‘壹’ 概率的公式是怎么计算的
1、C 3 10 = (10*9*8)/(1*2*3)
A 3 10=10*9*8
2、A(n,m)=n*(n-1)*(n-2)……(n-m+1),也就是由n往下每个数连乘。
C(n,m)=A(n,m)/A(m,m)。一般地,从n个不同的元素中,任取m(m≤n)个元素为一组,叫作从n个不同元素中取出m个元素的一个组合。
(1)概率的算法扩展阅读:
概率的加法法则
定理:设A、B是互不相容事件(AB=φ),则:
P(A∪B)=P(A)+P(B)
推论1:设A1、 A2、…、 An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)
推论2:设A1、 A2、…、 An构成完备事件组,则:P(A1+A2+...+An)=1
推论3:为事件A的对立事件。
推论4:若B包含A,则P(B-A)= P(B)-P(A)
推论5(广义加法公式):对任意两个事件A与B,有P(A∪B)=P(A)+P(B)-P(AB)[1]
条件概率
条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B)
条件概率计算公式:
当P(A)>0,P(B|A)=P(AB)/P(A)
当P(B)>0,P(A|B)=P(AB)/P(B)
乘法公式
P(AB)=P(A)×P(B|A)=P(B)×P(A|B)
推广:P(ABC)=P(A)P(B|A)P(C|AB)[1]
‘贰’ 概率的计算公式
12粒围棋子从中任取3粒的总数是C(12,3)
取到3粒的都是白子的情况是C(8,3)
C(8,3)
P=——————=14/55
C(12,3)
排列:从n个不同的元素中取m(m≤n)个元素,按照一定的顺序排成一排,叫做从n个不同的元素中取m个元素的排列。
排列数:从n个不同的元素中取m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Anm
排列公式:A(n,m)=n*(n-1)*.....(n-m+1)
组合:从n个不同的元素中,任取m(m≤n)个元素并成一组,叫做从n个不同的元素中取m个元素的组合。
组合数:从n个不同的元素中取m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记为Cnm。
组合公式:C(n,m)=A(n,m)/m!=n!/(m!*(n-m)!)
拓展资料:
概率的计算,是根据实际的条件来决定的,没有一个统一的万能公式。解决概率问题的关键,在于对具体问题的分析。然后,再考虑使用适宜的公式。
有一个公式是常用到的:P(A)=m/n。“(A)”表示事件。“m”表示事件(A)发生的总数。“n”是总事件发生的总数。
‘叁’ 概率怎么计算
这是批排列组合的题目
如果是5选4,再组成数字:
5×4×3×2=120种。
如果是m个,选n个,进行全排列(就是不重复),规律是:
m!/(m-n)!
感叹号是阶乘符号,m!=m×(m-1)×(m-2)×……×3×2×1
‘肆’ 概率的计算
答案应该是1/3.
理由:王成可能分到三组中的任一组,则有C(3,1)=3种可能;同时李全也可能分到三组中的任一组,即有C(3,1)=3种可能。于是,两人的分组组合共有3*3=9种可能。当两人在同一组时,只能在三组当中的其中一组,故此时有3种可能。则两人在同一组的概率为3/9=1/3。
‘伍’ 概率是怎么计算的
P(A)=A所含样本点数/总体所含样本点数。实用中经常采用“排列组合”的方法计算·
定理:设A、B是互不相容事件(AB=φ),则:
P(A∪B)=P(A)+P(B)
推论1:设A1、 A2、…、 An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)
推论2:设A1、 A2、…、 An构成完备事件组,则:P(A1+A2+...+An)=1
(5)概率的算法扩展阅读
条件概率
条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B)
条件概率计算公式:
当P(A)>0,P(B|A)=P(AB)/P(A)
当P(B)>0,P(A|B)=P(AB)/P(B)
乘法公式
P(AB)=P(A)×P(B|A)=P(B)×P(A|B)
推广:P(ABC)=P(A)P(B|A)P(C|AB)
参考资料来源:网络-概率计算
‘陆’ 概率如何计算
定义事件和结果。概率是在一系列可能结果中一个或多个事件发生的可能性。因此,假设我们希望计算出把一个六面骰子掷出三的可能性。"掷出三"是一个事件,而我们知道六面骰子可以被掷出六个数字中的任何一个,因此其结果数为六。以下为另外两个例子能加深你的理解:
例1:随机选择一个星期中的一天,选出的一天是周末的可能性有多大?
"选出周末中的一天"是我们的事件,而结果数就是一个星期中的天数,即七。
例2:一个罐子中装有4个蓝色小石、5个红色小石和11个白色小石。如果随机从罐子中取出一块小石,这块小石是红色的可能性有多大?
"选出红色小石"是我们的事件,结果数是罐子中小石的总数,即20。
2
用事件数除以可能结果数。所得结果即为单一事件发生的概率。在掷骰子中掷出三的例子中,事件数为一(每一骰子中只有一个三),而结果数为六。则其概率为1 ÷ 6、1/6、.166或16.6%。以下为计算其他例子中的概率的方法:
例1:随机选择一个星期中的一天,选出的一天是周末的可能性有多大?
事件数为二(因为一个星期中有两天为周末),而结果数为七。则其概率为2 ÷ 7 = 2/7即.285或28.5%。
例2:一个罐子中装有4个蓝色小石、5个红色小石和11个白色小石。如果随机从罐子中取出一块小石,这块小石是红色的可能性有多大?
事件数为五(因为共有五块小石),而结果数为20。则其概率为5 ÷ 20 = 1/4即.25或25%。
‘柒’ 求概率计算公式
古典概型:
(1)算出所有基本事件的个数n;
(2)求出事件A包含的所有基本事件数m;
(3)代入公式P(A)=m/n,求出P(A)。
几何概型:
设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(
掷点),称为几何概型。关于几何概型的随机事件“ 向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即
P=g的测度/G的测度
几何概型求事件A的概率公式:
一般地,在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A发生的概率为:
P(A)=构成事件A的区域长度(面积或体积)/ 实验的全部结果所构成的区域长度(面积或体积)
这里要指出:D的测度不能为0,其中“测度”的意义依D确定.当D分别为线段,平面图形,立体图形时,相应的“测度”分别为长度,面积,体积等.
‘捌’ 关于概率如何计算
这个就见仁见智了。
每次投一注投100期:一次都不中的概率为:(999/1000)的100次方。
中100次的概率为:(1/1000)的100次方.
中99次的概率为:(1/1000)的99次方*(999/1000)
·······
中一次的概率为:(999/1000)的99次方*(1/1000)。
在某一期一次投100注:假定你这100注都是不同的号码,中一注的概率为:1/10.
好像中奖率挺高的。但是根据庄家赚钱的原则,赔率肯定低于1:1000,所以你这样投注是肯定亏钱的。
既然是赌运气,还不如每次投一注,可以博几次中奖的几率。然后每次投注金额都较小,还可以多享受开注时的刺激。
小赌怡情!
‘玖’ 怎么计算概率
概率是对事件发生可能性大小的度量。不会发生的概率为0,一定会发生的概率是100%,也可以说是1.例如抛硬币,正面和反面出现的可能性都是50%,筛子每面出现的可能性都是六分之一,这些概率值通过直觉和经验就能想出来。虽然我们知道实验几次不一定是这个结果,但试验次数很多时,出现的频率就会接近概率值,无穷次时,频率就会等于概率。
通过直观和经验就能知道概率的几个基本命题,也可以说是公理,苏联的数学家柯尔莫哥洛夫总结了3条概率公理。
1. 事件发生的概率不小于0
2. 集合中的事件必有一件发生,则发生的概率之和等于1
3. 集合中事件互相不容,没有交集,则发生至少一个的概率等于每个事件概率之和
这3个公理不需记忆,应用时也不需刻意用,用直觉和经验靠算术思维就能想出概率计算方法。
通过这3个公理也可以推导出6个定理,也不需记忆,甚至不需要知道。
概率计算不像方程应用,简单地分别考虑每个数值含义列出等式,然后变换方程就能求解。列概率算式无法这样做,那些概率定理和概率公式以及写法,如:贝叶斯公式 P(A|B)=P(B|A)*P(A)/P(B) ,对列出概率算式帮助不大,也无法降低分析和推理难度,也就是说概率知识的公理化意义不大。概率计算时,只需按算术思维,按直觉和经验直接列出算式,然后进行四则运算即可。简单的场合,可以直接列出一个算式就可以算出概率值,在稍微复杂的场合需要分别列出几个算式,然后再去转换,这些复杂场合的概率算法常见的有频次算法,集合对应算法,和反向算法。