯定有著很大的區別。
引用
(1).Anticipatory
anticipatory I/O調度器創建假設一個塊設備只有一個物理的查找磁頭(例如一個單獨的SATA硬碟),正如anticipatory調度器名字一樣,anticipatory調度器使用「anticipatory」的演算法寫入硬碟一個比較大的數據流代替寫入多個隨機的小的數據流,這樣有可能導致寫 I/O操作的一些延時。這個調度器適用於通常的一些應用,比如大部分的個人電腦。
(2).Complete Fair Queuing (CFQ)
Complete Fair Queuing(CFQ)調度器是Red Flag DC Server 5使用的標准演算法。CFQ調度器使用QoS策略為系統內的所有任務分配相同的帶寬。CFQ調度器適用於有大量計算進程的多用戶系統。它試圖避免進程被餓死和實現了比較低的延遲。
(3).Deadline
deadline調度器是使用deadline演算法的輪詢的調度器,提供對I/O子系統接近實時的操作,deadline調度器提供了很小的延遲和維持一個很好的磁碟吞吐量。如果使用deadline演算法請確保進程資源分配不會出現問題。
(4).NOOP
NOOP調度器是一個簡化的調度程序它只作最基本的合並與排序。與桌面系統的關系不是很大,主要用在一些特殊的軟體與硬體環境下,這些軟體與硬體一般都擁有自己的調度機制對內核支持的要求很小,這很適合一些嵌入式系統環境。作為桌面用戶我們一般不會選擇它。
六、網路子系統
新的網路中斷緩和(NAPI)對網路子系統帶來了改變,提高了大流量網路的性能。Linux內核在處理網路堆棧時,相比降低系統佔用率和高吞吐量更關注可靠性和低延遲。所以在某些情況下,Linux建立一個防火牆或者文件、列印、資料庫等企業級應用的性能可能會低於相同配置的Windows伺服器。
在傳統的處理網路封包的方式中,如下圖藍色箭頭所描述的,一個乙太網封包到達網卡介面後,如果MAC地址相符合會被送到網卡的緩沖區中。網卡然後將封包移到操作系統內核的網路緩沖區中並且對CPU發出一個硬中斷,CPU會處理這個封包到相應的網路堆棧中,可能是一個TCP埠或者Apache應用中。
這是一個處理網路封包的簡單的流程,但從中我們可以看到這個處理方式的缺點。正如我們看到的,每次適合網路封包到達網路介面都將對CPU發出一個硬中斷信號,中斷CPU正在處理的其他任務,導致切換動作和對CPU緩存的操作。你可能認為當只有少量的網路封包到達網卡的情況下這並不是個問題,但是千兆網路和現代的應用將帶來每秒鍾成千上萬的網路數據,這就有可能對性能造成不良的影響。
正是因為這個情況,NAPI在處理網路通訊的時候引入了計數機制。對第一個封包,NAPI以傳統的方式進行處理,但是對後面的封包,網卡引入了POLL 的輪詢機制:如果一個封包在網卡DMA環的緩存中,就不再為這個封包申請新的中斷,直到最後一個封包被處理或者緩沖區被耗盡。這樣就有效的減少了因為過多的中斷CPU對系統性能的影響。同時,NAPI通過創建可以被多處理器執行的軟中斷改善了系統的可擴展性。NAPI將為大量的企業級多處理器平台帶來幫助,它要求一個啟用NAPI的驅動程序。在今天很多驅動程序默認沒有啟用NAPI,這就為我們調優網路子系統的性能提供了更廣闊的空間。
七、理解Linux調優參數
因為Linux是一個開源操作系統,所以又大量可用的性能監測工具。對這些工具的選擇取決於你的個人喜好和對數據細節的要求。所有的性能監測工具都是按照同樣的規則來工作的,所以無論你使用哪種監測工具都需要理解這些參數。下面列出了一些重要的參數,有效的理解它們是很有用處的。
(1)處理器參數
引用
・CPU utilization
這是一個很簡單的參數,它直觀的描述了每個CPU的利用率。在xSeries架構中,如果CPU的利用率長時間的超過80%,就可能是出現了處理器的瓶頸。
・Runable processes
這個值描述了正在准備被執行的進程,在一個持續時間里這個值不應該超過物理CPU數量的10倍,否則CPU方面就可能存在瓶頸。
・Blocked
描述了那些因為等待I/O操作結束而不能被執行的進程,Blocked可能指出你正面臨I/O瓶頸。
・User time
描述了處理用戶進程的百分比,包括nice time。如果User time的值很高,說明系統性能用在處理實際的工作。
・System time
描述了CPU花費在處理內核操作包括IRQ和軟體中斷上面的百分比。如果system time很高說明系統可能存在網路或者驅動堆棧方面的瓶頸。一個系統通常只花費很少的時間去處理內核的操作。
・Idle time
描述了CPU空閑的百分比。
・Nice time
描述了CPU花費在處理re-nicing進程的百分比。
・Context switch
系統中線程之間進行交換的數量。
・Waiting
CPU花費在等待I/O操作上的總時間,與blocked相似,一個系統不應該花費太多的時間在等待I/O操作上,否則你應該進一步檢測I/O子系統是否存在瓶頸。
・Interrupts
Interrupts 值包括硬Interrupts和軟Interrupts,硬Interrupts會對系統性能帶來更多的不利影響。高的Interrupts值指出系統可能存在一個軟體的瓶頸,可能是內核或者驅動程序。注意Interrupts值中包括CPU時鍾導致的中斷(現代的xServer系統每秒1000個 Interrupts值)。
(2)內存參數
引用
・Free memory
相比其他操作系統,Linux空閑內存的值不應該做為一個性能參考的重要指標,因為就像我們之前提到過的,Linux內核會分配大量沒有被使用的內存作為文件系統的緩存,所以這個值通常都比較小。
・Swap usage
這 個值描述了已經被使用的swap空間。Swap usage只表示了Linux管理內存的有效性。對識別內存瓶頸來說,Swap In/Out才是一個比較又意義的依據,如果Swap In/Out的值長期保持在每秒200到300個頁面通常就表示系統可能存在內存的瓶頸。
・Buffer and cache
這個值描述了為文件系統和塊設備分配的緩存。在Red Flag DC Server 5版本中,你可以通過修改/proc/sys/vm中的page_cache_tuning來調整空閑內存中作為緩存的數量。
・Slabs
描述了內核使用的內存空間,注意內核的頁面是不能被交換到磁碟上的。
・Active versus inactive memory
提供了關於系統內存的active內存信息,Inactive內存是被kswapd守護進程交換到磁碟上的空間。
(3)網路參數
引用
・Packets received and sent
這個參數表示了一個指定網卡接收和發送的數據包的數量。
・Bytes received and sent
這個參數表示了一個指定網卡接收和發送的數據包的位元組數。
・Collisions per second
這個值提供了發生在指定網卡上的網路沖突的數量。持續的出現這個值代表在網路架構上出現了瓶頸,而不是在伺服器端出現的問題。在正常配置的網路中沖突是非常少見的,除非用戶的網路環境都是由hub組成。
・Packets dropped
這個值表示了被內核丟掉的數據包數量,可能是因為防火牆或者是網路緩存的缺乏。
・Overruns
Overruns表達了超出網路介面緩存的次數,這個參數應該和packets dropped值聯繫到一起來判斷是否存在在網路緩存或者網路隊列過長方面的瓶頸。
・Errors 這個值記錄了標志為失敗的幀的數量。這個可能由錯誤的網路配置或者部分網線損壞導致,在銅口千兆乙太網環境中部分網線的損害是影響性能的一個重要因素。
(4)塊設備參數
引用
・Iowait
CPU等待I/O操作所花費的時間。這個值持續很高通常可能是I/O瓶頸所導致的。
・Average queue length
I/O請求的數量,通常一個磁碟隊列值為2到3為最佳情況,更高的值說明系統可能存在I/O瓶頸。
・Average wait
響應一個I/O操作的平均時間。Average wait包括實際I/O操作的時間和在I/O隊列里等待的時間。
・Transfers per second
描述每秒執行多少次I/O操作(包括讀和寫)。Transfers per second的值與kBytes per second結合起來可以幫助你估計系統的平均傳輸塊大小,這個傳輸塊大小通常和磁碟子系統的條帶化大小相符合可以獲得最好的性能。
・Blocks read/write per second
這個值表達了每秒讀寫的blocks數量,在2.6內核中blocks是1024bytes,在早些的內核版本中blocks可以是不同的大小,從512bytes到4kb。
・Kilobytes per second read/write
按照kb為單位表示讀寫塊設備的實際數據的數量。
『叄』 CPU數量跟Linux系統性能的關系大嗎
linux系統性能怎麼優化
一、前提
我們可以在文章的開始就列出一個列表,列出可能影響Linux操作系統性能的一些調優參數,但這樣做其實並沒有什麼價值。因為性能調優是一個非常困難的任務,它要求對硬體、操作系統、和應用都有著相當深入的了解。如果性能調優非常簡單的話,那些我們要列出的調優參數早就寫入硬體的微碼或者操作系統中了,我們就沒有必要再繼續讀這篇文章了。正如下圖所示,伺服器的性能受到很多因素的影響。
當面對一個使用單獨IDE硬碟的,有20000用戶的資料庫伺服器時,即使我們使用數周時間去調整I/O子系統也是徒勞無功的,通常一個新的驅動或者應用程序的一個更新(如SQL優化)卻可以使這個伺服器的性能得到明顯的提升。正如我們前面提到的,不要忘記系統的性能是受多方面因素影響的。理解操作系統管理系統資源的方法將幫助我們在面對問題時更好的判斷應該對哪個子系統進行調整。
二、Linux的CPU調度
任何計算機的基本功能都十分簡單,那就是計算。為了實現計算的功能就必須有一個方法去管理計算資源、處理器和計算任務(也被叫做線程或者進程)。非常感謝Ingo Molnar,他為Linux內核帶來了O(1)CPU調度器,區別於舊有的O(n)調度器,新的調度器是動態的,可以支持負載均衡,並以恆定的速度進行操作。
新調度器的可擴展性非常好,無論進程數量或者處理器數量,並且調度器本身的系統開銷更少。新調取器的演算法使用兩個優先順序隊列。
『肆』 linux下怎麼查看伺服器性能
1.1 cpu性能查看
1、查看物理cpu個數:
cat /proc/cpuinfo |grep "physical id"|sort|uniq|wc -l
2、查看每個物理cpu中的core個數:
cat /proc/cpuinfo |grep "cpu cores"|wc -l
3、邏輯cpu的個數:
cat /proc/cpuinfo |grep "processor"|wc -l
物理cpu個數*核數=邏輯cpu個數(不支持超線程技術的情況下)
1.2 內存查看
1.3 硬碟查看
1、查看硬碟及分區信息:
fdisk -l
2、查看文件系統的磁碟空間佔用情況:
df -h
3、查看硬碟的I/O性能(每隔一秒顯示一次,顯示5次):
iostat -x 1 5
iostat是含在套裝systat中的,可以用yum -y install systat來安裝。
常關注的參數:
如%util接近100%,說明產生的I/O請求太多,I/O系統已經滿負荷,該磁碟可能存在瓶頸。如idle小於70%,I/O的壓力就比較大了,說明讀取進程中有較多的wait。
4、查看linux系統中某目錄的大小:
-sh /root
如發現某個分區空間接近用完,可以進入該分區的掛載點,用以下命令找出佔用空間最多的文件或目錄,然後按照從大到小的順序,找出系統中佔用最多空間的前10個文件或目錄:
-cksh *|sort -rn|head -n 10
以上命令的詳細介紹可如下查詢:
『伍』 伺服器linux性能比windows更好嗎
從需求性、穩定性、操作性、安全性、性價比來分析一番,然後您就知道該選哪款空間了。
需求性:
這個要看您網站選取的語言,如果是asp建設的網站,毫不猶豫應該選擇Windows主機,Linux不支持asp系列的語言;如果是php語言建設的網站,建議選擇Liunx主機,因為在liunx平台中,Linux+Apche+Mysql構架運行PHP網頁可以更高效,更穩定。Linux空間還支持zend加速等,讓你的網站跑的更順暢!
穩定性:
主機的穩定性是至關重要的,關系著網站的生存發展,如果穩定性不夠好的話,就會影響用戶的訪問,也會影響網站的優化,導致沒有排名,這對於用戶體驗度的影響是非常大的。通常來說,Linux穩定性要比Windows好些,因為Linux開源,一般很少有漏洞,就很少會招到網路攻擊。再就是Windows的圖形界面需要佔很多資源,而Linux系統去掉圖形界面的包袱,系統運行得更快。
Windows配置變化的時候,通常需要重新啟動,這導致不可避免的停機,而Linux通常不需要重新啟動。幾乎所有的Linux系統配置的改變都能在系統運行中操作,而且還不會影響其他無關的服務。
所以,Liunx要更穩定。
操作性:
Windows系統的普及和它的圖形化界面讓我們每個懂電腦的人都不會陌生了,而Linux伺服器一般是純命令行模式,每完成一個操作,比如新建一個文件夾,都要用一串命令來完成。所以從操作性來講,Liunx操作性要困難些。
安全性:
從安全漏洞的數量上來說,Linux的開源開發方式有助於發現錯誤,集眾人智慧解決問題,各種補丁更新得很快,這是Windows主機不具備的優勢。Linux系統也有自己的缺點,就是廠商開發的硬體和相關驅動一般針對的是Windows系統,使得Linux的硬體兼容相對延後。Linux主要用作支持網路功能的操作系統,默認安裝時啟動了很多不必要的網路應用程序,這就可能造成安全漏洞。
還有Linux裡面的許可權分配的很細致、嚴格,各個用戶之間也相互獨立,所以安全性較好。
性價比:
從這點來講,我想Linux的優勢是顯而易見的,因為Linux作為資源管理和操作系統來說,是開源、免費的。而Windows伺服器系統是要收費的,相應,Windows裡面的某些軟體也是收費的。因此,Windows主機的成本就要比Linux高很多,自然Windows空間要貴一些。
那麼現在很明顯,Linux空間是比較有優勢的,只不過它只能跑純靜態html或php建設的網站。所以如果網站只用到了php語言,那麼選Linux空間是很不錯的,無論從安全還是性能,都比windows有優勢。反正,如果是asp或.net系列的網站,就選windows主機吧。
『陸』 linux系統的優缺點
優點:
1、Linux是一款免費的操作系統,用戶可以通過網路或其他途徑免費獲得,並可以任意修改其源代碼。這是其他的操作系統所做不到的。
2、Linux可以運行在多種硬體平台上,如具有x86、680x0、SPARC、Alpha等處理器的平台。此外Linux還是一種嵌入式操作系統,可以運行在掌上電腦、機頂盒或游戲機上。
3、完全兼容POSIX1.0標准,這使得可以在Linux下通過相應的模擬器運行常見的DOS、Windows的程序。這為用戶從Windows轉到Linux奠定了基礎。
缺點:
1、Linux內核提供了一個調度程序來管理系統中運行的進程。幾乎總是,先發制人的;這意味著調度程序執行一段時間,如果進程尚未完成,則調度程序將停止進程並開始執行另一個進程。
2、內存管理器是內核最重要的核心部分之一。它提供物理到虛擬內存映射功能以及分頁和交換到物理磁碟。內存管理器使用與體系結構相關的代碼來訪問計算機的物理內存。雖然內核維護自己的虛擬地址空間,但用戶空間中的每個進程都有自己的虛擬地址空間。
(6)linux性能擴展閱讀:
桌面環境
在圖形計算中,一個桌面環境(Desktop environment,有時稱為桌面管理器)為計算機提供一個圖形用戶界面(GUI)。但嚴格來說窗口管理器和桌面環境是有區別的。
桌面環境就是桌面圖形環境,它的主要目標是為Linux/Unix操作系統提供一個更加完備 的界面以及大量各類整合工具和使用 程序,其基本 易用性吸引著大量的新用戶。
桌面環境名稱來自桌面比擬,對應於早期的文字命令行界面(CLI)。一個典型的桌面環境提供圖標,視窗,工具欄,文件夾,壁紙以及像拖放這樣的能力。整體而言,桌面環境在設計和功能上的特性,賦予了它與眾不同的外觀和感覺。
現今主流的桌面環境有KDE,gnome,Xfce,LXDE等,除此之外還有Ambient,EDE,IRIX Interactive Desktop,Mezzo,Sugar,CDE等。
『柒』 如何統計linux 系統的性能
1. Top:監測Linux進程 Linux Top命令是一個性能監測程序,它經常被許多系統管理員用來監測Linux性能,在許多類似Linux/Unix的操作系統環境下都能找到。Top命令可用於顯示所有運行中和活動的實時進程(按順序排列),並且定期更新。它可顯示處理...
『捌』 linux 性能指標是什麼
就是字面意思啊CPU佔用和內存佔用
『玖』 求推薦性能較好的Linux發行版!
性能較好的:
最好的就是lfs,完全自己優化
然後是gentoo,和lfs差不多,稍微方便點
然後是debian,打包質量非常高,lfs或gentoo優化的不好的話,還不如debian快,使用很方便
然後是arch,全是自己優化的話,也比較快,不過它的gcc打過補丁,不如debian兼容性好
我感覺如果不怕花錢的話,rhel是比較適合你的,有商業支持,性能比較均衡