導航:首頁 > 操作系統 > 單片機精確延時

單片機精確延時

發布時間:2022-01-19 12:32:40

單片機C語言的精確延時問題!!! 這個能不能實現延時10ms 如果能幫忙解釋一下,如果不能,怎麼

延時時間和單片機晶振頻率有關,12MHZ的時候單片機執行一條基本指令需要的時間是1us

❷ 單片機C語言如何較精確延時

因為你的z沒有確定,所以應該計算不出延時的時間,像這種程序,你可以通過編譯器進行軟體模擬,可以在上面看到這個嵌套的循環語句延時多長時間。

❸ 如何使用51單片機的定時器寫一個精確延時1ms的延時子函數。

要是精確延時的話,最好用匯編程序,每一條指令都能算出時間,哈

❹ 單片機C語言中怎麼實現微秒級延時

可以用_nop_( )函數來實現微秒級的延時。

_nop_();//直接當成一條語句使用,產生一條NOP指令

NOP指令為單周期指令,可由晶振頻率算出延時時間,對於12M晶振,延時1uS。


註:使用該函數時,需要將頭文件#include<intrins.h>包含進源文件中。

❺ 單片機如何實現精確延時

單片機的精確延時主要取決於兩個方面:
一、系統時鍾的准確性和穩定性。(晶振或晶體或內部振盪或其他外部時鍾源)
二、單片機執行延時的實現方法。
一不做討論,但顯然與精度密切相關。要求精確的延時時間越長,當然誤差越大。假設時鍾與標稱值的系數為x,延時誤差是下面分析誤差的x倍。
二主要分兩種:
A:NOP延時,或其它無聊指令。統稱指令延時。是以執行的次數且無中斷打斷來確定延時的。這種方法消耗單片機運行速度和代碼資源,但相對准確。如果延時時間較長,誤差也會加大。
B:定時器應用。定時器的中斷標志產生是嚴密的,最大誤差為計數頻率的倒數。置為最高優先後,到響應你所要的延時後動作,還有若干係統時鍾誤差:主要用於中斷響應的過程(固定),中斷保護棧操作時間(不定),延時需要執行的動作所花時間(程序確定)。

❻ 51單片機中怎麼得到精確延時

51單片機的幾種精確延時實現延時通常有兩種方法:一種是硬體延時,要用到定時器/計數器,這種方法可以提高CPU的工作效率,也能做到精確延時;另一種是軟體延時,這種方法主要採用循環體進行。

1 使用定時器/計數器實現精確延時

單片機系統一般常選用11.059 2 MHz、12 MHz或6 MHz晶振。第一種更容易產生各種標準的波特率,後兩種的一個機器周期分別為1 μs和2 μs,便於精確延時。本程序中假設使用頻率為12 MHz的晶振。最長的延時時間可達216=65 536 μs。若定時器工作在方式2,則可實現極短時間的精確延時;如使用其他定時方式,則要考慮重裝定時初值的時間(重裝定時器初值佔用2個機器周期)。

在實際應用中,定時常採用中斷方式,如進行適當的循環可實現幾秒甚至更長時間的延時。使用定時器/計數器延時從程序的執行效率和穩定性兩方面考慮都是最佳的方案。但應該注意,C51編寫的中斷服務程序編譯後會自動加上PUSH ACC、PUSH PSW、POP PSW和POP ACC語句,執行時佔用了4個機器周期;如程序中還有計數值加1語句,則又會佔用1個機器周期。這些語句所消耗的時間在計算定時初值時要考慮進去,從初值中減去以達到最小誤差的目的。

2 軟體延時與時間計算

在很多情況下,定時器/計數器經常被用作其他用途,這時候就只能用軟體方法延時。下面介紹幾種軟體延時的方法。

2.1 短暫延時

可以在C文件中通過使用帶_NOP_( )語句的函數實現,定義一系列不同的延時函數,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一個自定義的C文件中,需要時在主程序中直接調用。如延時10 μs的延時函數可編寫如下:

void Delay10us( ) {
_NOP_( );
_NOP_( );
_NOP_( );
_NOP_( );
_NOP_( );
_NOP_( );
}

Delay10us( )函數中共用了6個_NOP_( )語句,每個語句執行時間為1 μs。主函數調用Delay10us( )時,先執行一個LCALL指令(2 μs),然後執行6個_NOP_( )語句(6 μs),最後執行了一個RET指令(2 μs),所以執行上述函數時共需要10 μs。 可以把這一函數當作基本延時函數,在其他函數中調用,即嵌套調用\[4\],以實現較長時間的延時;但需要注意,如在Delay40us( )中直接調用4次Delay10us( )函數,得到的延時時間將是42 μs,而不是40 μs。這是因為執行Delay40us( )時,先執行了一次LCALL指令(2 μs),然後開始執行第一個Delay10us( ),執行完最後一個Delay10us( )時,直接返回到主程序。依此類推,如果是兩層嵌套調用,如在Delay80us( )中兩次調用Delay40us( ),則也要先執行一次LCALL指令(2 μs),然後執行兩次Delay40us( )函數(84 μs),所以,實際延時時間為86 μs。簡言之,只有最內層的函數執行RET指令。該指令直接返回到上級函數或主函數。如在Delay80μs( )中直接調用8次Delay10us( ),此時的延時時間為82 μs。通過修改基本延時函數和適當的組合調用,上述方法可以實現不同時間的延時。

2.2 在C51中嵌套匯編程序段實現延時

在C51中通過預處理指令#pragma asm和#pragma endasm可以嵌套匯編語言語句。用戶編寫的匯編語言緊跟在#pragma asm之後,在#pragma endasm之前結束。

如:#pragma asm

匯編語言程序段

#pragma endasm

延時函數可設置入口參數,可將參數定義為unsigned char、int或long型。根據參數與返回值的傳遞規則,這時參數和函數返回值位於R7、R7R6、R7R6R5中。在應用時應注意以下幾點:

◆ #pragma asm、#pragma endasm不允許嵌套使用;
◆ 在程序的開頭應加上預處理指令#pragma asm,在該指令之前只能有注釋或其他預處理指令;
◆ 當使用asm語句時,編譯系統並不輸出目標模塊,而只輸出匯編源文件;
◆ asm只能用小寫字母,如果把asm寫成大寫,編譯系統就把它作為普通變數;
◆ #pragma asm、#pragma endasm和 asm只能在函數內使用。

將匯編語言與C51結合起來,充分發揮各自的優勢,無疑是單片機開發人員的最佳選擇。

2.3 使用示波器確定延時時間

利用示波器來測定延時程序執行時間。方法如下:編寫一個實現延時的函數,在該函數的開始置某個I/O口線如P1.0為高電平,在函數的最後清P1.0為低電平。在主程序中循環調用該延時函數,通過示波器測量P1.0引腳上的高電平時間即可確定延時函數的執行時間。方法如下:

sbit T_point = P1^0;
void Dly1ms(void) {
unsigned int i,j;
while (1) {
T_point = 1;
for(i=0;i<2;i++){
for(j=0;j<124;j++){;}
}
T_point = 0;
for(i=0;i<1;i++){
for(j=0;j<124;j++){;}
}
}
}
void main (void) {
Dly1ms();
}

把P1.0接入示波器,運行上面的程序,可以看到P1.0輸出的波形為周期是3 ms的方波。其中,高電平為2 ms,低電平為1 ms,即for循環結構「for(j=0;j<124;j++) {;}」的執行時間為1 ms。通過改變循環次數,可得到不同時間的延時。當然,也可以不用for循環而用別的語句實現延時。這里討論的只是確定延時的方法。

2.4 使用反匯編工具計算延時時間

用Keil C51中的反匯編工具計算延時時間,在反匯編窗口中可用源程序和匯編程序的混合代碼或匯編代碼顯示目標應用程序。為了說明這種方法,還使用「for (i=0;i<DlyT;i++) {;}」。在程序中加入這一循環結構,首先選擇build taget,然後單擊start/stop debug session按鈕進入程序調試窗口,最後打開Disassembly window,找出與這部分循環結構相對應的匯編代碼,具體如下:

C:0x000FE4CLRA//1T
C:0x0010FEMOVR6,A//1T
C:0x0011EEMOVA,R6//1T
C:0x0012C3CLRC//1T
C:0x00139FSUBBA,DlyT //1T
C:0x00145003JNCC:0019//2T
C:0x00160E INCR6//1T
C:0x001780F8SJMPC:0011//2T

可以看出,0x000F~0x0017一共8條語句,分析語句可以發現並不是每條語句都執行DlyT次。核心循環只有0x0011~0x0017共6條語句,總共8個機器周期,第1次循環先執行「CLR A」和「MOV R6,A」兩條語句,需要2個機器周期,每循環1次需要8個機器周期,但最後1次循環需要5個機器周期。DlyT次核心循環語句消耗(2+DlyT×8+5)個機器周期,當系統採用12 MHz時,精度為7 μs。

當採用while (DlyT--)循環體時,DlyT的值存放在R7中。相對應的匯編代碼如下:

C:0x000FAE07MOVR6, R7//1T
C:0x00111F DECR7//1T
C:0x0012EE MOVA,R6//1T
C:0x001370FAJNZC:000F//2T

循環語句執行的時間為(DlyT+1)×5個機器周期,即這種循環結構的延時精度為5 μs。

通過實驗發現,如將while (DlyT--)改為while (--DlyT),經過反匯編後得到如下代碼:

C:0x0014DFFE DJNZR7,C:0014//2T

可以看出,這時代碼只有1句,共佔用2個機器周期,精度達到2 μs,循環體耗時DlyT×2個機器周期;但這時應該注意,DlyT初始值不能為0。

注意:計算時間時還應加上函數調用和函數返回各2個機器周期時間。

❼ 哪位高手知道 單片機精確延時1秒得C語言子程序 謝謝了

下面幾個是單片機的延時程序(包括asm和C程序,都是我在學單片機的過程中用到的),在單片機延時程序中應考慮所使用的晶振的頻率,在51系列的單片機中我們常用的是11.0592MHz和12.0000MHz的晶振,而在AVR單片機上常用的有8.000MHz和4.000MH的晶振所以在網上查找程序時如果涉及到精確延時則應該注意晶振的頻率是多大。

軟體延時:(asm)

晶振12MHZ,延時1秒
程序如下:
DELAY:MOV 72H,#100
LOOP3:MOV 71H,#100
LOOP1:MOV 70H,#47
LOOP0:DJNZ 70H,LOOP0
NOP
DJNZ 71H,LOOP1
MOV 70H,#46
LOOP2:DJNZ 70H,LOOP2
NOP
DJNZ 72H,LOOP3
MOV 70H,#48
LOOP4:DJNZ 70H,LOOP4

定時器延時:

晶振12MHZ,延時1s,定時器0工作方式為方式1

DELAY1:MOV R7,#0AH ;;晶振12MHZ,延時0.5秒
AJMP DELAY
DELAY2:MOV R7,#14H ;;晶振12MHZ,延時1秒
DELAY:CLR EX0
MOV TMOD,#01H ;設置定時器的工作方式為方式1
MOV TL0,#0B0H ;給定時器設置計數初始值
MOV TH0,#3CH
SETB TR0 ;開啟定時器
HERE:JBC TF0,NEXT1
SJMP HERE
NEXT1:MOV TL0,#0B0H
MOV TH0,#3CH
DJNZ R7,HERE
CLR TR0 ;定時器要軟體清零
SETB EX0
RET

C語言延時程序:

10ms延時子程序(12MHZ)

void delay10ms(void)

{

unsigned char i,j,k;

for(i=5;i>0;i--)

for(j=4;j>0;j--)

for(k=248;k>0;k--);

}

1s延時子程序(12MHZ)

void delay1s(void)

{

unsigned char h,i,j,k;

for(h=5;h>0;h--)

for(i=4;i>0;i--)

for(j=116;j>0;j--)

for(k=214;k>0;k--);

}

200ms延時子程序(12MHZ)

void delay200ms(void)

{

unsigned char i,j,k;

for(i=5;i>0;i--)

for(j=132;j>0;j--)

for(k=150;k>0;k--);

}

500ms延時子程序程序: (12MHZ)
void delay500ms(void)
{
unsigned char i,j,k;
for(i=15;i>0;i--)
for(j=202;j>0;j--)
for(k=81;k>0;k--);
}

下面是用了8.0000MHZ的晶振的幾個延時程序(用定時0的工作模式1):

(1)延時0.9MS

void delay_0_9ms(void)
{
TMOD=0x01; /*定時器0工作在模式1下(16位計數器)*/
TH0=0xfd;
TL0=0xa8;
TR0=1; /*啟動定時器*/
while(TF0==0);
TR0=0;
}

(2)延時1MS

void delay_1ms(void)
{
TMOD=0x01; /*定時器0工作在模式1下(16位計數器)*/
TH0=0xfd;
TL0=0x65;
TR0=1; /*啟動定時器*/
while(TF0==0);
TR0=0;
}

(3)延時4.5ms

void delay_4_5ms(void)
{
TMOD=0x01; /*定時器0工作在模式1下(16位計數器)*/
TH0=0xf4;
TL0=0x48;
TR0=1; /*啟動定時器*/
while(TF0==0);
TR0=0;
}

❽ 51單片機的幾種精確延時

51單片機精確延時有兩個辦法:
1、採用定時器來延時。
2、用匯編語言來編制延時程序。

❾ 關於STC單片機的精確延時

在晶振頻率和代碼與普通51單片機相同的情況下,我用STC編寫的延時函數,其延時時間跟普通51相同嗎?
----------------不同!!

還是是它們的1/12倍啊

----------------也不是!!
-------------------------------------------------------------------
-------------------------------------------------------------------
那麼,到底二者是一個什麼關系呢?
就匯編語言常用的延時程序來說,常用的是MOV和DJNZ兩條指令,在「1時鍾周期/機器周期」前提下,MOV指令是傳統MSC-51的6倍,DJNZ指令也是6倍,
所以,同樣的延時匯編代碼,在STC應用時,延遲時間是傳統MSC-51的1/6

以上供參考。

❿ 51單片機怎麼精確延時

在中斷結尾加一個 ds_10ms() interrupt 0 { TH0=...... TL0=...... num++; ptime(num); } ptime(uchar time) { if(time==100) { num=0; } } 這就是一個1秒延時, 在主函數中 TR0=1; 就行了 把數碼管的處理也放在ptime()函數里。。

閱讀全文

與單片機精確延時相關的資料

熱點內容
java畢業設計文獻 瀏覽:138
籌碼集中度指標源碼 瀏覽:477
listsortjava 瀏覽:180
plc閃光電路編程實例 瀏覽:297
socket編程試題 瀏覽:201
華為的伺服器怎麼設置從光碟機啟動 瀏覽:867
程序員真的累嗎 瀏覽:323
學信網app為什麼刷臉不了 瀏覽:871
天蠍vs程序員 瀏覽:991
單片機下載口叫什麼 瀏覽:186
程序員的道 瀏覽:924
雲伺服器不實名違法嗎 瀏覽:556
怎樣查看文件夾圖片是否重復 瀏覽:993
文件怎麼導成pdf文件 瀏覽:806
打開sql表的命令 瀏覽:101
安卓手機如何面部支付 瀏覽:37
天元數學app為什麼登錄不上去 瀏覽:823
明日之後為什麼有些伺服器是四個字 瀏覽:104
安卓系統l1是什麼意思 瀏覽:26
伺服器一直崩應該用什麼指令 瀏覽:924