导航:首页 > 源码编译 > 算法设计

算法设计

发布时间:2022-01-22 12:27:43

算法设计有哪些方法

算法设计常用的几种方法是
1. 穷举法
2. 贪心法
3. 分治法
4. 回溯法
5. 分枝限界法
6. 动态规划法

㈡ 算法设计怎么样

虽然翻译有些糟糕,很多句子要读好几遍才能理解(并不是因为意思多么复杂),但依然体现了原着在内容结构上优秀的编排。这本书比较适合我,书中的每一个问题,都能体......

㈢ 计算机的算法设计和数学的算法设计有什么不同

个人觉得微积分与算法没啥个关系吧,我同级的那些算法大神上高数时都纷纷逃课了。算法,就我知道,主要是要用到离散数学,组合数学之类的,或许还有其它,这些应该比微积分简单吧。当然,没学过也没啥个所谓,因为我自学算法之前也压根没学过这类数学,这类数学只不过使你学算法时轻松一点,当然直接没基础学算法会让人痛苦到死

㈣ 算法指什么,算法设计有什么指标

通俗讲就是解决问题的方法,用到计算机里,一般指程序设计中用到算法比较多。也是考研的时候计算机系的一个重点。
算法是在有限步骤内求解某一问题所使用的一组定义明确的规则。通俗点说,就是计算机解题的过程。在这个过程中,无论是形成解题思路还是编写程序,都是在实施某种算法。前者是推理实现的算法,后者是操作实现的算法。

一个算法应该具有以下五个重要的特征:

有穷性: 一个算法必须保证执行有限步之后结束;
确切性: 算法的每一步骤必须有确切的定义;
输入:一个算法有0个或多个输入,以刻画运算对象的初始情况;
输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
http://www.cqzxzx.cn/it/noi/shuanfa/001.htm

㈤ 简单算法设计

先排序(许多排序算法),一般排序算法(如快速排序、堆排序、归并排序)时间复杂度都为nlog(n),
再比较两相邻数即可复杂度为n, o(n) + o(nlog(n)) = o(nlog(n))
即时间复杂度为 o(nlog(n))

㈥ 算法设计比赛做什么算法好

应该是ACM吧
就是给你8-10道算法题目,5个小时,做出来多的题目数越多,排名越靠前,如果题目数一样多的看用的时间。
时间的计算方法如下:
例如你A题用了20分钟AC,然后B题有用了30分钟AC(此时是比赛开始50分钟),又用了30分钟AC了C题,那么你的时间(penalty )是
20 + 50 + 80 = 150分钟

比赛中常用的算法有
1。动态规划
2。搜索
3。贪心
4。图论
5。组合数学
6。计算几何
7。数论


推荐到
http://acm.pku.e.cn
http://acm.zju.e.cn
http://acm.h.e.cn
http://acm.timus.ru
这几个OJ上练习

比较好的题目分类(POJ上的)
1。这个是我最喜欢的
初期:
一.基本算法:
(1)枚举. (poj1753,poj2965)(2008-10-27Done 位运算+宽搜)
(2)贪心(poj1328,poj2109,poj2586)
(3)递归和分治法.
(4)递推.
(5)构造法.(poj3295)
(6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.图算法:
(1)图的深度优先遍历和广度优先遍历.
(2)最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)(2008-08-29Done)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
(3)最小生成树算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
(4)拓扑排序 (poj1094)(2008-09-01Done)
(5)二分图的最大匹配 (匈牙利算法) (poj3041,poj3020)
(6)最大流的增广路算法(KM算法). (poj1459,poj3436)
三.数据结构.
(1)串 (poj1035,poj3080,poj1936)
(2)排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)
(3)简单并查集的应用.
(4)哈希表和二分查找等高效查找法(数的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
(5)哈夫曼树(poj3253)(2008-09-02Done)
(6)堆
(7)trie树(静态建树、动态建树) (poj2513)(2008-10-23Done 并查集、欧拉)
四.简单搜索
(1)深度优先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
(2)广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
(3)简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.动态规划
(1)背包问题. (poj1837,poj1276)
(2)型如下表的简单DP(可参考lrj的书 page149):
1.E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列)
(poj3176,poj1080,poj1159)
3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)
六.数学
(1)组合数学:
1.加法原理和乘法原理.
2.排列组合.
3.递推关系.
(POJ3252,poj1850,poj1019,poj1942)
(2)数论.
1.素数与整除问题
2.进制位.
3.同余模运算.
(poj2635, poj3292,poj1845,poj2115)
(3)计算方法.
1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)
七.计算几何学.
(1)几何公式.
(2)叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)
(3)多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)
(poj1408,poj1584)
(4)凸包. (poj2187,poj1113)(2008-08-29Done)
中级:
一.基本算法:
(1)C++的标准模版库的应用. (poj3096,poj3007)
(2)较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)
二.图算法:
(1)差分约束系统的建立和求解. (poj1201,poj2983)(2008-09-05Done)
(2)最小费用最大流(poj2516,poj2516,poj2195)
(3)双连通分量(poj2942)
(4)强连通分支及其缩点.(poj2186)
(5)图的割边和割点(poj3352)
(6)最小割模型、网络流规约(poj3308, )
三.数据结构.
(1)线段树. (poj2528,poj2828,poj2777,poj2886,poj2750)
(2)静态二叉检索树. (poj2482,poj2352)
(3)树状树组(poj1195,poj3321)
(4)RMQ. (poj3264,poj3368)
(5)并查集的高级应用. (poj1703,2492)
(6)KMP算法. (poj1961,poj2406)(2008-09-16Done)
四.搜索
(1)最优化剪枝和可行性剪枝
(2)搜索的技巧和优化 (poj3411,poj1724)
(3)记忆化搜索(poj3373,poj1691)

五.动态规划
(1)较为复杂的动态规划(如动态规划解特别的施行商问题等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
(2)记录状态的动态规划. (POJ3254,poj2411,poj1185)
(3)树型动态规划(poj2057,poj1947,poj2486,poj3140)
六.数学
(1)组合数学:
1.容斥原理.
2.抽屉原理.
3.置换群与Polya定理(poj1286,poj2409,poj3270,poj1026).
4.递推关系和母函数.

(2)数学.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率问题. (poj3071,poj3440)
3.GCD、扩展的欧几里德(中国剩余定理) (poj3101)
(3)计算方法.
1.0/1分数规划. (poj2976)
2.三分法求解单峰(单谷)的极值.
3.矩阵法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
(4)随机化算法(poj3318,poj2454)
(5)杂题.
(poj1870,poj3296,poj3286,poj1095)
七.计算几何学.
(1)坐标离散化.
(2)扫描线算法(例如求矩形的面积和周长并,常和线段树或堆一起使用).
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
(3)多边形的内核(半平面交)(poj3130,poj3335)
(4)几何工具的综合应用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)
高级:
一.基本算法要求:
(1)代码快速写成,精简但不失风格
(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)
(2)保证正确性和高效性. poj3434
二.图算法:
(1)度限制最小生成树和第K最短路. (poj1639)
(2)最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
(3)最优比率生成树. (poj2728)
(4)最小树形图(poj3164)
(5)次小生成树.
(6)无向图、有向图的最小环
三.数据结构.
(1)trie图的建立和应用. (poj2778)(2008-10-26Done 矩阵A^n)
(2)LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和 在线算法
(RMQ+dfs)).(poj1330)
(3)双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的
目的). (poj2823)
(4)左偏树(可合并堆).
(5)后缀树(非常有用的数据结构,也是赛区考题的热点).
(poj3415,poj3294)
四.搜索
(1)较麻烦的搜索题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)

(2)广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)
(3)深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法. (poj3131,poj2870,poj2286)
五.动态规划
(1)需要用数据结构优化的动态规划.
(poj2754,poj3378,poj3017)
(2)四边形不等式理论.
(3)较难的状态DP(poj3133)
六.数学
(1)组合数学.
1.MoBius反演(poj2888,poj2154)
2.偏序关系理论.
(2)博奕论.
1.极大极小过程(poj3317,poj1085)
2.Nim问题.
七.计算几何学.
(1)半平面求交(poj3384,poj2540)
(2)可视图的建立(poj2966)
(3)点集最小圆覆盖.
(4)对踵点(poj2079)
八.综合题.
(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263)

2。这个每个分类的题目比较多,适合作为第一个分类的扩展
说明:递推算动归, 离散化算数据结构, 并查集算数据结构, 博弈算动归, 麻烦题一般都是不错的综合题, 最短路算图论,数据的有序化算排序
麻烦题:1697, 1712, 1713, 1720, 1729, 1765, 1772, 1858, 1872, 1960, 1963, 2050, 2122, 2162, 2219, 2237,
简单题目:1000, 1003, 1004, 1005, 1007, 1046, 1207, 1226, 1401, 1504, 1552, 1607, 1657, 1658, 1674, 1799, 1862, 1906, 1922, 1929, 1931, 1969, 1976, 2000, 2005, 2017, 2027, 2070, 2101, 2105, 2109, 2116, 2136, 2160, 2190, 2232, 2234, 2275, 2301, 2350, 2363, 2389, 2393, 2413, 2419, 推荐:1063, 1064, 1131, 1140, 1715, 2163,
杂题:1014, 1218, 1316, 1455, 1517, 1547, 1580, 1604, 1663, 1678, 1749, 1804, 2013, 2014, 2056, 2059, 2100, 2188, 2189, 2218, 2229, 2249, 2290, 2302, 2304, 2309, 2313, 2316, 2323, 2326, 2368, 2369, 2371, 2402, 2405, 2407, 推荐:1146, 1147, 1148, 1171, 1389, 1433, 1468, 1519, 1631, 1646, 1672, 1681, 1700, 1701, 1705, 1728, 1735, 1736, 1752, 1754, 1755, 1769, 1781, 1787, 1796, 1797, 1833, 1844, 1882, 1933, 1941, 1978, 2128, 2166, 2328, 2383, 2420,
高精度:1001, 1220, 1405, 1503,
排序:1002, 1318, 1877, 1928, 1971, 1974, 1990, 2001, 2002, 2092, 2379, 2388, 2418, 推荐:1423, 1694, 1723, 1727, 1763, 1788, 1828, 1838, 1840, 2201, 2376, 2377, 2380,
搜索容易:1128, 1166, 1176, 1231, 1256, 1270, 1321, 1543, 1606, 1664, 1731, 1742, 1745, 1847, 1915, 1950, 2038, 2157, 2182, 2183, 2381, 2386, 2426, 不易:1024, 1054, 1117, 1167, 1708, 1746, 1775, 1878, 1903, 1966, 2046, 2197, 2349, 推荐:1011, 1190, 1191, 1416, 1579, 1632, 1639, 1659, 1680, 1683, 1691, 1709, 1714, 1753, 1771, 1826, 1855, 1856, 1890, 1924, 1935, 1948, 1979, 1980, 2170, 2288, 2331, 2339, 2340,
数据结构容易:1182, 1656, 2021, 2023, 2051, 2153, 2227, 2236, 2247, 2352, 2395, 不易:1145, 1177, 1195, 1227, 1661, 1834, 推荐:1330, 1338, 1451, 1470, 1634, 1689, 1693, 1703, 1724, 1988, 2004, 2010, 2119, 2274,
动态规划容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322, 1414, 1456, 1458, 1609, 1644, 1664, 1690, 1699, 1740, 1742, 1887, 1926, 1936, 1952, 1953, 1958, 1959, 1962, 1975, 1989, 2018, 2029, 2033, 2063, 2081, 2082, 2181, 2184, 2192, 2231, 2279, 2329, 2336, 2346, 2353, 2355, 2356, 2385, 2392, 2424, 不易:1019, 1037, 1080, 1112, 1141, 1170, 1192, 1239, 1655, 1695, 1707, 1733, 1737, 1837, 1850, 1920, 1934, 1937, 1964, 2039, 2138, 2151, 2161, 2178, 推荐:1015, 1635, 1636, 1671, 1682, 1692, 1704, 1717, 1722, 1726, 1732, 1770, 1821, 1853, 1949, 2019, 2127, 2176, 2228, 2287, 2342, 2374, 2378, 2384, 2411,
字符串:1488, 1598, 1686, 1706, 1747, 1748, 1750, 1760, 1782, 1790, 1866, 1888, 1896, 1951, 2003, 2121, 2141, 2145, 2159, 2337, 2359, 2372, 2406, 2408,
贪心:1042, 1065, 1230, 1323, 1477, 1716, 1784,
图论容易:1161, 1164, 1258, 1175, 1308, 1364, 1776, 1789, 1861, 1939, 1940, 1943, 2075, 2139, 2387, 2394, 2421, 不易:1041, 1062, 1158, 1172, 1201, 1275, 1718, 1734, 1751, 1904, 1932, 2173, 2175, 2296, 网络流:1087, 1273, 1698, 1815, 2195, 匹配:1274, 1422, 1469, 1719, 2060, 2239, Euler:1237, 1637, 1394, 2230, 推荐:2049, 2186,
计算几何容易:1319, 1654, 1673, 1675, 1836, 2074, 2137, 2318, 不易:1685, 1687, 1696, 1873, 1901, 2172, 2333, 凸包:1113, 1228, 1794, 2007, 2187,
模拟容易:1006, 1008, 1013, 1016, 1017, 1169, 1298, 1326, 1350, 1363, 1676, 1786, 1791, 1835, 1970, 2317, 2325, 2390, 不易:1012, 1082, 1099, 1114, 1642, 1677, 1684, 1886,
数学容易:1061, 1091, 1142, 1289, 1305, 1306, 1320, 1565, 1665, 1666, 1730, 1894, 1914, 2006, 2042, 2142, 2158, 2174, 2262, 2305, 2321, 2348, 不易:1067, 1183, 1430, 1759, 1868, 1942, 2167, 2171, 2327, 推荐:1423, 1450, 1640, 1702, 1710, 1721, 1761, 1830, 1930, 2140,

㈦ 算法设计

按你的意思,每一种商品都有{1,2,3,4,5}这5种重要度吗?
如果是,就好办了。
此时,MAX=(P1+P2+……+Pm)*5,算法的意义就在求MAX1=P1+P2+……+Pm

1、先将商品按价格排序(比如从小到大);
2、Pz=N-Pmin (N为当前持有的钱数也可理解为之前买过商品后剩余的钱 数;Pmin为商品中最低的价格;Pz只是个中间变量。)
3、以Pz作为价格上限,去购买商品中价格最高的商品。
(剩余的钱数为N)
4、重复第2到3步,直到第3步条件不满足,则进行第5步。
5、假如第3步中Pz<Pmin,则直接拿N去购买商品中价格最大的商品。

等等,我这算法还不够严谨,没有考虑重复商品的情况。
考虑重复商品的情况要改第2步,这里不能简单的用(N-Pmin)了。先将这里的Pmin改为Pm吧,这个Pm要重新计算。
计算Pm的步骤:
1、将N/2,取整数部分。
2、在商品价格中从低价向上累加,得到一个<=第1步的整数部分的最大值为Pm

新的算法:
1、先将商品按价格排序(比如从小到大);
2、计算Pm,将此时的Pm保存下来Pn=Pm。
3、Pz=N-Pm (N为当前持有的钱数也可理解为之前买过商品后剩余的钱数;Pz只是个中间变量。)
4、以Pz作为价格上限,去购买商品中价格最高的商品。
(剩余的钱数为N;需要把已购买的那个商品从数组中删除。)
5、计算新的Pm (经过多次重复后,Pm将为0)
6、重复第3到5步直到Pz<剩余商品的最低价格。得到一个MAX值。
7、再计算Pm,这时计算方法有点改变,用Pn/2。再把Pm保存下来Pn=Pm
8、重复第3到7步直到Pn为0
9、将各个MAX值进行比较,找出最大值。

如果商品的重要度是1到5的部分或全部,还没想出来。

㈧ c语言算法设计

这里都没说abcd为整数,解都是无穷多的,还多少组,组得完么,
题目得再限定各个量都为整数,才有可能去举一举,
跟算法没关体系,只是数学题,没意思

㈨ 如何设计算法

设计一个正确的算法是一件困难的工作,因为它需要创新,从以太真空中发掘出一个解方案来解决问题。算法设计比对现有的方案进行改良要难得多,因为算法设计的可选择空间太,过多的自由反而成了一种约束。 This book is designed to make you a better algorithm designer. The techniques presented in Part I of this book provide the basic ideas underlying all combinatorial algorithms. The problem catalog of Part II will help you with modeling your application and point you in the right direction of an algorithm or implementation. However, being a successful algorithm designer requires more than book knowledge; it requires a certain attitude, the right problem-solving approach. It is difficult to teach this mindset in a book; yet getting it is essential to become a successful designer. 本书的设计目标是让你成为一个更好的算法设计者。本书第一部分展示有关组合算法的基本原理和基本思想;第二部分的问题清单帮助你为你的问题建模,并且为你指明实现正确算法的方向。尽管如此,要成为一个成功的算法设计者光有书本知识是不够的,面对问题的态度(attitude)和选择正确的方法更重要。书本容易传授知识,很难传授人的心态(mindset)和思考方式;而这种心态和思考却是成为成功的算法设计者的根本条件。 The key to algorithm design (or any other problem-solving task) is to proceed by asking yourself a sequence of questions to guide your thought process. What if we do this? What if we do that? Should you get stuck on the problem, the best thing to do is move onto the next question. In any group brainstorming session, the most useful person in the room is the one who keeps asking, ``Why can't we do it this way?'' not the person who later tells them why. Because eventually she will stumble on an approach that can't be shot down. 算法设计(或其它问题解决任务)的关键是一系列持续的自我反问,这些反问引导我们思维的前进。“如果这样做会怎样?”,“如果那样做又会怎样?”……如果 你被一个问题掐住了,最好的办法就是先搁一下,换一个问题换一个前进的方向试试。在每组头脑风暴会议中,最有价值的人是不断提出为什么的人,不是尔后解说为什么的人。因为我们常常被一些习以为常的东西所拌倒,掉进自己设置的陷阱。 kemin:如果问题解决是一种思考过程,那么思考的形式(过程的严谨性、细致性和正确性)很重要,而思考的内容也不容忽视。因为引导我们思考前进的方式 除反问本身外,反问的内容也很重。就比如参加头脑风暴的材料一样。人大脑的思维功能是硬编码的,人与人之间没有思维规律——质的区别,只是思维的清晰度和 灵敏度——量的差别。人与人之间智力的差别更多体现在思维内容的量上,体现在对外部世界的事实掌握的广度和深度上。 Towards this end, we provide below a sequence of questions to guide your search for the right algorithm for your problem. To use it effectively, you must not only ask the questions, but answer them. The key is working through the answers carefully, by writing them down in a log. The correct answer to, ``Can I do it this way?'' is never ``no,'' but ``no, because ....'' By clearly articulating(明确有力地表达) your reasoning as to why something doesn't work, you can check if it really holds up or whether you have just glossed(掩盖) over a possibility that you didn't want to think hard enough about. You will be surprised how often the reason you can't find a convincing(使人信服的) explanation for something is because your conclusion is wrong. 在末尾我们提供一个反问问题的列表,你不但要反问自己这些问题,更重要是仔细回答这些问题,最好把答案写下来。回答诸如问题“我可以使用这种方式吗?”的 不是一个“不能”就完了,而是“不能,因为……”。通过仔细明确的回答“为什么不能”时,你会发现到底是“真的不能“,还是只是你自己不愿意去深入思考掩 盖了”能“。如果你不曾训练出严谨的思考方式,当你这样做时你会惊讶的发现,为了说明某些东西但却找不到一个令人信服的解释的原因常常是因为你的结论本身 是错的。 An important distinction to keep aware of ring any design process is the difference between strategy and tactics(战略). Strategy represents the quest for the big picture, the framework around which we construct our path to the goal. Tactics are used to win the minor battles we must fight along the way. In problem solving, it is important to check repeatedly whether you are thinking on the right level. If you do not have a global strategy of how you are going to attack your problem, it is pointless to worry about the tactics. 在设计过程中特别重要区分策略和战略的概念。策略是对全局的一个探索,一个构筑通向目标路径的指导框架。战略则是用来解决通向大目标过程的较小的问题。如果你对关于如何对付所面临的问题没有一个全局的策略,那关心战略是不得要领的,予事无补的。在解题领域,不断修正思维的层次(thinking on the right level)是很重要战略。(--莱布尼兹曾经将人的解题思考过程比喻成晃筛子,把脑袋里面的东西都给抖落出来,然后正在搜索的注意力会抓住一切细微的、与问题有关的东西。事实上,要做到能够令注意力抓住这些有关的东西,就必须时刻将问题放在注意力层面,否则即使关键的东西抖落出来了也可能没注意到。) An example of a strategic question is, ``How best can I model my application as a graph algorithm problem?'' A tactical question might be, ``Should I use an adjacency邻接 list or adjacency matrix data structure to represent my graph?'' Of course, such tactical decisions are critical to the ultimate quality of the solution, but they can be properly evaluated only in light of a successful strategy. 一个策略问题的例子是:“我如何才能更好地把我的问题建模成图问题?”。而一个战略问题可能是这样:“我是用邻接列表还是邻接矩阵来实现我的图结构?”。当然,这种战略选择是对解决方案的最终质量起着重要作用;不过战略价值的体现还是基于正确的策略的选择。 When faced with a design problem, too many people freeze up in their thinking. After reading or hearing the problem, they sit down and realize that they don't know what to do next. They stare(凝视) into space, then panic(惊惶), and finally end up settling(沉淀; 决定) for the first thing that comes to mind. Avoid this fate(天数; 运气; 命运 ). Follow the sequence of questions provided below and in most of the catalog problem sections. We'll tell you what to do next! 初学者在面对问题时常常表现出思维凝滞、手足无措和盲目解题。参考以下的反问问题列表和本书的问题清单,我们告诉你应该怎么做。 Obviously, the more experience you have with algorithm design techniques such as dynamic programming, graph algorithms, intractability, and data structures, the more successful you will be at working through the list of questions. Part I of this book has been designed to strengthen this technical background. However, it pays to work through these questions regardless of how strong your technical skills are. The earliest and most important questions on the list focus on obtaining a detailed understanding of the problem and do not require specific expertise. 当然本反问问题列表对读者有背景要求,要求读者对算法设计技术(动态规划、图算法、难解性和数据结构)的熟悉程度。本书第一部分的目标就是对这些技术背景进行强化。不过,不管你的技术背景怎样,通读这些问题对你解题还是很有裨益的。

㈩ 算法设计题

(再版)
0-1背包问题

0-1背包问题:给定n种物品和一个背包。项目我的体重是无线网络,它的价格是vi背包容量C.

Q:我应该如何选择装载物品的背包,使得装入背包的总价值呢?

选择项目装入背包的每个项目我只有两种选择,即装入背包或不装入背包。项目i装入背包多次,不仅加载的项目我。

因此,这个问题被称为0-1背包问题。

?0-1解向量(X1,X2,...,XN),西安∈{0,1},1 <= I <= N。

动态编程解决方案:

集0-1背包问题给定的子最优值,M(I,J),M(我,j)是第j背包容量,可选择的项目我,我+1,...,N 0-1背包问题的最优值

无效背包()

INT I,J;

为(i = 0; I <=我+ +)
为(J = 0 J <= JMAX; J + +)

M [] [J] = 0;

(i = 0; <= n; i + + )

为(J = 0; <= JMAX; J + +)

(W [I]> J)

米[I] [J] = M [I-1] [J];

其他

M [] [J] = MAX(M [I-1] [J],M [I-1] [JW [我] + V [I]);

printf的(“%d \ N”,M [N] [C]); BR />
}

回溯解决方案:

无效1背包(I)

{
BR />(>),百视通= CV

其他

{

(CW + W [I] <= C )
{

CW + = W [我];

CV + = V [I];

背包(i +1);

CW-= W [I];

CV-= V [I];

}
a>
背包(+1);

}

}

阅读全文

与算法设计相关的资料

热点内容
android图片变灰 浏览:268
linuxvi下一个 浏览:973
安卓手机的应用锁怎么解 浏览:735
linux增加路径 浏览:849
sql身份证号最后四位加密 浏览:533
xp系统表格加密 浏览:856
光遇安卓军大衣什么时候上线 浏览:840
android应用商店图标 浏览:341
java计算圆的面积 浏览:643
应用编译优化recovery 浏览:577
域控命令n 浏览:258
php导出文件 浏览:13
谷歌地图网页版无法连接服务器地址 浏览:298
菜鸟工具在线编译python 浏览:858
栅格化命令有何作用 浏览:823
为什么压缩文件不能解压 浏览:311
足球app哪个软件好 浏览:96
产品经理逼疯程序员的一天 浏览:17
修改svn服务器ip地址 浏览:584
下列关于编译说法正确的是 浏览:246