A. 相关系数计算公式是什么
相关系数公式为:若Y=a+bX,则有:令E(X) = μ,D(X) = σ,则E(Y) = bμ + a,D(Y) = bσ,E(XY) = E(aX + bX) = aμ + b(σ + μ),Cov(X,Y) = E(XY) − E(X)E(Y) = bσ。
相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母r表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。
相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。
相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。需要说明的是,皮尔逊相关系数并不是唯一的相关系数,但是最常见的相关系数。
B. 我想相关系数和判定系数的计算公式和他们的关系
相关系数计算公式:
判定系数计算公式:
r^2 = SSR/SST
两者的关系是:相关系数是仅被用来描述两个变量之间的线性关系的,但判定系数的适用范围更广,可以用于描述非线性或者有两个及两个以上自变量的相关关系。
C. 贝塔系数怎么计算 具体
贝塔系数的计算
贝塔系数利用回归的方法计算。贝塔系数为1即证券的价格与市场一同变动。贝塔系数高于1即证券价格比总体市场更波动。贝塔系数低于1(大于0)即证券价格的波动性比市场为低。
贝塔系数的计算公式
公式为:
其中ρam为证券a与市场的相关系数;σa为证券a的标准差;σm为市场的标准差。
据此公式,贝塔系数并不代表证券价格波动与总体市场波动的直接联系。
不能绝对地说,β越大,证券价格波动(σa)相对于总体市场波动(σm)越大;同样,β越小,也不完全代表σa相对于σm越小。
甚至即使β = 0也不能代表证券无风险,而有可能是证券价格波动与市场价格波动无关(ρam= 0),但是可以确定,如果证券无风险(σa),β一定为零。
1、贝塔系数概述
贝塔系数(Beta Coefficient)是一种评估证券系统性风险的工具,用以度量一种证券或一个投资证券组合相对总体市场的波动性。在股票、基金等投资术语中常见。
贝塔系数是统计学上的概念,它所反映的是某一投资对象相对于大盘的表现情况。其绝对值越大,显示其收益变化幅度相对于大盘的变化幅度越大;绝对值越小,显示其变化幅度相对于大盘越小。如果是负值,则显示其变化的方向与大盘的变化方向相反;
大盘涨的时候它跌,大盘跌的时候它涨。由于我们投资于投资基金的目的是为了取得专家理财的服务,以取得优于被动投资于大盘的表现情况,这一指标可以作为考察基金经理降低投资波动性风险的能力。 在计算贝塔系数时,除了基金的表现数据外,还需要有作为反映大盘表现的指标。
2、贝塔系数应用
贝塔系数反映了个股对市场(或大盘)变化的敏感性,也就是个股与大盘的相关性或通俗说的“股性”。可根据市场走势预测选择不同的贝塔系数的证券从而获得额外收益,特别适合作波段操作使用。
当有很大把握预测到一个大牛市或大盘某个大涨阶段的到来时,应该选择那些高贝塔系数的证券,它将成倍地放大市场收益率,为你带来高额的收益;相反在一个熊市到来或大盘某个下跌阶段到来时,你应该调整投资结构以抵御市场风险,避免损失,办法是选择那些低贝塔系数的证券。
为避免非系统风险,可以在相应的市场走势下选择那些相同或相近贝塔系数的证券进行投资组合。比如:一支个股贝塔系数为1.3,说明当大盘涨1%时,它可能涨1.3%,反之亦然;但如果一支个股贝塔系数为-1.3%时,说明当大盘涨1%时,它可能跌1.3%,同理,大盘如果跌1%,它有可能涨1.3%。
贝塔系数是反映单个证券或证券组合相对于证券市场系统风险变动程度的一个重要指标。通过对贝塔系数的计算,投资者可以得出单个证券或证券组合未来将面临的市场风险状况.通常贝塔系数是用历史数据来计算的,而历史数据计算出来的贝塔系数是否具有一定的稳定性,将直接影响贝塔系数的应用效果。利用CHOW检验方法对我国证券市场已经实现股份全流通的上市公司进行检验后发现,大部分上市公司在实现股份全流通后,其贝塔系数并没有发生显着的改变,用贝塔系数进行系统风险的预测可靠性还是相当高的。
D. 系数怎么算
拿标准工时/每吨 32X0.37(工时) 30X7.52 相加得到总标准工时237.44.
实际工时13人每人11工时减去6.5工时.13x11-6.5=136.5工时.
237.44/136.5=1.74
E. 绩效系数的计算方法
绩效系数:绩效考核结果转化为绩效系数,实现其调节工资分配的功能。部门绩效系数和个人绩效系数均定义为百分制考核结果取百分率;其中部门长的个人绩效系数为工作目标考核结果与各类专项考核结果(取百分率)的连乘积。 员工工资计算方法 ( “个人岗、效工资和” = 岗位技能工资+绩效工资 )...”
F. 相关系数r的计算公式是什么
相关系数r的计算公式是ρXY=Cov(X,Y)/√[D(X)]√[D(Y)]。
公式描述:公式中Cov(X,Y)为X,Y的协方差,D(X)、D(Y)分别为X、Y的方差。
公式。
若Y=a+bX,则有:
令E(X) =μ,D(X) =σ。
则E(Y) = bμ+a,D(Y) = bσ。
E(XY) = E(aX + bX) = aμ+b(σ+μ)。
Cov(X,Y) = E(XY)−E(X)E(Y) = bσ。
相关系数缺点
需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。
因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1;当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。