‘壹’ 复数如何运算
负数的运算包括加法法则,乘法法则,除法法则,开方法则,运算律,i的乘方法则等。具体运算方法如下:
1.加法法则
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即
‘贰’ 复数运算法则的加减法
复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,
则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i.
两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
复数的加法满足交换律和结合律,
即对任意复数z1,z2,z3,有: z1+z2=z2+z1; (z1+z2)+z3=z1+(z2+z3). 复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,
则它们的差是 (a+bi)-(c+di)=(a-c)+(b-d)i.
两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。
‘叁’ 复数乘法怎么算
设z1=a+bi,z2=c+di(a、b、c、d∈r)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
其实就是把两个复数相乘,类似两个多项式相乘,展开得:
ac+adi+bci+bdi^2,因为i^2=-1,所以结果是(ac-bd)+(bc+ad)i
。两个复数的积仍然是一个复数。
‘肆’ 复数乘法法则
电视剧《别爱我》
爱笑的眼睛
徐若瑄
作词:瑞业
作曲:林俊杰
如果不是那镜子不像你
不藏秘密
我还不肯相信没有你我的笑
更美丽
那天听你在电话里
略带抱歉的关心
我嘟的一声切的比你说分手
彻底
#
泪湿的衣洗乾净
阳光里晒干回忆
折好了伤心
明天起只和快乐出去
这爱的城市虽然拥挤
如果真的遇见你
你不必讶异
我的笑她无法代替
离开你我才发现自己
那爱笑的眼睛
流过泪
像躲不过的暴风雨
淋湿的昨天删去
离开你我才找回自己
那爱笑的眼睛
再见爱情
我一定让自己
让自己决定
repeat
#
离开你我才发现自己
那爱笑的眼睛
流了泪
当一个人看旧电影
是我不小心而已
离开你我才找回自己
那爱笑的眼睛
再见到你
我一定让自己
让自己坚定
离开你我才发现自己
那爱笑的眼睛
流过泪
像躲不过的暴风雨
淋湿的昨天忘记
离开你我才找回自己
那爱笑的眼睛
再见爱情
我一定让自己
让自己
坚定
再见到你
我一定让自己
假装很
坚定
‘伍’ 复数的基本运算法则 举例说明
1.加法运算法则: 设z1=a+bi,z2=c+di是任意两个复数, 则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i.
两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
复数的加法满足交换律和结合律.
即对任意复数z1,z2,z3,有: z1+z2=z2+z1; (z1+z2)+z3=z1+(z2+z3).
2.乘法运算规则:设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.
3.除法运算规则:利用初中学习的化简无理分式,采用的分母有理化思想方法,而复数c+di与复数c-di,相当于我们初中学习的 的对偶式 ,它们之积为1是有理数,而(c+di)·(c-di)=c2+d2是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法
4.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数 虚部不等于0的两个共轭复数也叫做共轭虚数
‘陆’ 复数的运算法则
复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。
(6)复数运算法则扩展阅读:
规定复数的乘法按照以下的法则进行:
设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其实就是把两个复数相乘,类似两个多项式相乘,展开得: ac+adi+bci+bdi2,因为i2=-1,所以结果是(ac-bd)+(bc+ad)i 。两个复数的积仍然是一个复数。
在极坐标下,复数可用模长r与幅角θ表示为(r,θ)。对于复数a+bi,r=√(a²+b²),θ=arctan(b/a)。此时,复数相乘表现为幅角相加,模长相乘。
‘柒’ 复数四则运算
复数运算法则
复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。
中文名
复数运算法则
外文名
Complex algorithm
包括
四则运算、幂运算、对数运算
相关领域
数学,算数
特殊符号
i
快速
导航
乘除法
对数运算法则
指数运算法则
加减法
加法法则
复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,
则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。
两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
复数的加法满足交换律和结合律,
即对任意复数z1,z2,z3,有: z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。
减法法则
复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,
则它们的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。
两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。
乘除法
乘法法则
规定复数的乘法按照以下的法则进行:
设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其实就是把两个复数相乘,类似两个多项式相乘,展开得: ac+adi+bci+bdi2,因为i2=-1,所以结果是(ac-bd)+(bc+ad)i 。两个复数的积仍然是一个复数。
在极坐标下,复数可用模长r与幅角θ表示为(r,θ)。对于复数a+bi,r=√(a2+b2),θ=arctan(b/a)。此时,复数相乘表现为幅角相加,模长相乘。
除法法则
复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。
运算方法:可以把除法换算成乘法做,在分子分母同时乘上分母的共轭。所谓共轭你可以理解为加减号的变换,互为共轭的两个复数相乘是个实常数。
除法运算规则:
①设复数a+bi(a,b∈R),除以c+di(c,d∈R),其商为x+yi(x,y∈R),
即(a+bi)÷(c+di)=x+yi
分母实数化
∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i
∴(cx-dy)+(dx+cy)i=a+bi
由复数相等定义可知 cx-dy=a dx+cy=b
解这个方程组,得 x=(ac+bd)/(c2+d2) y=(bc-ad)/(c2+d2)
于是有:(a+bi)/(c+di)=(ac+bd)/(c2+d2) +((bc-ad)/(c2+d2))i
②利用共轭复数将分母实数化得(见右图):
点评:①是常规方法;②是利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数c+di与复数c-di,相当于我们初中学习的 的对偶式,它们之积为1是有理数,而(c+di)·(c-di)=c2+d2是正实数.所以可以分母实数化。把这种方法叫做分母实数化法。
‘捌’ 求电路中复数运算法则
建议你好好看看 《电路原理》的正弦稳态电路一章,你就全明白了!