① 深度优先搜索和广度优先搜索,A星算法三种算法的区别和联系
在说它之前先提提状态空间搜索.状态空间搜索,如果按专业点的说法就是将问题求解过程表现为从初始状态到目标状态寻找这个路径的过程.通俗点说,就是 在解一个问题时,找到一条解题的过程可以从求解的开始到问题的结果(好象并不通俗哦).由于求解问题的过程中分枝有很多,定性,不完备性造成的,使得求解的路径很多这就构成了一个图,我们说这个图就是状态空间.问题的求解实际上就是在这个图中找到一条路径可以从开始到结果.这个寻找的过程就是状态空间搜索.
② lua语言a星寻路算法路径怎么平滑
在项目中遇到了自动寻路的需求,于是决定开始学习一下A星,对于A星我也没有深究,只能说是勉强搞定了需求,在这和大家分享一下,相互进步,
A星有个公式 f(x) = g(x) + h(x)
,搞清楚这个公式就好办了,f(x)就是当前位置到下一个位置的总价值,g(x)表示实际价,这是说这一部分代价是确定的,h(x)表示估价值,就是说我
从下一个位置到到终点的代价是未知的,所以叫估价值,如图中所示,黑色格子表示当前位置,绿色格子表示下一步可能到达的位置,即上、下、左、右这几个方
向,红色格子表示终点,褐色表示障碍物,现在要从黑色格子到达红色格子,那么黑色格子的下一步肯定是绿色格子当中的一个,黑色格子到绿色格子之间是相挨着
的,所以我们可以很明确的知道它的实际代价为1(移动一步的代价)即g(x),绿色格子到红色格子之间隔着很长的距离,中间还有障碍物,所以这个代价是未
知的,即h(x),所以总的代价就为f(x) = g(x) +
h(x),我们看到周围有4个绿色的格子,到底走那一步比较好呢,所以我们要把这4个格子的f(x)值都求出来,然后进行排序,选择f(x)值最小的,即
总代价最少的那个格子,以此方法继续下去,直到到达终点 或者 地图上没有绿色格子了
下面来看一下这个工具类,g(x)和h(x)要选的比较合适,一般就是采用的曼哈顿算法,即两点在x方向和y方向的距离之和,
-- Filename: PathUtil.lua
-- Author: bzx
-- Date: 2014-07-01
-- Purpose: 寻路
mole("PathUtil", package.seeall)
local _map_data -- 地图数据
local _open_list -- 开放节点
local _open_map -- 开放节点,为了提高性能而加
local _close_map -- 关闭节点
local _deleget -- 代理
local _dest_point -- 目标点
local _start_point -- 起点
local _path -- 路径
-- 寻找路径
--[[
deleget = {
g = function(point1, point2)
-- add your code
-- 返回点point1到点point2的实际代价
end
h = function(point1, point2)
-- add your code
-- 返回点point1到点point2的估算代价
end
getValue = function(j, i)
-- 返回地图中第i行,第j列的数据 1为障碍物,0为非障碍物
end
width -- 地图宽度
height -- 地图高度
}
--]]
function findPath(deleget, start_point, dest_point)
_deleget = deleget
_dest_point = dest_point
_start_point = start_point
init()
while not table.isEmpty(_open_list) do
local cur_point = _open_list[1]
table.remove(_open_list, 1)
_open_map[cur_point.key] = nil
if isEqual(cur_point, dest_point) then
return makePath(cur_point)
else
_close_map[cur_point.key] = cur_point
local next_points = getNextPoints(cur_point)
for i = 1, #next_points do
local next_point = next_points[i]
if _open_map[next_point.key] == nil and _close_map[next_point.key] == nil and isObstacle(next_point) == false then
_open_map[next_point.key] = next_point
table.insert(_open_list, next_point)
end
end
table.sort(_open_list, compareF)
end
end
return nil
end
function init()
_open_list = {}
_open_map = {}
_close_map = {}
_path = {}
_map_data = {}
for i = 1, _deleget.height do
_map_data[i] = {}
for j = 1, _deleget.width do
local value = _deleget.getValue(j, i)
_map_data[i][j] = value
end
end
_open_map[getKey(_start_point)] = _start_point
table.insert(_open_list, _start_point)
end
function createPoint(x, y)
local point = {
["x"] = x,
["y"] = y,
["last"] = nil,
["g_value"] = 0,
["h_value"] = 0,
["f_value"] = 0
}
point["key"] = getKey(point)
return point
end
-- 得到下一个可以移动的点
-- @param point 当前所在点
function getNextPoints(point)
local next_points = {}
for i = 1, #_deleget.directions do
local offset = _deleget.directions[i]
local next_point = createPoint(point.x + offset[1], point.y + offset[2])
next_point["last"] = point
if next_point.x >= 1 and next_point.x <= _deleget.width and next_point.y >= 1 and next_point.y <= _deleget.height then
next_point["g_value"] = _deleget.g(point, next_point)
next_point["h_value"] = _deleget.h(point, _dest_point)--math.abs(next_points.x - _dest_point.x) + math.abs(next_points.y - _dest_point.y)
next_point["f_value"] = next_point.g_value + next_point.h_value
table.insert(next_points, next_point)
end
end
return next_points
end
-- 得到路径
-- @param end_point 目标点
function makePath(end_point)
_path = {}
local point = end_point
while point.last ~= nil do
table.insert(_path, createPoint(point.x, point.y))
point = point.last
end
local start_point = point
table.insert(_path, start_point)
return _path
end
-- 两个点的代价比较器
function compareF(point1, point2)
return point1.f_value < point2.f_value
end
-- 是否是障碍物
function isObstacle(point)
local value = _map_data[point.y][point.x]
if value == 1 then
return true
end
return false
end
-- 两个点是否是同一个点
function isEqual(point1, point2)
return point1.key == point2.key
end
-- 根据点得到点的key
function getKey(point)
local key = string.format("%d,%d", point.x, point.y)
return key
end
下面是工具类PathUtil的用法
local deleget = {}
deleget.g = function(point1, point2)
return math.abs(point1.x - point2.x) + math.abs(point1.y - point2.y)
end
deleget.h = deleget.g
deleget.getValue = function(j, i)
local index = FindTreasureUtil.getIndex(j, i)
local map_info = _map_info.map[index]
if map_info.display == 0 and map_info.eid ~= 1 then
return 0
end
return 1
end
deleget.directions = {{-1, 0}, {0, -1}, {0, 1}, {1, 0}} -- 左,上,下,右
deleget.width = _cols
deleget.height = _rows
local dest_row, dest_col = FindTreasureUtil.getMapPosition(tag)
local dest_point = PathUtil.createPoint(dest_col, dest_row)
local start_row, start_col = FindTreasureUtil.getMapPosition(_player_index)
local start_point = PathUtil.createPoint(start_col, start_row)
_path = PathUtil.findPath(deleget, start_point, dest_point)
_path就是我们找到的路径,起点为最后一个元素,终点为第一个元素
③ a星算法 是不是深度学习算法套路
不是的,a星算法是一个启发式搜索算法
④ 游戏中为什么用启发式a星算法
首先,A* 是启发式算法,在寻路过程中搜索的范围相比 Dijsktra 一般要小得多(当然,有时也可能一样)
其次,A* 算法的搜索速度和效率可控,可以通过控制代价函数来权衡搜索的速度和精度之间的关系
⑤ JAVA的A星算法问题
class AllShunXu { static String str = "12345"; static char[] a = str.toCharArray(); static int n = 5; static void swap(int arg1, int arg2){ char temp; temp = a[arg1]; a[arg1] = a[arg2]; a[arg2] = temp; } static void sort(int index){ int i; if (index == n){ for (i = 0; i < n; i++){ System.out.print(a[i]); } System.out.println(""); return; } for (i = index; i < n; i++){ swap(index,i); sort(index + 1); swap(index,i); } } public static void main(String args[]){ for(int s =0;s<n;s++){ sort(s); } }}
⑥ 深度优先搜索和广度优先搜索、A星算法三种算法的区别和联系
在说它之前先提提状态空间搜索。状态空间搜索,如果按专业点的说法就是将问题求解过程表现为从初始状态到目标状态寻找这个路径的过程。通俗点说,就是 在解一个问题时,找到一条解题的过程可以从求解的开始到问题的结果(好象并不通俗哦)。由于求解问题的过程中分枝有很多,主要是求解过程中求解条件的不确 定性,不完备性造成的,使得求解的路径很多这就构成了一个图,我们说这个图就是状态空间。问题的求解实际上就是在这个图中找到一条路径可以从开始到结果。 这个寻找的过程就是状态空间搜索。 常用的状态空间搜索有深度优先和广度优先。广度优先是从初始状态一层一层向下找,直到找到目标为止。深度优先是按照一定的顺序前查找完一个分支,再查找另一个分支,以至找到目标为止。这两种算法在数据结构书中都有描述,可以参看这些书得到更详细的解释。 前面说的广度和深度优先搜索有一个很大的缺陷就是他们都是在一个给定的状态空间中穷举。这在状态空间不大的情况下是很合适的算法,可是当状态空间十分大,且不预测的情况下就不可取了。他的效率实在太低,甚至不可完成。在这里就要用到启发式搜索了。 启发中的估价是用估价函数表示的,如: f(n) = g(n) + h(n) 其中f(n) 是节点n的估价函数,g(n)实在状态空间中从初始节点到n节点的实际代价,h(n)是从n到目标节点最佳路径的估计代价。在这里主要是h(n)体现了搜 索的启发信息,因为g(n)是已知的。如果说详细点,g(n)代表了搜索的广度的优先趋势。但是当h(n) >> g(n)时,可以省略g(n),而提高效率。这些就深了,不懂也不影响啦!我们继续看看何谓A*算法。 2、初识A*算法 启发式搜索其实有很多的算法,比如:局部择优搜索法、最好优先搜索法等等。当然A*也是。这些算法都使用了启发函数,但在具体的选取最佳搜索节点时的 策略不同。象局部择优搜索法,就是在搜索的过程中选取“最佳节点”后舍弃其他的兄弟节点,父亲节点,而一直得搜索下去。这种搜索的结果很明显,由于舍弃了 其他的节点,可能也把最好的节点都舍弃了,因为求解的最佳节点只是在该阶段的最佳并不一定是全局的最佳。最好优先就聪明多了,他在搜索时,便没有舍弃节点 (除非该节点是死节点),在每一步的估价中都把当前的节点和以前的节点的估价值比较得到一个“最佳的节点”。这样可以有效的防止“最佳节点”的丢失。那么 A*算法又是一种什么样的算法呢?其实A*算法也是一种最好优先的算法。只不过要加上一些约束条件罢了。由于在一些问题求解时,我们希望能够求解出状态空 间搜索的最短路径,也就是用最快的方法求解问题,A*就是干这种事情的!我们先下个定义,如果一个估价函数可以找出最短的路径,我们称之为可采纳性。A* 算法是一个可采纳的最好优先算法。A*算法的估价函数可表示为: f'(n) = g'(n) + h'(n) 这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值,h'(n)是n到目标的最断路经的启发值。由于这个f'(n)其实是无法预先知道 的,所以我们用前面的估价函数f(n)做近似。g(n)代替g'(n),但 g(n)>=g'(n)才可(大多数情况下都是满足的,可以不用考虑),h(n)代替h'(n),但h(n)<=h'(n)才可(这一点特别 的重要)。可以证明应用这样的估价函数是可以找到最短路径的,也就是可采纳的。我们说应用这种估价函数的最好优先算法就是A*算法。哈。你懂了吗?肯定没 懂。接着看。 举一个例子,其实广度优先算法就是A*算法的特例。其中g(n)是节点所在的层数,h(n)=0,这种h(n)肯定小于h'(n),所以由前述可知广度优先算法是一种可采纳的。实际也是。当然它是一种最臭的A*算法。 再说一个问题,就是有关h(n)启发函数的信息性。h(n)的信息性通俗点说其实就是在估计一个节点的值时的约束条件,如果信息越多或约束条件越多则排除 的节点就越多,估价函数越好或说这个算法越好。这就是为什么广度优先算法的那么臭的原因了,谁叫它的h(n)=0,一点启发信息都没有。但在游戏开发中由 于实时性的问题,h(n)的信息越多,它的计算量就越大,耗费的时间就越多。就应该适当的减小h(n)的信息,即减小约束条件。但算法的准确性就差了,这 里就有一个平衡的问题。可难了,这就看你的了! 好了我的话也说得差不多了,我想你肯定是一头的雾水了,其实这是写给懂A*算法的同志看的。哈哈。你还是找一本人工智能的书仔细看看吧!我这几百字是不足以将A*算法讲清楚的。只是起到抛砖引玉的作用希望大家热情参与吗。
⑦ A星寻路算法和Unity自带的寻路相比有什么优势
并没一种寻路适合所有场合,选择都是基于需求而定的。
1. A* 算法与贪婪算法不一样,贪婪算法适合动态规划,寻找局部最优解,不保证最优解。
A*是静态网格中求解最短路最有效的方法。也是耗时的算法,不宜寻路频繁的场合。一般来说适合需求精确的场合。
与启发式的搜索一样,能够根据改变网格密度、网格耗散来进行调整精确度。
使用的地方:
a. 策略游戏的策略搜索
b. 方块格子游戏中的格子寻路
2. Unity 自带的导航网格系统
Unity 内置了NavMesh导航网格系统,一般来说导航网格算法大多是“拐角点算法”。
效率是比较高的,但是不保证最优解算法。
使用的地方:
a.游戏场景的怪物寻路
b.动态规避障碍
⑧ 按键精灵a星算法寻路怎么制作地图
你可以查找有关a星算法走路,一步步去学,别人也不知道你说的是什么地图,怎么判断
⑨ 如果人物地图都是按格子来的,那么可以用A星算法自动寻路,如果路径跟地图都不是格子的,怎么自动寻路,手
这个不行,寻路可能要遍历到整个地图,所以定几个特殊点没法得出路径的。