① 计算机算法指的是什么
计算机算法是以一步接一步的方式来详细描述计算机如何将输入转化为所要求的输出的过程,或者说,算法是对计算机上执行的计算过程的具体描述。
无论算法有多么复杂,都必须在有限步之后结束并终止运行;即算法的步骤必须是有限的。在任何情况下,算法都不能陷入无限循环中。算法必须是由一系列具体步骤组成的,并且每一步都能够被计算机所理解和执行,而不是抽象和模糊的概念。
算法首先必须是正确的,即对于任意的一组输入,包括合理的输入与不合理的输入,总能得到预期的输出。如果一个算法只是对合理的输入才能得到预期的输出,而在异常情况下却无法预料输出的结果,那么它就不是正确的。
(1)指算法扩展阅读
特点
1、有穷性。一个算法应包含有限的操作步骤,而不能是无限的。事实上“有穷性”往往指“在合理的范围之内”。如果让计算机执行一个历时1000年才结束的算法,这虽然是有穷的,但超过了合理的限度,人们不把他视为有效算法。
2、确定性。算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的。算法中的每一个步骤应当不致被解释成不同的含义,而应是十分明确的。也就是说,算法的含义应当是唯一的,而不应当产生“歧义性”。
3、有零个或多个输入。所谓输入是指在执行算法是需要从外界取得必要的信息。
4、有一个或多个输出。算法的目的是为了求解,没有输出的算法是没有意义的。
5、有效性。 算法中的每一个 步骤都应当能有效的执行。并得到确定的结果。
② 4+1的手指算法怎么算
手指速算法7减4这样算:先生出7根手指头,再弯下4个,剩下7-4=3个手指头是竖着的。
朋友,请及时采纳正确答案,下次还可能帮到您哦,您采纳正确答案,您也可以得到财富值,谢谢。
③ 那算法是什么
答:一、算法含义
算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。
二、算法特点
一个算法应该具有以下五个重要的特征:
1、有穷性
算法的有穷性是指算法必须能在执行有限个步骤之后终止。
2、确切性
算法的每一步骤必须有确切的定义。
3、输入项
一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件。
4、输出项
一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。
5、可行性
算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性)。
④ 一百以内的幼儿园手指算法怎样算
初级:100以内加减 准备:教师在带读以下口诀并做相关手指游戏前,需发出口令“清零”,幼儿马上双手击掌,然后紧握双拳在胸前,聚精会神做好准备。(注意:手心朝里,两拳间隔距离以方便双手出指为准,既不要太近,也不要太远。) 一、手指定位口诀 我有一双手,代表九十九;左手定十位,九十我会数; 右手定个位,从一数到九;加减很方便,计算不用愁。 二、手指定数口诀 食指伸开“l”,中指伸开“2”; 无名指为“3”,小指伸开“4”; 四指一握伸拇指,拇指是“5”要记住; 再伸食指到小指,“6”“7”“8”“9”排成数。 三、右手出指练习口诀 一马当先,二虎相争,三言两语,四海为家,五谷丰登, 六畜兴旺,七上八下,八仙过海,九牛一毛,十万火急。 一言九鼎,二龙戏珠,三足鼎立,四面楚歌,五谷丰登, 六神无主,七上八下,八面玲珑,九牛一毛,十全十美。 (注:念到“十万火急”或“十全十美”时,右手握拳,左手出“1”,代表进位。)
⑤ 算法是什么
算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。
一个算法应该具有以下五个重要的特征:
1、有穷性:
一个算法必须保证执行有限步之后结束;
2、确切性:
算法的每一步骤必须有确切的定义;
3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、可行性:
算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
时间复杂度
算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n
的函数f(n),算法的时间复杂度也因此记做
T(n)=Ο(f(n))
因此,问题的规模n
越大,算法执行的时间的增长率与f(n)
的增长率正相关,称作渐进时间复杂度(Asymptotic
Time
Complexity)。
空间复杂度
算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
⑥ 在计算机中,算法是指什么
算法(Algorithm)是对问题求解方法的精确描述
,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用
空间复杂度
与
时间复杂度
来衡量。
算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
一个算法应该具有以下五个重要的特征:
1、
有穷性
:
一个算法必须保证执行有限步之后结束;
2、
明确性
:
算法的每一步骤必须意义明确;
3、
输入
:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
4、
输出
:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、
可执行性
:
所采用的算法必须能够在计算机上执行。
计算机科学家尼克劳斯-沃思曾着过一本着名的书《数据结构十算法=
程序》,可见算法在计算机科学界与计算机应用界的地位。
⑦ 什么叫算法
算法是指有基本运算及规定的运算顺序所构成的完整的解题步骤。也可看成是按照要求设计好的有限、确切的计算序列,并且这样的步骤和序列可以解决一类问题。
一个算法应该具有以下七个重要的特征:
①有穷性(Finiteness):算法的有穷性是指算法必须能在执行有限个步骤之后终止;
②确切性(Definiteness):算法的每一步骤必须有确切的定义;
③输入项(Input):一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输 入是指算法本身定出了初始条件;
④输出项(Output):一个算法有一个或多个输出,以反映对输入数据加工后的结果。没 有输出的算法是毫无意义的;
⑤可行性(Effectiveness):算法中执行的任何计算步骤都是可以被分解为基本的可执行 的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性);
⑥高效性(High efficiency):执行速度快,占用资源少;
⑦健壮性(Robustness):对数据响应正确。
⑧ 算法的五大特性是什么
输入:在算法中可以有零个或者多个输入。
输出:在算法中至少有一个或者多个输出。
有穷行:在执行有限的步骤之后,自动结束不会出现无限循环并且每一个步骤在可接受的时间内完成。
确定性:算法的每一个步骤都具有确定的含义,不会出现二义性。
可行性:算法的每一步都必须是可行的,也就是说,每一步都能够通过执行有限的次数完成。
⑨ 什么是指算法
在加、减法计算的教学中,如果用数的组成和分解作为学习加、减计算的基础,对中、重度智残学生来说无异是“天书”,若用小棒进行计算,由于他们动作迟缓、反应迟钝,注意了拿小棒,就忘记了数数,还会经常把小棒碰乱或碰掉地上,待捡起了小棒,原来算了些什么全都忘了,又得从头算起。另外,天天让学生带些小棒,也是件??嗦事。在多年的教学实践中,我们数学教研组全体教师探索、总结出一套用手指代替小棒进行加、减法计算的方法,简称“指算法”。用指算进行加、减法计算,既省去了随身携带小棒的麻烦,又可随时随地进行指法、指算的练习。我们的具体做法是:加法的指法练习是伸出手指,抠一个手指数一个数,数清10根手指。练好指法后便可进行加法计算,例如计算35
个位上5+2,5在手上(伸出5个手指),2记心中,从2数起,抠一个手指往后数一个数,数完5个手指,也就是从2开始数到7,结果就是7;十位上3+6,3在手上(伸出3个手指),6记心中,从6开始,抠一个手指往后数一个数,数完3个手指,即从6数到9,结果就是9,这样35+62=97。如果是进位加法,就把相同数位上的数加得的结果再直接加上进位的数就行。减法的指法练习是先握拳,伸一个手指数一个数,例如计算 94 ,个位上4-3,一手握拳,3在心中,从3数到4,伸一
- 53
个手指往后数一个数,3→4结果是1;十位上9-5,5在心中,从5数到9,从5起伸一个手指数一个数,5→9结果是4,所以94-53=41。学生只要能数清20以内的数,退位减法也同样计算。为了让学生分清在计算到底是伸手指还是握拳,我们把加、减法的指算方法归纳为:“加数在手上,减数记心中”。
指算加、减法的教学,可以随时随地让学生练一练指法或指算几道10以内的加、减法。这样一来,教学的空间就不只局限于课堂内进行。