⑴ 怎么计算矩阵
初等行变换不影响线性方程组的解,也可用于高斯消元法,用于逐渐将系数矩阵化为标准形。初等行变换不改变矩阵的核(故不改变解集),但改变了矩阵的像。反过来,初等列变换没有改变像却改变了核。
矩阵的逆矩阵怎么求
矩阵的逆矩阵怎么求
运用初等行变换法。将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=(A,I])对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。
矩阵的逆矩阵怎么求
逆矩阵的性质
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)。
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。
⑵ 关于矩阵的算法
3 X 3 矩阵,可以设逆矩阵为3 X 3 且9个未知数,用原矩阵乘以逆矩阵,结果为单位矩阵即可。
⑶ 矩阵怎么计算
在这个矩阵右边写一个同阶的单位矩阵,经过若干初等行变换(只能行变换,不能列变换),把左边部分(也就是这个矩阵)变成单位矩阵,则右边的矩阵即是原矩阵的逆矩阵。
1
1
1
0
1
2
0
1
第二行减去第一行
1
1
1
0
0
1
-1
1
第一行减去第二行
1
0
2
-1
0
1
-1
1
则原矩阵的逆是
2
-1
-1
1
⑷ 2x2矩阵,3x3矩阵的计算方法
左边矩阵第一行的元素分别与右边矩阵第一列的元素相乘,求和得到相乘矩阵的第一行的第一个元素。左边矩阵第一行的元素分别与右边矩阵第二列的元素相乘,求和得到相乘矩阵的第一行的第二个元素。以此类推。
具体方法如下图:
矩阵的乘法满足以下运算律:
结合律:A(BC)=(AB)C
左分配律: (A+B)C=AC+BC
右分配律:C(A+B)=CA+CB
矩阵乘法不满足交换律
网络-矩阵
⑸ 矩阵a*算法是什么
矩阵A*表示A矩阵的伴随矩阵。
伴随矩阵的定义:某矩阵A各元素的代数余子式,组成一个新的矩阵后再进行一下转置,叫做A的伴随矩阵。
某元素代数余子式就是去掉矩阵中某元素所在行和列元素后的形成矩阵的行列式,再乘上-1的(行数+列数)次方。
伴随矩阵的求发:当矩阵是大于等于二阶时:
主对角元素是将原矩阵该元素所在行列去掉再求行列式。
非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以(-1)^(x+y) x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始的。
主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以(-1)^(x+y)=(-1)^(2x)=1,一直是正数,没必要考虑主对角元素的符号问题。
⑹ 矩阵的计算
这是一个稀疏矩阵,你知道掌握矩阵相乘的规则就可以了。这个属于方阵相乘,第一个的第一行乘以第一列得到目标矩阵第一个元素,然后第一个的第二行乘以第二个的第一列得第二个元素,依次相乘,最后得到结果就行了,应该是5以内,一般不会太复杂。也可以编程序让电脑帮你算,这个简单一点。
⑺ 矩阵算法
已发送到邮箱里!
⑻ 矩阵的计算方法是什么
1、确认矩阵是否可以相乘。只有第一个矩阵的列的个数等于第二个矩阵的行的个数,这样的两个矩阵才能相乘。
图示的两个矩阵可以相乘,因为第一个矩阵,矩阵A有3列,而第二个矩阵,矩阵B有3行。
(8)矩阵算法扩展阅读
一般计算中,或者判断中还会遇到以下11种情况来判断是否为可逆矩阵:
1、秩等于行数。
2、行列式不为0。
3、行向量(或列向量)是线性无关组。
4、存在一个矩阵,与它的乘积是单位阵。
5、作为线性方程组的系数有唯一解。
6、满秩。
7、可以经过初等行变换化为单位矩阵。
8、伴随矩阵可逆。
9、可以表示成初等矩阵的乘积。
10、它的转置矩阵可逆。
11、它去左(右)乘另一个矩阵,秩不变。
⑼ 矩阵计算!
左边矩阵的行的每一个元素 与右边矩阵的列的对应的元素一一相乘然后加到一起形成新矩阵中的aij元素 i是左边矩阵的第i行 j是右边矩阵的第j列
例如 左边矩阵:
2 3 4
1 4 5
右边矩阵
1 2
2 3
1 3
相乘得到: 2×1+3×2+4×1 2×2+3×3+4×3
1×1+4×2+5×1 1×2+4×3+5×3
这样2×2阶的一个矩阵
我也是自学的线性代数 希望能帮到你 加油!
⑽ 矩阵的算法~
a1*a2+b1*a3这是第一个数,a1*b2+b1*b3这是第二个数,也就是用A1/B1分别乘第一列,第二列得到的数字作为新矩阵的行,就是解