包里有setup文件吗?
有的话双击点开,就自动装上了
⑵ Python 遗传算法的数学应用
来自nnetinfo目前可以做的一般有:分类.函数拟合压缩.图象识别等等,其实说到底,所有的都能归于第2点--函数拟合.一般如果输入与输出是有强烈关系的,网络都能找得到这个关系.例如病人的特征作为输入,判断这个是否为病人,一般都是可以的.业务背景知识强,才能把神经网络运用到实际中.另外,还需要把实现问题转换为数学问题的能力.例如数字识别就是一个经典的应用.但直接把图片放进去训练是得不到识别效果的,因为维度太多了,而且信息冗余量很大.于是有人把图片的特征先自已提取出来:例如对角线与图片上的数字有几个交点等等,再把这些特征作为输入,数字类别向量作为输出,放到网络中训练.最后你再写一个数字,提取这个数字的特征,再把这特征放进网络中的时候,它就能识别到你是哪个数字了.另外,又有人用卷积神经网络去做数字识别.还有人用深度网络去做,即先把原来图片的信息用RBM网络进行压缩,然后再训练,效果就好了.等等,其实很多问题都可以做,但前提是你要想到好的方式去运用神经网络.
⑶ python 遗传算法问题
遗传算法(GA)是最早由美国Holland教授提出的一种基于自然界的“适者生存,优胜劣汰”基本法则的智能搜索算法。
遗传算法也是借鉴该基本法则,通过基于种群的思想,将问题的解通过编码的方式转化为种群中的个体,并让这些个体不断地通过选择、交叉和变异算子模拟生物的进化过程,然后利用“优胜劣汰”法则选择种群中适应性较强的个体构成子种群,然后让子种群重复类似的进化过程,直到找到问题的最优解或者到达一定的进化(运算)时间。
⑷ 有没有用python实现的遗传算法优化BP神经网络的代码
下面是函数实现的代码部分:
clc
clear all
close all
%% 加载神经网络的训练样本 测试样本每列一个样本 输入P 输出T,T是标签
%样本数据就是前面问题描述中列出的数据
%epochs是计算时根据输出误差返回调整神经元权值和阀值的次数
load data
% 初始隐层神经元个数
hiddennum=31;
% 输入向量的最大值和最小值
threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];
inputnum=size(P,1); % 输入层神经元个数
outputnum=size(T,1); % 输出层神经元个数
w1num=inputnum*hiddennum; % 输入层到隐层的权值个数
w2num=outputnum*hiddennum;% 隐层到输出层的权值个数
N=w1num+hiddennum+w2num+outputnum; %待优化的变量的个数
%% 定义遗传算法参数
NIND=40; %个体数目
MAXGEN=50; %最大遗传代数
PRECI=10; %变量的二进制位数
GGAP=0.95; %代沟
px=0.7; %交叉概率
pm=0.01; %变异概率
trace=zeros(N+1,MAXGEN); %寻优结果的初始值
FieldD=[repmat(PRECI,1,N);repmat([-0.5;0.5],1,N);repmat([1;0;1;1],1,N)]; %区域描述器
Chrom=crtbp(NIND,PRECI*N); %初始种群
%% 优化
gen=0; %代计数器
X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换
ObjV=Objfun(X,P,T,hiddennum,P_test,T_test); %计算目标函数值
while gen
⑸ python有没有简单的遗传算法库
最后还是用DEAP搞定了....虽然中间过程还是看不太懂,但是只要会添加函数就可以用了,这就是工程师的好处吧
⑹ python有没有简单的遗传算法库
首先遗传算法是一种优化算法,通过模拟基因的优胜劣汰,进行计算(具体的算法思路什么的就不赘述了)。大致过程分为初始化编码、个体评价、选择,交叉,变异。
以目标式子 y = 10 * sin(5x) + 7 * cos(4x)为例,计算其最大值
首先是初始化,包括具体要计算的式子、种群数量、染色体长度、交配概率、变异概率等。并且要对基因序列进行初始化
[python]view plain
pop_size=500#种群数量
max_value=10#基因中允许出现的最大值
chrom_length=10#染色体长度
pc=0.6#交配概率
pm=0.01#变异概率
results=[[]]#存储每一代的最优解,N个二元组
fit_value=[]#个体适应度
fit_mean=[]#平均适应度
pop=geneEncoding(pop_size,chrom_length)
其中genEncodeing是自定义的一个简单随机生成序列的函数,具体实现如下
[python]view plain
defgeneEncoding(pop_size,chrom_length):
pop=[[]]
foriinrange(pop_size):
temp=[]
forjinrange(chrom_length):
temp.append(random.randint(0,1))
pop.append(temp)
returnpop[1:]
编码完成之后就是要进行个体评价,个体评价主要是计算各个编码出来的list的值以及对应带入目标式子的值。其实编码出来的就是一堆2进制list。这些2进制list每个都代表了一个数。其值的计算方式为转换为10进制,然后除以2的序列长度次方减一,也就是全一list的十进制减一。根据这个规则就能计算出所有list的值和带入要计算式子中的值,代码如下
[python]view plain
#0.0coding:utf-80.0
#解码并计算值
importmath
defdecodechrom(pop,chrom_length):
temp=[]
foriinrange(len(pop)):
t=0
forjinrange(chrom_length):
t+=pop[i][j]*(math.pow(2,j))
temp.append(t)
returntemp
defcalobjValue(pop,chrom_length,max_value):
temp1=[]
obj_value=[]
temp1=decodechrom(pop,chrom_length)
foriinrange(len(temp1)):
x=temp1[i]*max_value/(math.pow(2,chrom_length)-1)
obj_value.append(10*math.sin(5*x)+7*math.cos(4*x))
returnobj_value
有了具体的值和对应的基因序列,然后进行一次淘汰,目的是淘汰掉一些不可能的坏值。这里由于是计算最大值,于是就淘汰负值就好了
[python]view plain
#0.0coding:utf-80.0
#淘汰(去除负值)
defcalfitValue(obj_value):
fit_value=[]
c_min=0
foriinrange(len(obj_value)):
if(obj_value[i]+c_min>0):
temp=c_min+obj_value[i]
else:
temp=0.0
fit_value.append(temp)
returnfit_value
然后就是进行选择,这是整个遗传算法最核心的部分。选择实际上模拟生物遗传进化的优胜劣汰,让优秀的个体尽可能存活,让差的个体尽可能的淘汰。个体的好坏是取决于个体适应度。个体适应度越高,越容易被留下,个体适应度越低越容易被淘汰。具体的代码如下
[python]view plain
#0.0coding:utf-80.0
#选择
importrandom
defsum(fit_value):
total=0
foriinrange(len(fit_value)):
total+=fit_value[i]
returntotal
defcumsum(fit_value):
foriinrange(len(fit_value)-2,-1,-1):
t=0
j=0
while(j<=i):
t+=fit_value[j]
j+=1
fit_value[i]=t
fit_value[len(fit_value)-1]=1
defselection(pop,fit_value):
newfit_value=[]
#适应度总和
total_fit=sum(fit_value)
foriinrange(len(fit_value)):
newfit_value.append(fit_value[i]/total_fit)
#计算累计概率
cumsum(newfit_value)
ms=[]
pop_len=len(pop)
foriinrange(pop_len):
ms.append(random.random())
ms.sort()
fitin=0
newin=0
newpop=pop
#转轮盘选择法
whilenewin<pop_len:
if(ms[newin]<newfit_value[fitin]):
newpop[newin]=pop[fitin]
newin=newin+1
else:
fitin=fitin+1
pop=newpop
选择完后就是进行交配和变异,这个两个步骤很好理解。就是对基因序列进行改变,只不过改变的方式不一样
交配:
[python]view plain
#0.0coding:utf-80.0
#交配
importrandom
defcrossover(pop,pc):
pop_len=len(pop)
foriinrange(pop_len-1):
if(random.random()<pc):
cpoint=random.randint(0,len(pop[0]))
temp1=[]
temp2=[]
temp1.extend(pop[i][0:cpoint])
temp1.extend(pop[i+1][cpoint:len(pop[i])])
temp2.extend(pop[i+1][0:cpoint])
temp2.extend(pop[i][cpoint:len(pop[i])])
pop[i]=temp1
pop[i+1]=temp2
[python]view plain
#0.0coding:utf-80.0
#基因突变
importrandom
defmutation(pop,pm):
px=len(pop)
py=len(pop[0])
foriinrange(px):
if(random.random()<pm):
mpoint=random.randint(0,py-1)
if(pop[i][mpoint]==1):
pop[i][mpoint]=0
else:
pop[i][mpoint]=1
[python]view plain
#0.0coding:utf-80.0
importmatplotlib.pyplotasplt
importmath
fromselectionimportselection
fromcrossoverimportcrossover
frommutationimportmutation
frombestimportbest
print'y=10*math.sin(5*x)+7*math.cos(4*x)'
#计算2进制序列代表的数值
defb2d(b,max_value,chrom_length):
t=0
forjinrange(len(b)):
t+=b[j]*(math.pow(2,j))
t=t*max_value/(math.pow(2,chrom_length)-1)
returnt
pop_size=500#种群数量
max_value=10#基因中允许出现的最大值
chrom_length=10#染色体长度
pc=0.6#交配概率
pm=0.01#变异概率
results=[[]]#存储每一代的最优解,N个二元组
fit_value=[]#个体适应度
fit_mean=[]#平均适应度
#pop=[[0,1,0,1,0,1,0,1,0,1]foriinrange(pop_size)]
pop=geneEncoding(pop_size,chrom_length)
foriinrange(pop_size):
obj_value=calobjValue(pop,chrom_length,max_value)#个体评价
fit_value=calfitValue(obj_value)#淘汰
best_indivial,best_fit=best(pop,fit_value)#第一个存储最优的解,第二个存储最优基因
results.append([best_fit,b2d(best_indivial,max_value,chrom_length)])
selection(pop,fit_value)#新种群复制
crossover(pop,pc)#交配
mutation(pop,pm)#变异
results=results[1:]
results.sort()
X=[]
Y=[]
foriinrange(500):
X.append(i)
t=results[i][0]
Y.append(t)
plt.plot(X,Y)
plt.show()
完整代码可以在github查看
欢迎访问我的个人博客
阅读全文
⑺ 利用遗传算法求解区间[0, 31]上的二次函数y=x 2次方 的最大值
靠 你也太懒了
⑻ python 哪个包里有 遗传算法
scikit-opt调研过很多遗传算法库,这个挺好用的。
#目标函数
defdemo_func(x):
x1,x2,x3=x
returnx1**2+(x2-0.05)**2+x3**2
fromgaimportGA
调用遗传算法求解:
ga=GA(func=demo_func,lb=[-1,-10,-5],ub=[2,10,2],max_iter=500)
best_x,best_y=ga.fit()
⑼ 遗传算法中几种不同选择算子及Python语言实现
在Python这种动态类型语言中貌似看起来有些鸡肋,但是为了能够更加规范使用者,利用Python的元类在实例化类对象的时候对接口的实现以及接口的参数类型加以限制。