导航:首页 > 源码编译 > 递归算法

递归算法

发布时间:2022-01-27 03:44:28

㈠ 选择题:一个递归算法必须包括()

一个递归算法必须包括B、终止条件和递归部分。

递归算法在计算机科学中是指一种通过重复将问题分解为同类的子问题而解决问题的方法。

递归式方法可以被用于解决很多的计算机科学问题,因此它是计算机科学中十分重要的一个概念。绝大多数编程语言支持函数的自调用,在这些语言中函数可以通过调用自身来进行递归。



尾部递归:

递归函数在调用自身后直接传回其值,而不对其再加运算。尾部递归与循环是等价的,而且在一些语言(如Scheme中)可以被优化为循环指令。

因此,在这些语言中尾部递归不会占用调用堆栈空间。以下Scheme程序同样计算一个数字的阶乘,但是使用尾部递归。

㈡ 递归算法有何特点

递归4—递归的弱点

之所以没有把这段归为算法的讨论,因为这里讨论的不在是算法,而只是讨论一下滥用递归的不好的一面。

递归的用法似乎是很容易的,但是递归还是有她的致命弱点,那就是如果运用不恰当,滥用递归,程序的运行效率会非常的低,低到什么程度,低到出乎你的想象!当然,平时的小程序是看不出什么的,但是一旦在大项目里滥用递归,效率问题将引起程序的实用性的大大降低!

例子:求1到200的自然数的和。

第一种做法:

#include <stdio.h>

void main()

{

int i;

int sum=0;

for(i=1;i<=200;i++)

{

sum+=i;

}

printf("%d\n",sum);

}

该代码中使用变量2个,计算200次。再看下个代码:

#include <stdio.h>

int add(int i)

{

if(i==1)

{

return i;

}

else

{

return i+add(i-1);

}

}

void main()

{

int i;

int sum=0;

sum=add(200);

printf("%d\n",sum);

}

但看add()函数,每次调用要声明一个变量,每次调用要计算一次,所以应该是200个变量,200次计算,对比一下想想,如果程序要求递归次数非常多的时候,而且类似与这种情况,我们还能用递归去做吗?这个时候宁愿麻烦点去考虑其他办法,也要尝试摆脱递归的干扰。

21:21 | 添加评论 | 固定链接 | 引用通告 (0) | 记录它 | 计算机与 Internet
程序算法5—递归3—递归的再次挖掘

递归的魅力就在于递归的代码,写出来实在是太简练了,而且能解决很多看起来似乎有规律但是又不是一下子能表达清楚的一些问题。思路清晰了,递归一写出来问题立即就解决了,给人一重感觉,递归这么好用。我们在此再更深的挖掘一下递归的用法。

之前再强调一点,也许有人会问,你前边的例子用递归似乎是更麻烦了。是,是麻烦了,因为为了方便理解,只能举一些容易理解的例子,一般等实际应用递归的时候,远远不是这种状态。

好了我们现在看一个数字的序列;有一组数的集合{1,2,4,7,11,16,22,29,37,46,56……}我故意多给几项,一般是只给前4项让你找规律的。序列给了,要求是求前50项的和。规律?有?还是没有?一看就象有,但是又看不出来,我多给了几项,应该很快看出来了,哦,原来每相邻的两项的差是个自然数排列,2-1=1,4-2=2,7-4=3,11-7=4,16-11=5……

好了,把规律找出来了,一开始可能觉得没头绪,没问题,咱们把这个序列存放到一个数组总可以吧!那我们就声明一个数组,存放前50个数据,一个一个相加总可以了。于是有了下边的写法:

#include <stdio.h>

void main()

{

int i,a[50],sum=0;

a[0]=1;

for(i=1;i<50;i++)

{

a[i]=a[i-1]+i;

}

for(i=0;i<50;i++)

{

sum+=a[i];

}

printf("%d\n",sum);

}

好了,代码运行一下,结果出来了,正确不正确呢?自己测试吧,把50项改成1、2、3、4、5……项,试试前多少项是不是正确,虽然这不是正确的测试方法,但是的确是常用的测试方法。

等到这个代码已经完全理解了,完全明白了正个计算过程,我们就应该对这段代码进行改写优化了,毕竟这个代码还是不值得用一个数组的,那么我们尝试着只用变量去做一下:

#include <stdio.h>

void main()

{

int i;

int number=1;

int sum=0;

for(i=0;i<50;i++)

{

number+=i;

sum+=number;

}

printf("%d\n",sum);

}

不知道我这样写是不是跨度大了点,但是我不准备详细解释了,很多东西需要你去认真分析的,所以很多东西如果不懂,自己想清楚比别人解释的效果会更好,因为别人讲只能让你理解,如果你自己去想,你就在理解的同时学会了思考。

这个代码写出来,不要继续看下去,先自己尝试着把这个题目用递归做一下看看自己能不能写出来,当然,递归并不是那么轻松就能使用的,有时候也是需要去细心设计的。如果做出来了,对比一下下边的代码,如果没有写出来,建议认真分析后边的代码,然后最好是能完全掌握,能自己随时把这行代码写出来:

#include <stdio.h>

int add(int n,int num,int i)

{

num+=i;

if(i>=n-1)

{

return num;

}

else

{

return num+add(n,num,i+1);

}

}

void main()

{

int sum;

sum=add(50,1,0); /*50表示前50象项*/

printf("%d\n",sum);

}

当然这个代码中的n只是一个参考变量,如果把if(i>=n-1)中的n该成50,那么就不需要这个n了,函数两个参数就可以了,这样写是为了修改方便。

20:28 | 添加评论 | 固定链接 | 引用通告 (0) | 记录它 | 计算机与 Internet
程序算法4—递归2—递归的魅力

两天没有再写下去,因为毕竟有时候会有点心情问题,有时候觉得心情不好,一下子什么东西都想不起来了,很多时候写一些东西是需要状态的,一旦状态有了,想的东西才能顺利的写出来,虽然有些东西写出来在别人看来很垃圾,但是起码自己觉得还是相当满意的,我写这个本来就没有多少技术含量,只是想给初学程序的人一些指引,加快他们对程序的领悟!

好了,言归正传,继续上次递归的讨论,看看递归的魅力所在。

有这样一个问题,说一个猴子和一堆苹果,猴子一天吃一半,然后再吃一个,10天后剩下一个了,也就是说吃了10次,剩下1个了。问原来一共有多少苹果。

当然我们的目的不是求出苹果的数量,而是寻求一种解决问题的方法,这个问题一出来,通常对程序掌握深度不一样的朋友对这个题会有不同的认识,首先介绍一种解决方法,这种人脑袋还是比较聪明的,思路非常的明确,也有可能语言工具掌握的也不错,代码写出来非常准确,先看一下代码再做评价吧:

#include <stdio.h>

void main()

{

int day=10;

int apple;

int i,j;

for(i=1;;i++)

{

apple=i;

for(j=0;j<day;j++)

{

if(apple%2==0&&apple>0)

{

apple/=2;

apple--;

}

else

{

break;

}

}

if(j==day&&apple==1)

{

printf("%d\n",i);

return;

}

}

}

程序的大概思路很明确,简单介绍一下,这种写法就是从一个苹果开始算起,for(i=1;;i++)的作用就是改变苹果的数量,如果1个符合条件,那就试试2个,然后3个、4个一直到适合为止,里边的for循环就是把每一次取得的苹果的数目进行计算,如果每次都能顺利的被2整除(也就是说每次都能保证猴子能正好吃一半),然后再减一一直到最后,如果最后苹果剩下是一个而且天数正好是10天,那么就输出一下苹果的数目,整个程序退出,如果看不明白的没关系,这个写法非常的不适用,我们叫写出这种算法的人傻X,虽然这种人脑袋也挺聪明,能写出一些新鲜的写法,但是又脏又臭,代码既不简练又不高效。

所以说,有时候有些人以为自己学的很好了,自己所做的一切都是最好的,这种想法是不正确的,也许有些初学者没有什么经验写出来的代码却更让人容易明白点,那么也是先看看代码:

#include <stdio.h>

void main()

{

int day[11];

int i;

day[0]=1;

for(i=1;i<11;i++)

{

day[i]=(day[i-1]+1)*2;

}

printf("%d\n",day[10]);

}

代码不长,而且也恰当的应用了题目中的规律,不是说要吃一半然后再吃一个吗?那我用数组来存放每天苹果的数量,用day[0]表示最后一天的苹果数量,那就是剩下的一个,然后就是找规律了,什么规律?就是如果猴子不多吃一个的话,那就是正好吃了一半,也就是说猴子当天吃了之后剩余的苹果的数目加1个然后再乘以2就是前一天的数目了,这样一想这个题目就简单的多了,于是这个题用数组就轻松的做出来了。

那么这个代码究竟是不是已经很好了呢,我们注意到,这里边每个数组元素只用了一次并没有被重复使用,再这种情况下我们是不是可以用一种方法代替数组呢?于是就有了更优化的写法,这个写法似乎已经是相当简练了:

#include <stdio.h>

void main()

{

int apple=1;

int i;

for(i=0;i<10;i++)

{

apple=(apple+1)*2;

}

printf("%d\n",apple);

}

代码写到这里已经把问题完全抽象化了,所以我们就应该站在数学的角度去分析了。也许我们就应该结束了讨论,但是偏偏这个时候,又来了递归,悄悄的通过美丽的调用显示了一下她的魅力:

#include <stdio.h>

int apple(int i)

{

if(i==0)

{

return 1;

}

else

{

return (apple(i-1)+1)*2;

}

}

void main()

{

int i;

i=apple(10);

printf("%d\n",i);

}

原理都还是一样的,但是写出来的格式已经完全变掉了,没有了for循环。假想一个复杂的问题远比这个问题复杂,而且没有固定循环次数,那么我们再使用循环虽然也能解决问题,但是可能面临循环难以设计、控制等问题,这个时候用递归可能就会让问题变的非常的清晰。

另外说一点,一般我这里的代码,并不是从最差到最好的,基本排列是从最差到最合适的代码(当然是本人认为最合适的,也许还有更好的,本人能力所限了),然后最后给出一种比较违反常规的代码,一般是不赞成用最后一种代码的,当然有时候最后一种代码也许是最好的选择,看情况吧!

20:25 | 添加评论 | 固定链接 | 引用通告 (0) | 记录它 | 计算机与 Internet
10月15日
程序算法3—递归1—递归小显威力

现在用C语言实现一个字符串的倒序输出,当然,方法也是很多的,但是如果程序中能有相对优化的方法或者简单明了易读的方法,那对你自己或者别人都是一种幸福。

第一种写法,这类写法既浪费内存又不实用,一般是刚学程序的才这样做,程序的结构很简单,利用的是数组:

#include <stdio.h>

void main()

{

char c[2000];

int i,length=0;

for(i=0;i<2000;i++)

{

scanf("%c",&c[i]);

if(c[i]=='\n')

{

break;

}

else

{

length++;

}

}

for(i=length;i>0;i--)

{

printf("%c",c[i-1]);

}

printf("\n");

}

这段代码中的数组,声明大了浪费内存空间,声明小了又怕不够,所以写这种代码的人一般写完之后会祈祷,祈祷测试的人不要输入的太多,太多就不能完全显示了!

与其这么提心吊胆,于是又有人想出了第二种方法,终于解决了一些问题,而且完全实现了程序的实际要求,于是,这种人经过一番苦想,觉得问题终于可以解决了,这种方法看起来是一种很不错的方法。

#include <stdio.h>

#include <malloc.h>

void main()

{

int i;

char *c;

c=(char *)malloc(1*sizeof(char));

for(i=0;;i++)

{

*(c+i)=getchar();

if(*(c+i)=='\n')

{

*(c+i)='\0';

break;

}

else

c=(char *)realloc(c,(i+2)*sizeof(char));

}

for(--i;i>=0;i--)

{

putchar(*(c+i));

}

printf("\n");

free(c);

}

怎么样?不错,准确的应用内存,几乎没有浪费什么空间,这种方法也体现了一下指针的强大功能,写这个程序虽然不敢说这个人已经掌握了指针的应用,但是起码可以说他已经会用指针了。代码写出来,看起来已经有点美感。

但是也有一些人还是比较喜欢动脑筋的,经过一番思考,终于想出了第三种比较容易写的方法,也许有写初学者可能觉得有些难度,但是事实上这个东西一点都不难,如果稍微有点程序功底之后再看这段代码,应该是相当轻松!

#include <stdio.h>

void run()

{

char c;

c=getchar();

if(c!='\n')

{

run();

}

else

{

return;

}

putchar(c);

}

void main()

{

run();

printf("\n");

}

写出的代码让人眼前一亮,哇!原来递归功能简单而又好用,那我们为什么不好好利用呢?但是递归也不一定就是最好的选择,因为有时候虽然递归用起来很方便,但是效率却不高,以后的讨论中还会详细说明。

㈢ 什么是递归算法

递归算法就是一个函数通过不断对自己的调用而求得最终结果的一种思维巧妙但是开销很大的算法。
比如:
汉诺塔的递归算法:
void move(char x,char y){
printf("%c-->%c\n",x,y);
}

void hanoi(int n,char one,char two,char three){
/*将n个盘从one座借助two座,移到three座*/
if(n==1) move(one,three);
else{
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
}
}

main(){
int n;
printf("input the number of diskes:");
scanf("%d",&n);
printf("The step to moving %3d diskes:\n",n);
hanoi(n,'A','B','C');
}
我说下递归的理解方法
首先:对于递归这一类函数,你不要纠结于他是干什么的,只要知道他的一个模糊功能是什么就行,等于把他想象成一个能实现某项功能的黑盒子,而不去管它的内部操作先,好,我们来看下汉诺塔是怎么样解决的
首先按我上面说的把递归函数想象成某个功能的黑盒子,void hanoi(int n,char one,char two,char three); 这个递归函数的功能是:能将n个由小到大放置的小长方形从one 位置,经过two位置 移动到three位置。那么你的主程序要解决的问题是要将m个的"汉诺块"由A借助B移动到C,根据我们上面说的汉诺塔的功能,我相信傻子也知道在主函数中写道:hanoi(m,A,B,C)就能实现将m个块由A借助B码放到C,对吧?所以,mian函数里面有hanoi(m,'A','C','B');这个调用。
接下来我们看看要实现hannoi的这个功能,hannoi函数应该干些什么?
在hannoi函数里有这么三行
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
同样以黑盒子的思想看待他,要想把n个块由A经过B搬到C去,是不是可以分为上面三步呢?
这三部是:第一步将除了最后最长的那一块以外的n-1块由one位置经由three搬到two 也就是从A由C搬到B 然后把最下面最长那一块用move函数把他从A直接搬到C 完事后 第三步再次将刚刚的n-1块借助hannoi函数的功能从B由A搬回到C 这样的三步实习了n块由A经过B到C这样一个功能,同样你不用纠结于hanoi函数到底如何实现这个功能的,只要知道他有这么一个神奇的功能就行
最后:递归都有收尾的时候对吧,收尾就是当只有一块的时候汉诺塔怎么个玩法呢?很简单吧,直接把那一块有Amove到C我们就完成了,所以hanoni这个函数最后还要加上 if(n==1)move(one,three);(当只有一块时,直接有Amove到C位置就行)这么一个条件就能实现hanoin函数n>=1时将n个块由A经由B搬到C的完整功能了。
递归这个复杂的思想就是这样简单解决的,呵呵 不知道你看懂没?纯手打,希望能帮你理解递归
总结起来就是不要管递归的具体实现细节步骤,只要知道他的功能是什么,然后利用他自己的功能通过调用他自己去解决自己的功能(好绕口啊,日)最后加上一个极限情况的条件即可,比如上面说的1个的情况。

㈣ 计算机数学-递归算法

你去搜搜斐波那列奇数,还有爬台阶问题,这个问题类似的,fn=f(n-1)+f(n-2),希望能帮到你吧,牛客网里面编程训练的剑指offer也有这题

㈤ 递归算法是什么

递归算法(英语:recursion algorithm)在计算机科学中是指一种通过重复将问题分解为同类的子问题而解决问题的方法。

递归式方法可以被用于解决很多的计算机科学问题,因此它是计算机科学中十分重要的一个概念。绝大多数编程语言支持函数的自调用,在这些语言中函数可以通过调用自身来进行递归。

计算理论可以证明递归的作用可以完全取代循环,因此在很多函数编程语言(如Scheme)中习惯用递归来实现循环。

㈥ 什么是递归算法有什么作用

作者名:不详 来源:网友提供 05年7月7日

无法贴图 ,自己到 http://51zk.csai.cn/sjjg/NO00223.htm 看去吧

1、调用子程序的含义:
在过程和函数的学习中,我们知道调用子程序的一般形式是:主程序调用子程序A,子程序A调用子程序B,如图如示,这个过程实际上是:

@当主程序执行到调用子程序A语句时,系统保存一些必要的现场数据,然后执行类似于BASIC语言的GOTO语句,跳转到子程序A(为了说得简单些,我这里忽略了参数传递这个过程)。
@当子程序A执行到调用子程序B语句时,系统作法如上,跳转到子程序B。
@子程序B执行完所有语句后,跳转回子程序A调用子程序B语句的下一条语句(我这又忽略了返回值处理)
@子程序A执行完后,跳转回主程序调用子程序A语句的下一条语句
@主程序执行到结束。
做个比较:我在吃饭(执行主程序)吃到一半时,某人叫我(执行子程序A),话正说到一半,电话又响了起来(执行子程序B),我只要先接完电话,再和某人把话说完,最后把饭吃完(我这饭吃得也够累的了J)。
2、认识递归函数
我们在高中时都学过数学归纳法,例:
求 n!
我们可以把n!这么定义

也就是说要求3!,我们必须先求出2!,要求2!,必须先求1!,要求1!,就必须先求0!,而0!=1,所以1!=0!*1=1,再进而求2!,3!。分别用函数表示,则如图:

我们可以观察到,除计算0!子程序外,其他的子程序基本相似,我们可以设计这么一个子程序:
int factorial(int i){
int res;
res=factorial(I-1)*i;
return res;
}
那么当执行主程序语句s=factorial(3)时,就会执行factorial(3),但在执行factorial(3),又会调用factorial(2),这时大家要注意,factorial(3)和factorial(2)虽然是同一个代码段,但在内存中它的数据区是两份!而执行factorial(2)时又会调用factorial(1),执行factorial(1)时又会调用factorial(0),每调用一次factorial函数,它就会在内存中新增一个数据区,那么这些复制了多份的函数大家可以把它看成是多个不同名的函数来理解;
但我们这个函数有点问题,在执行factorial(0)时,它又会调用factorial(-1)。。。造成死循环,也就是说,在factorial函数中,我们要在适当的时候保证不再调用该函数,也就是不执行res=factorial(I-1)*i;这条调用语句。所以函数要改成:
int factorial(int i){
int res;
if (I>0) res=factorial(I-1)*i; else res=1;
return res;
}
那么求3!的实际执行过程如图所示:

3、如何考虑用递归的方法来解决问题
例:求s=1+2+3+4+5+6+……+n
本来这个问题我们过去常用循环累加的方法。而这里如要用递归的方法,必须考虑两点:
1) 能否把问题转化成递归形式的描述;
2) 是否有递归结束的边界条件。
设:函数s(n)=1+2+3+…+(n-1)+n
显然递归的两个条件都有了:
1) s(n) =s(n-1)+n
2) s(1)=1
所以源程序为:
int progression(int n){
int res;
if (n=1 )res=1 else res=progression(n-1)+n;
return res;
}
4、递归的应用
中序遍历二叉树
void inorder (BinTree T){
if (T){
inorder(T->lchild);
printf(“%c”,T->data);
inorder(T->rchild);
}
}
现假设树如图(为了讲解方便,树很简单)

@执行第一次调用inorder1,T指向顶结点,T不为空,所以第二次调用inorder2;
@T指向顶结点的左子树结点也就是B,不为空,所以第三次调用inorder3;
@T指向B结点的左子树结点,为空,所以什么都不执行,返回inorder2;
@打印B结点的DATA域值“b”;
@第四次调用inorder4,去访问B子树的右结点
@T指向B结点的右子树结点,为空,所以什么都不执行,返回inorder2;
@返回inorder1;
@打印A结点的DATA域值“a”;
@第五次调用inorder5,去访问A子树的右结点;
@T指向A结点的右子树结点,为空,所以什么都不执行,返回inorder1;
@inorder1执行完毕,返回。

㈦ 递归算法

0+1 =1
1+1 =2
1+2 =3
2+3 = 5
3+5 =8
.....
an = a(n-1)+a(n-2)
sn = a1+a2+....+an=......
时间有限后面的自己够定吧

㈧ 什么是递归算法

递归做为一种算法在程序设计语言中广泛应用.是指函数/过程/子程序在运行过程序中直接或间接调用自身而产生的重入现像.

程序调用自身的编程技巧称为递归( recursion)。
一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。
一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。
注意:
(1) 递归就是在过程或函数里调用自身;
(2) 在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口,否则将无限进行下去(死锁)。

递归算法一般用于解决三类问题:
(1)数据的定义是按递归定义的。(Fibonacci函数)
(2)问题解法按递归算法实现。(回溯)
(3)数据的结构形式是按递归定义的。(树的遍历,图的搜索)

递归的缺点:
递归算法解题的运行效率较低。在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。

㈨ 递归算法的是怎么回事

和迭代差不多,只是通过定义和调用函数来实现迭代
把事情分解成相同的步骤重复执行直到符合某一条件时结束,再反过来递推到最初的状态,问题就解决了

比如定义(用的是C语言)
int fun(int a)
{
if(a==1) return 1;
else
{
a=a*fun(a-1);
return a;
}
}
在fun里面再定义fun,这个fun都只做一件事,把a的内容和fun(a-1)相乘作为返回值
这里要有个终止条件,即a=1时返回值为1,这样,如果我给最初的fun里的a赋值为5,第一步为5*fun(4),而执行fun(4)的结果为4*fun(3)....直到fun(2)=2*fun(1)即fun(2)=2*1,再把fun(2)代回去,得fun(3)=3*2*1,最后倒推的结果为fun(5)=5*4*3*2*1,即这个递归函数实现了a的阶乘fun(a)=a!

够详细了吧,觉得好的话给我加分吧 ^_^

㈩ 树的递归算法

答案是正确的啊。
if(root)就是如果root!=0,这里root是一个指针,指向结构体struct node的指针,第一次进入函数它就是指向根节点A的指针
运行步骤:
如果指向A的指针不为空(不为0),打印'A',
递归调用函数指向A的左孩子节点
如果指向B的指针不为空(不为0),打印'B',
递归调用函数指向B的左孩子节点
如果指向C的指针不为空(不为0),打印'C',
递归调用函数指向C的左孩子节点
由于C的左孩子节点为空,所以本次递归traversal(root->lchild)结束,回到上一层递归中即从C的左孩子节点回到C中,然后执行traversal(root->lchild)这一句下面一句,打印出'C'
然后递归调用traversal(root->rchild);指向C的右孩子节点
如果指向E的指针不为空(不为0),打印'E',
然后再递归指向E的左孩子节点,为空再返回到E中,再次打印出'E',然后再指向E的右孩子节点,为空,E的递归结束返回上一层递归即C中,然后C也到达末尾结束返回上一层递归B中,然后执行traversal(root->lchild)这一句下面一句,打印出'B'
然后递归调用traversal(root->rchild);指向B的右孩子节点
......
如此不断进入某个节点的子节点操作后再从子节点返回父节点,层层进入再层层向上返回,从而遍历树中各个节点,最终得出结果:
A B C C E E B A D F F D G G

阅读全文

与递归算法相关的资料

热点内容
android图片变灰 浏览:268
linuxvi下一个 浏览:975
安卓手机的应用锁怎么解 浏览:735
linux增加路径 浏览:849
sql身份证号最后四位加密 浏览:533
xp系统表格加密 浏览:856
光遇安卓军大衣什么时候上线 浏览:840
android应用商店图标 浏览:341
java计算圆的面积 浏览:643
应用编译优化recovery 浏览:577
域控命令n 浏览:258
php导出文件 浏览:15
谷歌地图网页版无法连接服务器地址 浏览:298
菜鸟工具在线编译python 浏览:858
栅格化命令有何作用 浏览:825
为什么压缩文件不能解压 浏览:311
足球app哪个软件好 浏览:96
产品经理逼疯程序员的一天 浏览:17
修改svn服务器ip地址 浏览:584
下列关于编译说法正确的是 浏览:246