导航:首页 > 源码编译 > 秦九算法

秦九算法

发布时间:2022-01-25 00:59:12

‘壹’ 秦九韶算法的C++语言怎么表示

同学你好,我帮你实现了下!
#include<iostream>
#define N 3
using namespace std;
void main()
{
int a[N]; //N为多项式个数
int x; //x为变量值
int temp; //存储当前计算的值
for(int i=0;i<N;i++)
{
cout<<"请输入第"<<i+1<<"个系数"<<endl;
cin>>a[i]; //数组a[i]存放每一项的系数
}
temp=a[N-1];
cout<<"请输入x的值为"<<endl;
cin>>x;
for(int j=N-1;j>=1;j--)
{
temp=temp*x+a[j-1];//这个是迭代过程求多项式的值
}
cout<<"the result "<<temp<<endl;
}

‘贰’ 秦九韶算法

秦九韶算法一般地,一元n次多项式的求值需要经过[n(n+1)]/2次乘法和n次加法,而秦九韶算法只需要n次乘法和n次加法。在人工计算时,一次大大简化了运算过程。特别是在现代,在使用计算机解决数学问题时,对于计算机程序算法而言秦九韶算法可以以更快的速度得到结果,减少了CPU运算时间。
把一个n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式

秦九韶:
f(x)=a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]
=(a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]
=((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]
=......
=(......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].
求多项式的值时,首先计算最内层括号内一次多项式的值,即
v[1]=a[n]x+a[n-1]
然后由内向外逐层计算一次多项式的值,即
v[2]=v[1]x+a[n-2]
v[3]=v[2]x+a[n-3]
......
v[n]=v[n-1]x+a[0]
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。
(注:中括号里的数表示下标)
结论:对于一个n次多项式,至多做n次乘法和n次加法。

‘叁’ 秦九韶算法

三角形ABC,三边长a,b,c
则当p=1/2(a+b+c)时,三角形面积为S△=√p(p-a)(p-b)(p-c)
已知三角形三边,可以直接求三角形面积

‘肆’ 秦九韶算法的公式是什么

把一个n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1)+L+a[1]x+a[0]改写成如下形式:
f(x)=a[n]x^n+a[n-1]x^(n-1))+L+a[1]x+a[0]
[n-1]x^
求多项式的值时,首先计算最内层括号内的值即

v[1]=a[n]x+a[n-1]
然后由内向外逐层计算一次多项式的值,即

v[2]=v[1]x+a[n-2]

v[3]=v[2]x+a[n-3]

......

v[n]=v[n-1]x+a[0]

‘伍’ 秦九韶算法题目

秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法.在西方被称作霍纳算法(Horner algorithm或Horner scheme),是以英国数学家威廉·乔治·霍纳命名的.
把一个n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1)+.+a[1]x+a[0]改写成如下形式:
f(x)=a[n]x^n+a[n-1]x^(n-1))+.+a[1]x+a[0]
=(a[n]x^(n-1)+a[n-1]x^(n-2)+.+a[1])x+a[0]
=((a[n]x^(n-2)+a[n-1]x^(n-3)+.+a[2])x+a[1])x+a[0]
=.
=(.((a[n]x+a[n-1])x+a[n-2])x+.+a[1])x+a[0].
求多项式的值时,首先计算最内层括号内一次多项式的值,即
v[1]=a[n]x+a[n-1]
然后由内向外逐层计算一次多项式的值,即
v[2]=v[1]x+a[n-2]
v[3]=v[2]x+a[n-3]
.
v[n]=v[n-1]x+a[0]
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.
(注:中括号里的数表示下标)
结论:对于一个n次多项式,至多做n次乘法和n次加法.
代入计算:
v[1]=a[n]x+a[n-1]=4*(-2)+3=-5
v[2]=(-5)*(-2)+2=12
v[3]=12*(-2)-1=-25
v[4]=(-25)*(-2)-1=49
v[5]=49*(-2)-1/2=-98又1/2
用秦九韶算法求多项式f(x)=4x^5+3x^4+2x^3-x^2-x-2分之1 在x=-2时的值是( -98又1/2)

‘陆’ 秦九韶算法怎么算举几个例子

秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法。

秦九韶算法是一种将一元n次多项式的求值问题转化为n个一次式的算法。其大大简化了计算过程,即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法。

‘柒’ 秦九韶算法是什么

秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法。
是一种将一元n次多项式的求值问题转化为n个一次式的算法。其大大简化了计算过程。

高中时候课本上会讲到~

‘捌’ 有关秦九韶算法

一开始是计算an(n是下标),然后计算an*x+a(n-1)((n-1)也是下标),然后是(an*x+a(n-1))*x+a(n-2)=an*x*x+a(n-1)*x+a(n-2) 这样系数不会变,x的次数一直增加,到最后就变形成了相应的n次多项式

即把一个n次多项式

然后从最里面的括号开始计算

‘玖’ 什么是秦九韶算法

秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法(Horner algorithm或Horner scheme),是以英国数学家威廉·乔治·霍纳命名的.
把一个n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式:
f(x)=a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]
=(a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]
=((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]
=......
=(......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].
求多项式的值时,首先计算最内层括号内一次多项式的值,即
v[1]=a[n]x+a[n-1]
然后由内向外逐层计算一次多项式的值,即
v[2]=v[1]x+a[n-2]
v[3]=v[2]x+a[n-3]
......
v[n]=v[n-1]x+a[0]
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。
(注:中括号里的数表示下标)
结论:对于一个n次多项式,至多做n次乘法和n次加法。
[编辑本段]意义
该算法看似简单,其最大的意义在于将求n次多项式的值转化为求n个一次多项式的值。在人工计算时,利用秦九韶算法和其中的系数表可以大幅简化运算;对于计算机程序算法而言,加法比乘法的计算效率要高很多,因此该算法仍有极大的意义,用于减少CPU运算时间。

‘拾’ 关于秦九韶算法

A

阅读全文

与秦九算法相关的资料

热点内容
android图片变灰 浏览:268
linuxvi下一个 浏览:973
安卓手机的应用锁怎么解 浏览:735
linux增加路径 浏览:849
sql身份证号最后四位加密 浏览:533
xp系统表格加密 浏览:856
光遇安卓军大衣什么时候上线 浏览:840
android应用商店图标 浏览:341
java计算圆的面积 浏览:643
应用编译优化recovery 浏览:577
域控命令n 浏览:258
php导出文件 浏览:13
谷歌地图网页版无法连接服务器地址 浏览:298
菜鸟工具在线编译python 浏览:858
栅格化命令有何作用 浏览:823
为什么压缩文件不能解压 浏览:311
足球app哪个软件好 浏览:96
产品经理逼疯程序员的一天 浏览:17
修改svn服务器ip地址 浏览:584
下列关于编译说法正确的是 浏览:246